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Abstract

An emergent research trend explores the use of
Large Language Models (LLMs) as the back-
bone of agentic systems (e.g., SWE-Bench,
Agent-Bench). To fulfill LLMs’ potential as
autonomous agents, they must be able to iden-
tify, call, and interact with a variety of exter-
nal tools and application program interfaces
(APIs). This capability of LLMs, commonly
termed function calling, leads to a myriad of ad-
vantages such as access to current and domain-
specific information in databases and the out-
sourcing of tasks that can be reliably performed
by tools. In this work, we introduce GRANITE-
20B-FUNCTIONCALLING1, a model trained
using a multi-task training approach on seven
fundamental tasks encompassed in function
calling. Our comprehensive evaluation on
multiple out-of-domain datasets, which com-
pares GRANITE-20B-FUNCTIONCALLING to
more than 15 other best proprietary and
open models, shows that GRANITE-20B-
FUNCTIONCALLING has better generalizabil-
ity on multiple tasks across seven different
evaluation benchmarks. Moreover, GRANITE-
20B-FUNCTIONCALLING shows the best per-
formance among all open models and ranks
among the top on the Berkeley Function Call-
ing Leaderboard (BFCL).

1 Introduction

Function calling provides a means for language
models to leverage external tools and resources.
These tools can make available to an LLM specific,
up-to-date information that would otherwise be in-
accessible (e.g., stored in a dynamic knowledge
base) and thus reduce its proclivity for hallucinat-
ing responses (Schick et al., 2023). This is particu-
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Figure 1: Step-by-step building process of GRANITE-
20B-FUNCTIONCALLING.

larly crucial in enterprise use cases where a signifi-
cant portion of relevant data is stored in a structured
format accessible only via storage engines. In addi-
tion to knowledge access, function calling can al-
low an LLM to outsource tasks that are out of scope
for a generalized language model. Most commonly,
these tasks involve compute-heavy operations, e.g.,
program execution (Shinn et al., 2023), numerical
calculation, or retrieval (Schick et al., 2023), and
are otherwise a frequent source of LLM hallucina-
tions (Li et al., 2023a). The importance of function
calling has spurred the development of several re-
cent data generation efforts for fine-tuning (Basu
et al., 2024; Guo et al., 2024; Qin et al., 2023; Yan
et al., 2024; Tang et al., 2023) and evaluation of
models (Li et al., 2023b; Muennighoff et al., 2023).
However, the fine-tuned models from datasets like
ToolLLM (Qin et al., 2023), ToolAlpaca (Tang
et al., 2023), and Gorilla (Patil et al., 2023) fall
short in one (or more) of three key dimensions: (a)
Generalizability: While the datasets are generated
using diverse sets of APIs (e.g., ToolLLama uses
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Figure 2: Evaluation of GRANITE-20B-
FUNCTIONCALLING against the best open function
calling models (according to BFCL)

RapidAPIs 2, ToolAlpaca uses public APIs3, and
Gorilla uses TensorFlow Hub, PyTorch Hub, and
Hugging Face Hub), Basu et al. (2024) has shown
that models trained on these datasets have difficulty
generalizing to out-of-domain datasets. (b) Abil-
ity to handle granular tasks: Function calling,
as an umbrella term, encompasses multiple granu-
lar sub-tasks such as function-name detection, slot
filling4 or parameter-value pair detection, and de-
tecting the ordered sequence of functions needed to
be called. Existing models trained to perform func-
tion calling lack the ability to handle these granular
tasks independently, and hence, perform poorly on
such sub-tasks. (c) Openness: The best perform-
ing models are proprietary and the ones that have
open licenses (e.g., Gorilla (Patil et al., 2023)) are
trained using data generated from OpenAI models.

Our work addresses these limitations, and cen-
ters on introducing function-calling abilities to
models with an inherent focus on granular tasks.
Figure 1 shows an overview of how GRANITE-
20B-FUNCTIONCALLING was trained. Our
work draws largely on data obtained from API-
Blend (Basu et al., 2024), which comprises the
following tasks: function name detection, slot fill-
ing, parallel functions, multiple functions, sequenc-
ing,5 and calling APIs6 using multiple program-
ming languages. We build upon Granite code mod-
els (Mishra et al., 2024) by instruction tuning them
for function calling using the datasets for granu-
lar tasks with a multi-task learning approach. We

2https://rapidapi.com/hub
3https://github.com/public-apis/public-apis
4Slot, parameter, and argument are used interchangeably.
5Sequencing and chaining are used interchangeably.
6Function and API are used interchangeably.

perform a comprehensive evaluation of the open
and proprietary models using BFCL, four Func-
tion Calling Academic Benchmarks, and the Re-
sponse Generation Benchmark (Li et al., 2023b)
to evaluate the generalizability of function-calling
models. GRANITE-20B-FUNCTIONCALLING is
on par with the best open model on BFCL and
ranks fourth overall. Furthermore, GRANITE-20B-
FUNCTIONCALLING exhibits superior generaliz-
ability over other models on the out-of-domain
datasets. Figure 2 shows how GRANITE-20B-
FUNCTIONCALLING compares to the top two open
models (according to BFCL) on various tasks
where despite only having 20B parameters, it per-
forms as well or better than Meta-Llama-3-70B-
Instruct which has 70B parameters.

2 Related Work

2.1 Instruction Tuning

Our work is an instantiation of instruction tuning
(Wei et al., 2021), a fine-tuning method that im-
proves an LLM’s ability to solve natural language
tasks (Mishra et al., 2022; Wang et al., 2023). It in-
volves taking a large collection of NLP datasets, re-
formulating those datasets into a set of instruction-
following tasks, and then fine-tuning an LLM on
the modified data. While the earliest versions of in-
struction tuning straightforwardly combined large
datasets together, the most recent iterations use
more sophisticated mixtures of tasks to achieve
the best results (Li et al., 2024; Sudalairaj et al.,
2024). Our work draws largely on instruction API
datasets. Some examples of datasets that lie within
this category are API-Blend (Basu et al., 2024), a
diverse corpora of multiple API datasets focused
on various API related tasks (e.g., slot filling and
API intent detection), and API Pack (Guo et al.,
2024), which focuses on API call code generation
covering multiple programming languages.

2.2 Function Calling by LLMs

Recently, many language models with function-
calling capabilities have been introduced. They
broadly fall into two categories: pre-trained mod-
els with function-calling capabilities (Reid et al.,
2024; CodeGemma Team et al., 2024; Cohere-
ForAI, 2024; AI@Meta, 2024; Jiang et al., 2023),
and models specifically fine-tuned for function-
calling (Qin et al., 2023; Tang et al., 2023; MeetKai,
2024; Patil et al., 2023; Nous-Research, 2023;
Nexusflow.ai, 2023). While the pre-trained mod-
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els enable function-calling using a combination of
supervised and preference fine-tuning, details of
the datasets used to train models for these tasks
are not generally available. In contrast, special-
ized function-calling models mostly rely on syn-
thetic data generated from proprietary state-of-the-
art models. For example, Gorilla (Patil et al., 2023),
ToolLlama (Qin et al., 2023), ToolAlpaca (Tang
et al., 2023), and the NousResearch Hermes series
of models (Nous-Research, 2023) utilize GPT-4 or
ChatGPT to generate synthetic instruction tuning
data to fine-tune a base model (e.g., Llama, Mis-
tral) for function-calling tasks. The NexusRaven
models (Nexusflow.ai, 2023) are some of the few
open-source function-calling models designed for
commercial use that avoid synthetic data genera-
tion through proprietary models.

3 Multi-Task Training Data

In this section, we outline our comprehensive
approach to curate multi-task function calling
data to fine-tune GRANITE-20B-CODE-INSTRUCT

(Mishra et al., 2024) model, thereby creating
our robust GRANITE-20B-FUNCTIONCALLING

model specifically designed for function-calling.
Our training data mixture draws largely on API-
Blend (Basu et al., 2024), which compiles five
datasets (SeqSGD, SeqSNIPS, SeqTopV2, Se-
qATIS, and SeqMultiWOZ) totalling about 160K
training examples. In addition, we also use the
Glaive-V27 dataset. As a data pre-processing step,
we unify the format of all these datasets.

A key contribution to the process of building
GRANITE-20B-FUNCTIONCALLING is multi-task
training, where we reuse the same data in differ-
ent formats with distinct instructions for different
function-calling related tasks. We identified six
underlying sub-tasks for function calling and di-
vided them into two broad categories based on their
respective difficulty levels: (A) Low-Level Func-
tion Calling Tasks which are simpler tasks for an
LLM and relate to either function names or only
parameter-value pairs; and (B) High-Level Func-
tion Calling Tasks which are complex tasks for an
LLM and typically handle multiple functions; To
excel in High-Level function calling tasks, it is
crucial for any LLM to master the low-level foun-
dational sub-tasks. We have included “Response
Generation” as the seventh task in our training

7https://huggingface.co/datasets/glaiveai/
glaive-function-calling-v2

data since producing natural language responses
is one of the fundamental goals of an LLM. Ta-
ble 1 demonstrates the task-wise mapping of each
dataset. Below, we briefly describe each task.

3.1 Low-Level Function Calling Tasks

Next-Best Function In this task, given the func-
tion library along with the user query and the par-
tial function sequence, the models are supposed to
select the next most suitable function from the func-
tion library. It only requires the model to choose
one function name without any parameters.

Function Name Detection This task expects the
model to produce only the sequence of function
names (without parameters) from the function li-
brary that are required to answer the user query.
This task closely resembles Function Chaining (a
High-Level task), with the sole distinction being
it does not necessitate the model to populate the
function’s arguments.

Parameter-Value Pair Detection In this task,
when provided with a user query or a user-agent
conversation along with a list of parameters and
their descriptions, the model must identify all the
parameters for which the values are present in the
query or conversation.

3.2 High-Level Function Calling Tasks

Nested Function Calling The main characteris-
tic of this task is in the function sequence, where
one function’s output becomes an input to the next
function. So, the answer to a user query is a se-
quence of nested function calls selected from the
function library. Furthermore, the parameters of
these function calls need to be filled by extracting
the values from the user query.

Function Chaining In this task, a model needs
to call multiple functions in a sequence to answer
a user query. However, unlike Nested Function
Calling, these functions do not have to be nested.
Also, for each function, the parameters present in
the user query must be passed as arguments.

Parallel Functions Similar to the Function
Chaining task, here, the answer to a user query
requires the same function to be called multiple
times (in parallel). Similarly, parameters and their
values have to be extracted from the user query.
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High-Level Function Calling Tasks Low-Level Function Calling Tasks

Datasets Nested Func.
Calling

Func.
Chaining

Parallel
Func.

Next-Best
Func.

Func. Name
Detection

Param-Val
Pair Detection

Response
Generation

SeqSGD ✔ ✔ ✔ ✔ ✔
SeqSNIPS ✔ ✔ ✔ ✔ ✔
SeqTopV2 ✔ ✔ ✔ ✔ ✔
SeqATIS ✔ ✔ ✔ ✔ ✔
SeqMultiWOZ ✔ ✔ ✔ ✔
Glaive-V2 ✔ ✔

Table 1: Training Datasets with Task mapping

3.3 Response Generation
Natural language response generation is a crucial
feature of any LLM. In this task, the model must
comprehend an ongoing conversation between a
user and an AI assistant. Then, it generates a natu-
ral language response, answering the most recent
user utterance. Such responses are needed to chit-
chat with the user, ask clarifying questions, or syn-
thesize a function call’s output into a natural lan-
guage response.

4 Instruct Tuning

4.1 Training Data Mixture Creation
After generating the data for various tasks, the next
step is to create a training data mixture including all
the data. We programmatically generate the mix-
ture of data by following a weighted configuration
for datasets and tasks. Following is an example of
the weighted configuration, where the total mixture
samples will be divided between Function Chain-
ing and Next-Best Function in a 3:5 ratio. Within
the Function Chaining portion, the allocation is
split between SeqSGD and Glaive-V2 in a 2:3 ra-
tio. Similarly, the Next-Best Function chunk will
be divided in a 2:1 ratio between SeqTopV2 and
SeqSNIPS.
[{

"instruction_name": "Function Chaining",
"datasets": {

"SeqSGD": 2,
"Glaive -V2": 3

},
"weight": 3

},
{

"instruction_name": "Next -Best Function",
"datasets": {

"SeqTopV2": 2,
"SeqSNIPS": 1

},
"weight": 5

}]

Also, in this step, the training data is embed-
ded with the instructions. Below is our instruction
template:
SYSTEM: You are a helpful assistant with access to

the following function calls. Your task is to
produce a sequence of function calls necessary

to generate response to the user utterance. Use
the following function calls as required .\n<|

function_call_library |>\n{API_SPEC_INSTRUCTION}
\n\nUSER: {QUERY}\nASSISTANT:

Here, the “<|function_call_library|>” tag has
been used for the function library that is demon-
strated in the prompt with the placeholder named -
{API_SPEC_INSTRUCTION}. As the name suggests,
the {QUERY} serves as a proxy for the user query.

4.2 Training
GRANITE-20B-FUNCTIONCALLING is instruct-
tuned version of GRANITE-20B-CODE-INSTRUCT

(Mishra et al., 2024)8. For training data, we created
a mixture of 142K examples spanning all the tasks’
datasets discussed above. We then trained our
model using QLoRA fine-tuning (Dettmers et al.,
2023) based on our multi-task training mixture dis-
cussed above. In particular, we trained GRANITE-
20B-FUNCTIONCALLING a QLoRA rank of 8, al-
pha of 32 and a dropout of 0.1. We also used
a learning rate of 5e-5 and ApexFusedAdam as
our optimizer with a linear learning rate sched-
uler. Training was done using a single node of 8
A100_80GB GPUs with 800GB of RAM for a total
of 3 epochs.

5 Experimental Setup and Evaluation

In the section below, we detail our extensive eval-
uation on various evaluation datasets and public
leaderboard. We provide a comprehensive compar-
ison of our GRANITE-20B-FUNCTIONCALLING

to other open and proprietary function calling mod-
els.

5.1 Datasets
To evaluate the model’s generalizability, we eval-
uated GRANITE-20B-FUNCTIONCALLING on a
variety of function calling benchmarks, all of
which are out-of-domain evaluation for our model.
It is worth noting that some of these datasets;

8https://huggingface.co/ibm-granite/
granite-20b-code-instruct
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Dataset Test Instances Testing tasks Metrics

BFCL 1,700 Function Calling AST, Execution Accuracy
Relevancy Accuracy

ToolLLM 491 Function Calling Func. matching (F1)
RestGPT 157 Function Calling Func. matching (F1)
API-Bank 473 Function Calling Func. and Param. matching (F1)

478 Response Generation BERTscore, ROUGE, BLEU
ToolBench 214 Function Calling Func. and Param. matching (F1)
ToolAlpaca 100 Function Calling Func. and Param. matching (F1)
NexusRaven 318 Function Calling Func. and Param. matching (F1)

Table 2: Evaluation Datasets

e.g. ToolAlpaca and ToolLLM, have training
data releases. However, we did not use any
of these benchmarks to train GRANITE-20B-
FUNCTIONCALLING and we only used the datasets
mentioned in Table 1.9 Table 2 depicts the details
of the evaluation datasets we used.

5.2 Evaluation Metrics

Below, we define the metrics we adopted for spe-
cific tasks in function calling.

BFCL Metrics10: BFCL evaluates multiple
tasks using the following four metrics.
(1) AST summary compares the abstract syntax tree
of the function output to the ground truth and the
function definition. It captures the correctness of
the functions called, their parameters (required or
not), and the parameter types.
(2) Execution Summary compares the execution
output from generated and ground-truth function
calls. This metric is used to evaluate REST APIs
and non-REST data samples.
(3) Relevance evaluates the model’s ability to detect
no function calls when the given list of functions is
irrelevant to the user query. This inversely captures
the hallucination rate of models.
(4) Overall Accuracy is the weighted average of all
individual data splits in BFCL.

The same metrics described above cannot be
used for our out-of-domain datasets because of
missing information, varied formats, and response
generation tasks. For example, ToolLLM datasets
have missing arguments, ToolAlpaca has missing
argument types, and API-Bank has a response gen-
eration task. Therefore, we use the following met-
rics to evaluate the models on other datasets:

F1 measure: Based on Basu et al. (2024), we
opted for standard metrics like precision, recall,
and F1 scores which focus on exactly matching

9We could not verify whether some (or all) of the out-of-
domain datasets were used in other models’ training sets.

10https://gorilla.cs.berkeley.edu/blogs/8_
berkeley_function_calling_leaderboard.html#
metrics

API and parameters’ names. The reason behind
this is that APIs are very specific and unless ev-
erything (e.g., name, parameters, input/output for-
mat, etc.) matches the API specifications, execut-
ing such APIs will not be possible. We report F1
for matching function names as well as parameter
names and values.

Longest Common Subsequence (LCS) and Ex-
act match: We also used LCS from Basu et al.
(2024) to capture the overlap between the gold and
predicted sequences of APIs. This allows us to
compute models’ ability to predict APIs in the cor-
rect sequence as required by the user. Similarly,
exact match score (Basu et al., 2024) checks if
all APIs are predicted by the model and are in the
same order.

BERTScore, ROUGE-L and BLEU: We fol-
low the evaluation in API-Bank (Li et al., 2023b), a
dialog dataset that also evaluates model responses
based on language generation metrics such as
Rouge-L (Lin, 2004), BertScore (Zhang et al.,
2019), and BLEU (Papineni et al., 2002).

Hallucination Rate: We compute the hallucina-
tion rate as the number of samples where the model
predicted an API not provided in the function li-
brary.

5.3 Evaluation Results

Tables 3, 4, 5, 6, and Figure 3 depict an
extensive evaluation of GRANITE-20B-
FUNCTIONCALLING in comparison to other
state of the art function calling models. In order
to detail this evaluation and analyses, below we
categorize the results into (a) BFCL Evaluation,
(b) Function calling academic benchmarks, and (c)
Response Generation.

5.3.1 BFCL Leaderboard Evaluation Results
Table 3 shows that GRANITE-20B-
FUNCTIONCALLING is ranked fourth on
the overall accuracy metric among the top 15
models on BFCL and is highest among models
with open licenses11. While it is tied with the
Gorilla (Patil et al., 2023) model, it is important
to note that the latter was finetuned on data
that are (a) generated from ChatGPT, and (b)
similar data to the test set and hasn’t generalized
well to other datasets as shown in Table 4 and

11We have picked the best performing version of each
model. For example, Gemini-1.5-Pro-Preview-0514 (FC) and
Gemini-1.5-Pro-Preview-0409 (FC) are both part of the leader-
board but for our evaluation, we consider the best one.
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Model Organization License AST Summary Exec. Summary Relevance Overall Acc.

Claude-3.5-Sonnet-20240620 (Prompt) Anthropic Proprietary 91.31 89.50 85.42 90.00
GPT-4-0125-Preview (Prompt) OpenAI Proprietary 91.22 88.10 70.42 88.00
Gemini-1.5-Pro-Preview-0514 (FC) Google Proprietary 87.92 83.32 89.58 86.35
GRANITE-20B-FUNCTIONCALLING IBM Apache 2.0 84.11 86.50 87.08 84.71
Gorilla-OpenFunctions-v2 (FC) Gorilla Apache 2.0 89.38 81.55 61.25 84.71
Meta-Llama-3-70B-Instruct (Prompt) Meta MetaLlama 3 87.74 85.32 69.17 83.88
FireFunction-v2 Fireworks Apache 2.0 86.44 80.26 56.67 81.88
Mistral-Medium-2312 (Prompt) Mistral AI Proprietary 83.76 73.47 88.33 81.35
Functionary-Medium-v2.4 (FC) MeetKai MIT 85.61 75.71 74.17 80.47
Command-R-Plus (Prompt) (Opt.) Cohere cc-by-nc-4.0 83.60 86.74 54.17 80.35
Functionary-Small-v2.4 (FC) MeetKai MIT 83.55 76.31 67.92 79.94
Mistral-large-2402 (FC Auto) Mistral AI Proprietary 64.73 60.01 84.17 68.76
Nexusflow-Raven-v2 (FC) Nexusflow Apache 2.0 65.19 73.89 57.50 67.35
DBRX-Instruct (Prompt) Databricks Databricks 66.62 74.92 55.83 65.88
Snowflake-arctic-Instruct (Prompt) Snowflake Apache 2.0 61.09 80.04 59.58 65.18

Table 3: Berkeley Function Calling Benchmark: Top 15 models by Overall Accuracy (as of 06/25/2024). All
evaluations are done in a zero-shot manner.

ToolLLM-G1 ToolLLM-G2 ToolLLM-G3 RestGPT Average

Func.
Match

LCS
Exact
Score

Func.
Match

LCS
Exact
Score

Func.
Match

LCS
Exact
Score

Func.
Match

LCS
Exact
Score

Func.
Match

LCS
Exact
Score

Functionary-small-v2.4 (7B) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.30 0.06 0.07 0.07 0.02
Gorilla-openfunctions-v2 (7B) 0.59 0.59 0.28 0.48 0.48 0.22 0.51 0.52 0.24 0.21 0.21 0.01 0.44 0.45 0.19
Hermes-2-Pro-Mistral (7B) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.01 0.01 0.01 0.00
Mistral-Instruct-v0.3 (7B) 0.49 0.49 0.26 0.51 0.49 0.30 0.36 0.33 0.13 0.36 0.37 0.08 0.43 0.42 0.19
CodeGemma-Instruct (7B) 0.59 0.59 0.21 0.53 0.53 0.13 0.52 0.54 0.16 0.22 0.23 0.02 0.46 0.47 0.13
Nexusflow-Raven-v2 (13B) 0.65 0.65 0.39 0.73 0.72 0.43 0.68 0.66 0.27 0.39 0.41 0.06 0.61 0.61 0.28
C4AI-Command-R-v01 (35B) 0.65 0.64 0.39 0.73 0.71 0.45 0.69 0.68 0.23 0.59 0.60 0.22 0.66 0.66 0.32
Meta-Llama-3-70B-Instruct (70B) 0.61 0.61 0.31 0.59 0.58 0.21 0.65 0.64 0.23 0.22 0.22 0.01 0.52 0.51 0.19
GRANITE-20B-FUNCTIONCALLING 0.86 0.85 0.63 0.84 0.82 0.58 0.76 0.73 0.35 0.51 0.52 0.15 0.74 0.73 0.43

Table 4: Function Calling Academic Benchmarks: Function Name Detection. Best performance is highlighted in
bold, second best is underlined. All evaluations are done in a zero-shot manner.

Figure 3. In the context of model sizes, GRANITE-
20B-FUNCTIONCALLING is one of the smallest
models in the list. Specifically, the ones better
than GRANITE-20B-FUNCTIONCALLING in the
ranking are all significantly larger in size.

For the BFCL evaluation dataset, we highlight
concerns in certain categories, particularly the Java,
JavaScript, and REST API evaluations. We are
concerned with how the Java and JavaScript cate-
gories evaluate a function-calling model’s capabili-
ties to follow language-specific syntax, for instance
how objects are instantiated and called in Java and
JavaScript utilizing language-specific context and
norms. For the REST API category, we observed
significant brittleness in the evaluation due to issues
with API availability and API call limits.

5.3.2 Function Calling Academic Benchmarks

Tables 4 and 5 focus on evaluating the models’ per-
formance on Function Matching using F1-measure,
LCS, and Exact Match. In this experiment, we
reuse the model handlers from the BFCL code base,
including the optimized prompts for each model.
However, since the Cohere Command-R-v01 and
Mistral-Instruct-v0.3 handlers available in BFCL
use the REST API interface for inference, we reim-
plement handlers for these models, utilizing local
models using prompts suggested by the respective

model developers for function calling.

Function Name Detection: On ToolLLM
datasets (G1, G2, and G3) and RestGPT, GRANITE-
20B-FUNCTIONCALLING performs the best on
detecting function names given a natural language
utterance with 8% better F1 score than the next
best function calling model, as shown in Table 4.
Since these datasets have multiple functions in se-
quence, we also compute sequencing metrics; ex-
act score and LCS. On this front, GRANITE-20B-
FUNCTIONCALLING model also outperforms other
function calling models by 7% on LCS and 11%
on Exact Match scores.

Full Function Calling: Table 5 reports on the
models’ performance on the API-Bank, ToolBench,
and ToolAlpaca datasets that are out-of-domain and
evaluated in a zero-shot manner. No single model
outperforms all other models across datasets. Note
that datasets like ToolAlpaca and API-Bank come
with training data split which we never used for
training GRANITE-20B-FUNCTIONCALLING, but
could not guarantee that the other models were
not trained with it too. Averaging out the F1
scores across datasets shows that GRANITE-20B-
FUNCTIONCALLING achieves an F1 score of 0.87
when predicting the function name; second best by
0.01 to Cohere’s Command-R (a 35B model) which
provides an F1 score of 0.88. When predicting the
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Func-Name+Args Det. (F1 Func-Name | F1 Args) F1 Average

API-Bank
L-1

API-Bank
L-2

ToolBench
HS

ToolBench
B

Tool-Alpaca
Nexus
Raven

Func
Name

Args

Functionary-small-v2.4 (7B) 0.78 | 0.70 0.54 | 0.45 0.73 | 0.68 0.65 | 0.33 0.88 | 0.47 0.82 | 0.64 0.73 0.55
Gorilla-openfunctions-v2 (7B) 0.43 | 0.41 0.12 | 0.12 0.86 | 0.69 0.41 | 0.27 0.69 | 0.39 0.81 | 0.65 0.55 0.42
Hermes-2-Pro-Mistral (7B) 0.93 | 0.77 0.54 | 0.25 0.51 | 0.40 0.56 | 0.26 0.80 | 0.26 0.90 | 0.63 0.71 0.43
Mistral-Instruct-v0.3 (7B) 0.79 | 0.69 0.69 | 0.46 0.60 | 0.47 0.04 | 0.16 0.33 | 0.33 0.71 | 0.54 0.53 0.44
CodeGemma-Instruct (7B) 0.77 | 0.57 0.59 | 0.38 0.65 | 0.50 0.54 | 0.22 0.59 | 0.31 0.84 | 0.68 0.66 0.44
Nexusflow-Raven-v2 (13B) 0.51 | 0.42 0.28 | 0.22 0.92 | 0.65 0.89 | 0.35 0.85 | 0.37 0.92 | 0.75 0.73 0.46
C4AI-Command-R-v01 (35B) 0.93 | 0.76 0.77 | 0.54 0.85 | 0.77 0.88 | 0.49 0.90 | 0.42 0.93 | 0.71 0.88 0.62
Meta-Llama-3-70B-Instruct (70B) 0.85 | 0.67 0.69 | 0.52 0.91 | 0.86 0.91 | 0.56 0.78 | 0.43 0.70 | 0.52 0.81 0.59
GRANITE-20B-FUNCTIONCALLING 0.91 | 0.71 0.83 | 0.60 0.87 | 0.71 0.82 | 0.36 0.89 | 0.44 0.92 | 0.72 0.87 0.59

Table 5: Function Calling Academic Benchmarks: Full Function Calling. Best performance is highlighted in bold,
second best is underlined. All evaluations are done in a zero-shot manner.

API-Bank-Response-Level 1 API-Bank-Response-Level 2

Models BertScore Rouge-L BLEU BertScore Rouge-L BLEU

Functionary-small-v2.4 (7B) 0.34 0.23 0.05 0.35 0.23 0.05
Gorilla-openfunctions-v2 (7B) 0.56 0.33 0.32 0.51 0.26 0.25
Hermes-2-Pro-Mistral (7B) 0.45 0.18 0.09 0.42 0.14 0.06
Mistral-Instruct-v0.3 (7B) 0.52 0.29 0.22 0.46 0.20 0.14
CodeGemma-Instruct (7B) 0.14 0.03 0.00 0.09 0.02 0.01
Nexusflow-Raven-v2 (13B) 0.41 0.16 0.11 0.38 0.11 0.06
C4AI-Command-R-v01 (35B) 0.39 0.15 0.07 0.39 0.15 0.06
Meta-Llama-3-70B-Instruct (70B) 0.69 0.48 0.47 0.65 0.40 0.40
GRANITE-20B-FUNCTIONCALLING 0.68 0.47 0.47 0.61 0.36 0.37

Table 6: API-Bank Response generation dataset evaluation. Results are averaged across each dataset per model.
Best performance is highlighted in bold, second best is underlined. All evaluations are done in a zero-shot manner.

Figure 3: Performance vs. Hallucination rates for Out-
of-Domain Function Calling

arguments, GRANITE-20B-FUNCTIONCALLING

average F1 score lags behind the best model (Co-
here’s Command-R) by 0.03; 0.62 vs. 0.59.

Function Name Hallucination: Hallucinations
have been a major drawback of LLMs. In the
context of calling and executing APIs, hallucina-
tions can have adverse consequences. In Figure 3,
we compare the models’ Function Name Detec-
tion Scores (average F1) over all the datasets (ex-
cept BFCL, which uses AST-based metrics) and
their hallucination rates. Ideally, we want models
to have high performance and low hallucination
rates (top left corner of the plot). GRANITE-20B-
FUNCTIONCALLING has the highest performance
with less than 0.1 hallucination rate.

5.3.3 Response Generation
Table 6 shows the models’ performance on re-
sponse generation task. In this experiment, we
used API-Bank dataset and followed their re-
sponse generation task evaluation with BertScore,
Rouge-L, and BLEU. Meta-Llama-3-70B-Instruct
has the best performance across the three met-
rics with GRANITE-20B-FUNCTIONCALLING

coming in close second (performance difference
ranged between 1-5%). Both models signif-
icantly outperform all other evaluated models.
The gap widens when we compare GRANITE-
20B-FUNCTIONCALLING to the ones specifically
trained for function calling such as Functionary-
small-v2.5 and Gorilla-openfunctions-v2.

6 Conclusion

In this paper, we introduced GRANITE-20B-
FUNCTIONCALLING, a capable function calling
open model with Apache 2.0 license. It is trained
using a suite of datasets transformed from different
domains and with a multi-task learning approach.
We performed an extensive evaluation of our model
in comparison to other state-of-the-art function call-
ing models. On multiple out-of-domain datasets,
including BFCL, our model outperform the other
open models. Even compared to multiple propri-
etary models with much larger sizes, our model
showed on-par and in some cases better perfor-
mance on multiple datasets and tasks.
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