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Abstract

Query Auto-Complete (QAC) is an essential
search feature that suggests users with a list of
potential search keyword completions as they
type, enabling them to complete their queries
faster. While the QAC systems in eCommerce
stores generally use the Learning to Rank (LTR)
approach optimized based on customer feed-
back, it struggles to provide diverse sugges-
tions, leading to repetitive queries and limited
navigational suggestions related to product cat-
egories, attributes, and brands. This paper pro-
poses a novel DiAL framework that explicitly
optimizes for diversity alongside customer feed-
back signals. It achieves this by leveraging a
smooth approximation of the diversity-based
metric (αNDCG) as a listwise loss function and
modifying it to balance relevance and diversity.
The proposed approach yield an improvement
of 8.5% in mean reciprocal rank (MRR) and
22.8% in αNDCG compared to the pairwise
ranking approach on an eCommerce dataset,
while meeting the ultra-low latency constraints
of real time QAC systems. In an online experi-
ment, the diversity-aware listwise QAC model
resulted in a 0.48% lift in revenue. Further-
more, we replicated the proposed approach on
a publicly available search log, demonstrating
improvements in both diversity and relevance
of the suggested queries.

1 Introduction

Query Auto-Complete is a valuable tool in eCom-
merce that helps customers articulate their query
by suggesting relevant completions saving time as
well as improving overall search relevance. The
QAC problem is usually formulated as a two-step
process of matching and ranking. Matching en-
tails retrieving the list of most popular completions
(MPC) (Bar-Yossef and Kraus, 2011) based on the
characters entered by the user in the search box
(or prefix). This is followed by re-ranking of the
retrieved keywords by using LTR to finally select

Figure 1: QAC inference flow for the prefix ‘mobile’
employing two LTR models: ‘Before’ showing results
when trained solely on relevance, and ‘After’ presenting
results after implementing diversification in India mar-
ket.

top ranked keywords to be displayed to the end
user (Cai et al., 2016a). A simple and effective
solution to QAC is to suggest the popular queries
for a given prefix that reflect the customer choice.
However, most popular suggestions have a lot of
redundancies retrieving similar search results, thus
wasting a precious opportunity to shape the cus-
tomer search experience. The standard inference
flow for QAC is presented in Fig. 1, demonstrating
outcomes obtained from an LTR model focused ex-
clusively on relevance, as well as outcomes when
the LTR model is configured to concurrently op-
timize for both relevance and diversity. This re-
dundancy in suggestions can be attributed to two
reasons: 1) using the observed click rate as a label
for training the ML model causes popular queries
to be shown at the top which accumulates more
clicks, creating a feedback loop 2) choosing top
K queries by scoring each query individually for
a given prefix, without considering the context of
other queries. To mitigate this issue, it is crucial
to diversify the QAC suggestions, similar to the
approach taken in web search and retrieval, where
researchers have utilized various diversity-based
evaluation metrics such as ERR-IA (Chapelle et al.,
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2009), αNDCG (Clarke et al., 2008), and greedy
optimization methods like Maximal Marginal Rele-
vance (MMR) (Carbonell and Goldstein, 1998). In
QAC, we define diversity as the maximum number
of distinct topics within the candidate query sug-
gestions presented to the user. The determination
of topics depends on the QAC domain and can be
tailored to specific business needs. For instance,
in the eCommerce domain, we establish topics for
QAC suggestions by considering the navigational
usefulness of a query. We consider a query to be
navigational if it contains product attribute tokens
(words) that help narrow down the search results.

Learning to Rank (LTR) is a widely adopted ap-
proach for modeling QAC recommendations, typi-
cally implemented through pairwise ranking tech-
niques (Fiorini and Lu, 2018; Park and Chiba, 2017;
Cai and de Rijke, 2016). In these methods, given
a pair of suggestions, the model learns to assign a
higher score to the more frequently clicked sugges-
tion (query) compared to the less clicked one. Ad-
dressing diversity in QAC suggestions is commonly
handled as a post-processing step. First, sugges-
tions relevant to the prefix (as reflected by the ML
model score) are selected, and then post-processed
to obtain diverse suggestions concerning the nav-
igational topic (Cai et al., 2016b; Slivkins et al.,
2010; Feng et al., 2018). However, this approach is
disadvantageous as the trade-off between relevance
and diversity is determined by heuristics, involving
approximations to resolve ties. Furthermore, these
greedy selection techniques involving one-by-one
comparisons often fail to meet real-time diversity
requirements for ranking.

To address existing limitations, we propose
DiAL, a listwise ranking method with a tailored
scoring function to simultaneously optimize rele-
vance and diversity. Notably, we employ a smooth
version of the diversity-based metric (αNDCG) as
the loss function, where rank is approximated using
scores of queries in the list. We modify this loss to
suit QAC constraints, balancing relevance and di-
versity. Uniquely, we propose a novel diversifying
strategy for QAC by mining navigational entities
and further utilizing these entities with hierarchical
intents in the loss. The overall score-and-sort strat-
egy with a diversity-aware loss, deployable under
real-time QAC constraints, has not been studied
before. Therefore, we list the main contributions
of our work below:

-We introduce a listwise ranking approach with a
modified diversity-aware loss function to generate

diverse and relevant QAC suggestions in real-time
for eCommerce applications.
- We identify and incorporate different intents and
graded relevances specific to eCommerce QAC
within the listwise loss function.
- Through offline and online evaluations on eCom-
merce and public search log data, our listwise
diversity-aware ranking approach outperformed
pairwise baselines (Yuan and Kuang, 2021; Singh
et al., 2023), improving both relevance and diver-
sity in QAC recommendations.
To the best of our knowledge, this is the first ef-
fort to diversify QAC using a direct score-and-sort
approach, emphasizing the novelty of our work.

2 Related Work

The study of diversification in QAC has not been
extensively explored. (Cai et al., 2016b) conducted
seminal research on diversifying QAC through a
greedy query selection approach, suggesting the
next query based on query popularity, aspects of
the query already in the list, and previous search
sessions. Subtopics or aspects are extracted from
clicked document URLs for a given query. (Singh
et al., 2023) proposed improving quality in QAC
using multi-objective ranking by boosting navi-
gational queries using pairwise ranking. While
their approach improves the ranking of naviga-
tional queries over low-quality or non-navigational
queries, it does not explicitly diversify topics or
subtopics within navigational queries. Our work
draws inspiration from the related area of diversify-
ing web search results, exploring two paths based
on whether subtopics are already known (explicit
diversification) or not (implicit diversification). For
explicit diversification, studies like (Santos et al.,
2015; Dang and Croft, 2013; Hu et al., 2015; Sar-
war et al., 2020) have been conducted. For implicit
diversification, researchers such as (Carbonell and
Goldstein, 1998; Sanner et al., 2011; Raiber and
Kurland, 2013; Yu et al., 2018; Yan et al., 2021;
Yu, 2022) have made contributions. (Yan et al.,
2021; Yu, 2022) employed distributed embeddings
to uncover latent subtopics and used an approx-
imate diversification metric as a loss to enhance
search diversity. Jointly training all queries in the
list is critical for training a diversity-aware loss.
As such, we adapt the listwise LTR framework
(Cao et al., 2007) to score the queries and incorpo-
rate a query interaction layer similar to the Docu-
ment Interaction Network (DIN) (Pasumarthi et al.,
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2020) to produce higher-order features for queries
in the list. (Qin et al., 2021) provided essential
benchmarks and investigated various architectures
and loss functions for LTR. We show how listwise
LTR with DIN is superior to pairwise LTR with
feed-forward layers (Yuan and Kuang, 2021) for
modeling click-based relevance in QAC. Follow-
ing (Bruch et al., 2019b), who suggested using the
optimization metric as a loss function for similar
or better results over standard LTR loss functions,
we train a diversification-aware loss that performs
direct metric optimization using a smooth variation
of αNDCG.

3 Diversified Auto-Complete

We present the diversity-aware listwise ranking for
Auto-Complete (DiAL) framework that models di-
versity alongside relevance in QAC. DiAL applies
listwise ranking with a diversity-aware loss, de-
tailed in this section.

3.1 Diversity aware listwise loss

An approach to defining a loss function in LTR is to
directly approximate the evaluation metric, such as
NDCG (Normalized Discounted Cumulative Gain),
as the loss function, resulting in improved perfor-
mance on the metric of interest. For diversified
ranking, αNDCG is an important metric to evalu-
ate diversity. However, it is not differentiable, and
techniques to approximate it have been proposed
in several works. The αNDCG metric is defined
as follows: Let k be the total number of intents or
topics for which the diversity of a list of n ranked
keywords associated with prefix p needs to be com-
puted. Each keyword can cover 0 to k intents. Let
yij be keyword-intent labels, which will be 1 if
the ith keyword in the ranked list contains the jth

intent and 0 otherwise. Let ri be the rank of the ith

item in the list. Then, αDCG is given as:

αDCG =
∑n

i=1

∑k
j=1

yij(1−α)wji

log2(1+ri)
(1)

Here, α is a parameter for penalizing redundancy
of intents, and wji =

∑
m:rm<ri

ymj indicates how
many times the jth intent was covered in all key-
words ranked above the ith keyword. αNDCG is a
normalized version of αDCG, and its approximate
differentiable version is used as the loss adopting
the approach in (Yan et al., 2021) explained in Ap-
pendix A.1.

Figure 2: Example to obtain label for click based intent
from past search data on the left and example to mine
topic/subtopic labels for a query using intent tagger tool
on the right.

Figure 3: On the left, there is a list of prefix queries, and
on the right, there is the corresponding query relevance
matrix used to evaluate diversity loss and performance
in the context of eCommerce data.

3.2 Intent for Auto-Complete Diversity

Utilizing historical clicked suggestions derived
from anonymized search logs of an eCommerce
platform and extracting ‘navigational’ utility-based
intents from keywords, we categorize intent into
30 topics and subtopics:
Click intent: The primary intent derived from
user-anonymized session logs, where the se-
lected/clicked keyword for a prefix is labeled 1,
and the rejected keywords are labeled 0 (Fig. 2).
Non-superfluous intent: Queries must be precise
without redundant words like ‘best’, ‘stylish’, or
‘good-looking’. We assign a label of 1 to denote
queries with no redundant words, identified by
matching with a predefined list of redundancies.
Presence of topics: The intent labels are procured
by the presence or absence of the top topics present
in the query, such as ‘product type’, ‘gender’, and
‘age’ for shoes, or ‘processor type’ and ‘screen size’
for laptops. We use an internal intent tagger tool
to identify topic boundaries (Fig. 2) in each query
and pick the top 10 most frequent topics from the
prefix keywords list.
Presence of subtopics: Subtopic labels are as-
signed within the topic, such as gender type (‘men’
or ‘women’) and screen size (‘14 inch’ or ‘15 inch’).
We choose the 18 most frequent subtopics from
each prefix keywords list.
Cutoff of topics and subtopics was determined by
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measuring the frequency of their occurrence, be-
yond which they were considered unpopular for di-
versification purposes. We construct a prefix query
relevance matrix (Fig. 3) with these 30 intent labels
for each prefix and keywords list pair. While these
binary intent labels can be directly plugged into
the loss function, we add two additional parame-
ters in equation 1 to discount binary relevance and
account for varying levels of importance of various
intents, the hierarchical relationship between top-
ics and subtopics, and the potential skew caused by
long keywords covering multiple topics given as:

αDCG =
∑n

i=1

∑k
j=1

relj∗yij(1−α)wji

toki∗log2(1+ri)
(2)

where relj (a hyper-parameter) is the relevance
associated with the jth intent, and toki is the total
number of tokens in the ith keyword. To mitigate
trade-offs between diversity and relevance during
training, we adjusted relj through grid search to
achieve a flat or better relevance rate with improved
diversity on the validation dataset.

3.3 Query Interaction Network

Neural LTR architectures, such as DeepPLTR, have
feed-forward layers and compute a score for each
keyword independently. This architecture with
feed-forward layers fails to capture listwise interac-
tion among keywords mapped to the same prefix as
explained in (Qin et al., 2021). Similar to document
interaction networks, we use listwise context em-
bedding using self attention layers and further use
the latent cross concept for higher order feature in-
teractions, as illustrated in Fig. 4. Suppose a list of
n keywords where each keyword feature has dimen-
sion d is given, let X ∈ Rn×d denote features of
the list, thereafter these features are projected using
query, key, and value projection matrices to obtain
final query, key and value denoted as : Q=XWq,
K=XWk, V=XWv. These projection matrices are
trainable and ∈ Rd×z where z is the size of the
attention head.

A(X) = Softmax

(
QKT

√
z

)
V (3)

Utilizing matrices Q, K, and V , we derive
A(X), which is subsequently concatenated from
multiple heads and projected back to the origi-
nal head dimension z through the application of
the projection matrix Wo, resulting in the output

Figure 4: Query Interaction Network, where xi is the
input feature for the ith keyword in the list, ai is the
attention-based embedding from the query interaction
(Mhsa) layer, and si is the final score for the ith key-
word.

Mhsa(X) as depicted in equations 3 and 4.

Mhsa(X) = Concat (A(X)h1, A(X)h2, . . . , A(X)hh)Wo (4)

ecrossi = Mhsa(X)i ⊙ ff(xi) and si = ff ′(ecrossi ) (5)

Latent cross features, denoted as ecrossi for the
ith keyword, are acquired through element-wise
multiplication of the embeddings from the Mhsa
layers and those obtained from the feed-forward
network ff . The final scores, represented by si for
the ith keyword, are obtained after passing these
latent cross features through an additional layer of
the feed-forward network ff ′.

4 Experiment and Results

Table 1: Comparison of models based on optimization
strategies and real-time deployability.

Model Diversity Relevance Listwise Real-time

DeepPLTR X ✓ X ✓
moDPLTR ✓ ✓ X ✓
LQIN X ✓ ✓ ✓
DiALAllRank ✓ ✓ ✓ ✓
DiALAttDin ✓ ✓ ✓ ✓
DiALQIN ✓ ✓ ✓ ✓

To compare the outcomes of the DiAL frame-
work, we use DeepPLTR (Yuan and Kuang, 2021)
and moDPLTR (Singh et al., 2023) as baseline
methodologies. DeepPLTR optimizes for query
relevance, while moDPLTR enhances the diver-
sity of attributes in eCommerce queries by priori-
tizing queries with a greater number of attributes
(or navigational tokens) through pairwise ranking.
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The reported results encompass evaluations con-
ducted on internal eCommerce data. To ensure
reproducibility, we additionally provide results ob-
tained on the publicly available AOL search logs
(Pass et al., 2006) in Appendix A.5. Due to confi-
dentiality, we report relative numbers for the eCom-
merce dataset, while providing absolute numbers
for the AOL dataset.
Model details: For all pairwise baselines, we used
a Siamese NN (Fig. 2 of (Singh et al., 2023)). All
dense layers use ReLU activation with 128 nodes
each. The architectural framework for Listwise
Learning to Rank corresponds to the Query Interac-
tion Network explained in Section 3.3. The multi-
headed self-attention (Mhsa) layer is configured
with 2 heads. This network comprises 6 stacked
layers of self-attention. Both the head and tail
feed-forward networks share similar structures, fea-
turing three feed-forward layers with dimensions
of 128, 256, and 512, respectively. Each connected
feed-forward layer incorporates a rectified linear
unit (RELU) activation function with batch normal-
ization. All models were trained for a maximum of
15 epochs using the Adam optimizer with a starting
learning rate of 3e-5. The best checkpoints were
selected for evaluation based on performance on
the validation dataset.
eCommerce dataset: Anonymized logs from an
eCommerce store are used for generating train-
ing samples. A week of customer logged data is
used to create a mapping of prefix to the top 100
clicked candidates for each prefix. This prefix-to-
candidates map is then merged with session logs
based on the prefix. We use 1 week of search logs
for training and succeeding 3 days for testing. Each
session log entry comprises the prefix, selected key-
word, past searches, device type, and other relevant
information. Prefixes with fewer than 10 candidates
and sessions without a clicked QAC candidate are
omitted. Subsequently, for each entry, the query
relevance matrix is computed as explained in Sec-
tion 3.2, by extracting topics and subtopics using
an intent tagger tool and assigning binary relevance
labels. The dataset is then randomly down-sampled
to obtain 80k prefixes for training and 30k prefixes
for testing. For assessment, each candidate in the
100 candidates list per prefix is scored and sorted
to select the top 10. Features are computed across
various time window to ensure robustness against
concept drift.
eCommerce Data Features: Similar to DeepPLTR
(Yuan and Kuang, 2021), keyword-based features,

prefix to keyword-based features, and contextual
features (user environment, device type, similarity
with past searches) are used. The model’s robust-
ness to concept drift is facilitated by these aggre-
gated features over multiple past time windows up-
dated on a daily basis to dynamically capture any
emerging drifts or trends. Navigational binary char-
acteristics like the existence of certain categories
are provided in combination with existing Deep-
PLTR features. Additionally, 100-dimensional key-
word vectors obtained from training a word-to-vec
model on QAC query logs and averaging the word
embeddings are appended.
Evaluation Metric: We conduct evaluations using
three prominent ranking metrics: Mean Recipro-
cal Rank (MRR) and Normalized Discounted Cu-
mulative Gain (NDCG) for assessing click-based
relevance, and αNDCG for evaluating diversity
computed on the top 10 candidates sorted based on
the prediction score per prefix.

Table 2: Relative lift in ranking metrics of Listwise
LTR (LQIN), Diversified Listwise LTR (DiAL*), and
moDPLTR compared to DeepPLTR on the eCommerce
dataset.

Model Network MRR NDCG αNDCG

Navigational AC with pairwise loss

moDPLTR Feed-Forward +2.48% +1.03% +2.24%

Listwise Softmax loss

LQIN QIN +9.54% +5.48% +2.66%

Listwise Approx αNDCG loss

DiALAllRank AllRank +1.98% -0.35% +21.3%
DiALAttDin AttDin +6.93% +3.36% +22.66%
DiALQIN QIN +8.51% +3.71% +22.83%

Table 3: Ranking and diversity metrics of DiALQIN
with varying QIN parameters: attention heads (H) and
encoder layers (L).

Attention Encoder eCommerce Data

heads (H) Layers (L) MRR NDCG αNDCG

1 2 +4.75% +2.12% +21.66%
1 4 +7.32% +3.53% +21.33%
1 6 +6.93% +3.62% +22.67%

2 2 +7.32% +3.71% +23.3%
2 4 +5.74% +2.30% +22.3%
2 6 +8.51% +3.71% +22.83%

4.1 Results

Table 1 details the optimization settings across the
evaluated models.

Performance on Losses: Table 2 showcases the
performance of Listwise Learning to Rank (LQIN)
and Diversified Listwise Learning to Rank (DiAL*)
in comparison to the baselines DeepPLTR and
moDPLTR on eCommerce dataset. LQIN is trained
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with Softmax loss (Appendix A.4) using clicks as
relevance, while DiAL* is trained with a diversity-
aware loss on clicks and navigational topics. We
observe a substantial increase in MRR and NDCG
metrics for LQIN compared to DeepPLTR and
moDPLTR, suggesting improved click-based rele-
vance using the Softmax listwise loss compared to
pairwise loss. Additionally, LQIN utilizes the QIN
network, which captures listwise context. We no-
tice a marginal improvement in diversity (αNDCG)
using the Softmax loss, attributable to optimizing
only click-based relevance while ignoring other
navigational utilities. The DiALQIN model, uti-
lizing a diversification metric as the loss, leads to
considerable improvements across all three ranking
metrics. The improvement in click-based relevance
is comparable to LQIN and notable over baselines.
The minor decrease in MRR and NDCG compared
to the Softmax loss is due to the diversified loss op-
timizing over multiple relevances instead of solely
click-based relevance. Significantly, we observe a
substantial improvement in αNDCG compared to
moDPLTR, indicating that using an explicit diver-
sification metric as the loss allows for more precise
and targeted optimization of diversity compared to
other diversity loss variants.

DiAL Performance with varying Encoder Ar-
chitectures: Further, we emphasize the perfor-
mance while utilizing different architectures of the
Attention network for capturing listwise context us-
ing diversity-aware loss. QIN denotes the architec-
ture as described in Section 3.3. AllRank denotes
the encoder architecture in (Pobrotyn et al., 2020)
which is comparable to the initial encoder archi-
tecture presented in (Vaswani et al., 2017) lacking
position encoding. AttDin is an attention driven
document interaction network from (Pasumarthi
et al., 2020) where in lieu of latent cross, the list-
wise embeddings from the attention layer are con-
catenated with embeddings from the feed-forward
layer. We identify the QIN network (DiALQIN)
performs the best among the three architectures
with diversification loss.
DiAL Sensitivity with Encoder Parameters: Ta-
ble 3 presents the outcomes for various encoder
configurations within the query interaction layer
for eCommerce data. Based on this observation,
we found that utilizing 2 attention heads with 6
encoder layers leads to the highest enhancement in
both relevance and diversity metrics for the eCom-
merce data. Overall, our observations indicate that
augmenting the number of attention heads while

maintaining the same number of encoder layers
leads to a more pronounced performance increase
compared to maintaining the same number of heads
while increasing the number of encoder layers.
DiAL sensitivity with relj: Specifically, relj was
set to 2 for click-based intent, 1 for both non-
superfluous intent and topic presence, and 0.5 for
subtopic presence using grid-search on validation
data. A large value of relj (e.g., 10) for click intent
compared to smaller values (e.g., 1 and 0.5) for top-
ics and subtopics resulted in behavior and metrics
similar to pure relevance-based optimization, while
a small value of relj (e.g., 1) for click intent and
larger values (e.g., 10 or 5) for topics and subtopics
led to high diversity but very low relevance.
Interpretability: We demonstrate the increased
diversity using DiALQIN in Fig. 5 as compared to
baseline DeepPLTR for two example prefixes, ‘tops
for’ and ‘induction c’ in the eCommerce dataset.
QAC using DeepPLTR has few attribute based or
‘navigational’ suggestions. We note only two com-
pletions with price-based ideas (‘under 250’) and
size-based notion ‘plus size’ for the first exam-
ple. The various recommendations offered by Di-
ALQIN provide a more even set of recommenda-
tions from essential categories. For the prefix ‘tops
for’, brand such as ‘max’, material such as ‘net’,
size (‘long’) and price (‘under 200’) are displayed.
Similarly, for ‘induction c’, brands like ‘prestige’
and power rating (‘2000w’) are shown. Fig. 6 il-
lustrates the diversity improvement in DiALQIN
as compared to moDPLTR. As moDPLTR upranks
queries with navigational terms, we observe the
presence of colours, material and gender for the pre-
fix ‘tops for’. However, since it doesn’t maintain
the context of all queries in the list while predicting
scores, we may have repeated topics or subtopics
in the results. This behaviour can be observed for
the prefix ‘tops for’ where three suggestions can be
seen from the same topic ‘gender’, i.e., ‘women’,
‘ladies’, and ‘girls’. As DiALQIN penalizes queries
belonging to the same topics and subtopics using
diversity-aware listwise loss, we see more diversi-
fied results such as the presence of 5 topics (gender:
‘women’, material: ‘net’, brand: ‘max’, size: ‘long’
and price:‘under 200’) for prefix ‘tops for’.
Limitations: The diversification approach only
considers categories and attributes defined in the
product catalog, limiting its ability to diversify
generic user-typed phrases that fall outside these
predefined categories and attributes.
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Figure 5: Comparing diversity-aware listwise ranking
(DiALQIN) with pairwise ranking (DeepPLTR) for pre-
fixes ‘tops for’ and ‘induction c’ from the eCommerce
dataset.

Figure 6: Comparing diversity-aware listwise ranking
(DiALQIN) with navigational pairwise ranking (moD-
PLTR) for prefixes ‘tops for’ and ‘induction c’ from the
eCommerce dataset.

4.2 Online deployment (A/B test)
We conducted an online A/B test by implement-
ing DiALQIN on the search bar of a major eCom-
merce store. The model operated in real-time and
provided comprehensive coverage for all prefixes
during the test sessions.
Duration and Statistical Significance: Our A/B
test lasted for more than a week, achieving statisti-
cal significance with 99% power, covering around
10 million customer search sessions.
Click-Through Rate (CTR): We observed a sig-
nificant lift of 0.02% in CTR, indicating that cus-
tomers positively received the diverse suggestions
in QAC.
Revenue: Our A/B test yielded a significant rev-
enue boost of 0.48%. Our tests in the same setting
revealed that DiALQIN resulted in a significant
revenue lift over moDPLTR.
Diversity: Addressing diversification in QAC re-
sulted in a 10.6% increase in product diversity dur-
ing the online test, along with a revenue boost,
manifesting the downstream impact of diversified
QAC suggestions.
Latency: DiALQIN served an average of 100k
QAC requests per second without any notable la-
tency issues. Although the latency for the listwise
models (DiALQIN) was reported to be 15ms ver-
sus 2ms for the pairwise (moDPLTR) model, it

remained well below the required limit without any
noticeable impact on serving end consumers.

5 Conclusion

In this paper, we introduce diversified listwise LTR
for the QAC task using a score-and-sort strategy.
Unlike previous greedy approaches employed in
QAC, the score-and-sort approach is quicker and
more efficient in diversifying QAC suggestions.
We demonstrate the importance of capturing list-
wise context in QAC ranking with Query Inter-
action Network and show improved click based
relevance and relevance w.r.t different product at-
tributes. Further, we diversify QAC on different
dimensions (or intents) and modify the approx
αNDCG loss to penalize longer queries and as-
sign different weights to the intents based on their
relative importance. This technique jointly boosted
relevance and diversity with speedy inference.
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A Appendix

A.1 Approximate αNDCG
αNDCG is a normalized version of αDCG,

αNDCG =
αDCG

αDCGideal
(6)

In order to obtain the approximate differentiable
version of the above metric, the rank of keyword ri
with score si and intent coverage wji is denoted as:

ri = 1+
∑

j

Isj>si and wji =
∑

m

ymjIsm>si

(7)
In the above equation, the indicator functions are

not differentiable, but can be smoothed by using
the sigmoid function:

Ri = 1 +
∑

j ̸=i

sigmoid(sj − si) (8)

Wji =
∑

m̸=i

ymjsigmoid(sm − si) (9)

We use these smooth approximations in equation 1
to obtain the final differentiable loss.

A.2 Diversity problem in QAC via. Examples.
Diversity issue in QAC is illustrated with an exam-
ple in Fig. 7 where top recommendations for prefix
‘jacket’ and ‘mobile’ contain many non-informative
suggestions that are almost synonyms of each other,
resulting in search experience that are indistinguish-
able for various choices of suggestions presented
to the users.

Figure 7: Prefixes ‘jacket’ (left) and ‘mobile’ (right)
in India marketplace. QAC suggestions lack specifics
on color, material, style, size for ‘jacket’, and brand,
configuration for ‘mobile’.

A.3 Baselines
DeepPLTR: We adopt the DeepPLTR model (Yuan
and Kuang, 2021) as the baseline QAC approach
that ranks keywords with the goals of maximiz-
ing relevance and session revenue. It optimizes
on a pairwise loss function that learns to rank an
accepted (clicked or fully-typed) keyword higher
than the rejected (non-clicked) keyword. For each
prefix p and its list of n completed keywords, the ac-
cepted keyword (positive ✓) is sampled and paired
with all rejected keywords (negative X). The pos-
itive and negative keywords are featurized and in-
put to a Siamese Neural Network with pairwise
cross-entropy loss. The loss term is weighted by
wrevenue, which is the logarithm of the revenue ob-
tained by clicking on the prefix in the session from
which the evaluation data is sampled. This weight-
ing biases the model towards revenue-generating
prefixes. The pairwise loss for prefix p, completing
to n keywords in list l is given as:

Lp =
1

(n−1)

∑
(k+,k−)∈l w

revenue

[
log(1 + e(sk−−sk+)) ∗ |∆(k+,k−)|

]
(10)

where sk denotes the output scores for keyword k
from the neural network, |∆(k+,k−)| denotes the
difference in reciprocal rank of the positive and
negative keywords. The term |∆(k+,k−)| ensures
that the score of k+ is larger than k− if the gap in
their relative ranks is higher.

moDPLTR: moDPLTR (Singh et al., 2023) aug-
ments the customer behavior (CB) objective opti-
mized on clicks and revenue with a query quality
(QQ) objective to uprank queries with navigational
aspects. It is adopted as the diversity-aware base-
line. A navigational score yrelk is assigned to each
query based on the presence of navigational tokens
like product, brand, and color. The QQ objective
improves the correlation between the acceptance
score fk and navigational score yrelk in a batch. The
loss is stated below, where Lp denotes the CB ob-
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jective (same as equation 10) and the correlation
term denotes the QQ objective.

Lcorr = λ1Lp − λ2

{
Corr(fk+, yrelk+)

}
(11)

To replicate this model for AOL search logs, we
assign a navigational score proportional to the like-
lihood of topic presence in the query.

A.4 Listwise Learning to Rank

Learning to rank (LTR) algorithms are classified
into pointwise, pairwise, and listwise based on
the choice of loss functions. Pointwise loss as-
sesses each item independently, pairwise samples
pairs and learns to rank one higher than the other,
while listwise takes the entire list as one instance
and calculates loss. Pairwise LTR techniques like
LambdaMart (Burges, 2010) are state-of-the-art for
ranking keywords on single labels, such as clicks.
However, for diversification, it becomes difficult
to incorporate pairwise loss as all items in the list
need to be diversified, and the contextual knowl-
edge connected to the list of keywords with the
same prefix is missing. Usually, diversity is added
as a step after the initial ranking using pairwise loss,
which is computationally expensive. This drives us
to use Listwise LTR methods for jointly modeling
relevance using clicks and diversity. Recent re-
search has progressed significantly on Neural LTR
losses, specially Listwise ranking losses, such as
Softmax (Bruch et al., 2019a), ApproxNDCG (Qin
et al., 2010), and NeuralSortNDCG (Grover et al.,
2019). Softmax is known to be the simplest, yet ro-
bust for modeling listwise relevance. Let yi be the
relevance label associated with the ith item in the
list of n items and si be the corresponding neural
score, then the Softmax loss for the list is given as:

LSoftmax = −
n∑

i=1

yi log

(
esi∑n
k=1 e

sk

)
(12)

A.5 Details on reproducibility on external
dataset

AOL search logs: We utilize publicly accessible
query topic analysis data (git, 2017), derived from
AOL search logs (Pass et al., 2006), as our dataset.
The query topic analysis involves the examination
of the top 1000 user search logs with the highest
frequency of search queries. Each query within this
dataset is annotated with a primary and secondary

Figure 8: A list of prefix queries on the left and the cor-
responding query relevance matrix on the right, utilized
for assessing diversity loss and conducting evaluations
specific to AOL search logs data.

topic, along with associated scores. For instance,
the query ‘country inn & suites’ is labeled with the
best topic ‘Hospitality’ and the second-best topic
‘Hotels_and_Motels’. The dataset encompasses a
total of 318,023 queries. In the absence of a prefix
for each query, we use a strategy similar to (Kim,
2019) to uniformly sample prefix for each query.
Each searched query is treated as the clicked query,
and a list of the top 100 clicked queries starting
with the same prefix from these logs is appended
as candidates. A total of 90k prefixes are randomly
sampled for training, and 30k prefixes are allocated
for testing purposes. We construct a query rele-
vance matrix, comprising a total of 30 topics, by
combining click-based relevance and aggregating
the top 29 most frequently occurring topics per
prefix-candidate list, utilized for both loss compu-
tation and evaluation purposes.
AOL dataset Features: We utilize a 384-
dimensional embedding acquired from the Sen-
tence Transformer model ‘multi-qa-MiniLM-L6-
cos-v1’ (sen, 2022), tailored specifically for seman-
tic search, as a feature for each candidate within
the list. Furthermore, our feature set incorporates
aggregated click information from the preceding
logs, the cosine similarity of the query embedding
with the two preceding queries within a 300-second
timeframe, the ratio of prefix to query length, and
a binary feature indicating the presence of recent
past two searches. Additionally, we account for
the temporal difference in timestamps between the
ongoing search and the two prior searches.
Query Relevance Matrix: In the context of AOL

search logs, we formulate a query relevance matrix,
as illustrated in Fig. 8, employing pre-extracted
topics from query topic analysis data conducted
on AOL search logs, accessible at (git, 2017). We
employ two distinct intents for diversity: click-
based intent and topic presence, using identical
hyper-parameters as those utilized in the eCom-
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merce dataset. We adopt 30 intent labels, designat-
ing one for click-based intent and the remaining 29
for the presence of the top 29 most frequent topics
within the prefix candidate list.

Table 4: Performance comparison of DeepPLTR, moD-
PLTR, Listwise Learning to Rank (LQIN), and Diversi-
fied Listwise Learning to Rank (DiAL*) models on the
AOL dataset.

Model Network MRR NDCG αNDCG

Pairwise Cross-Entropy Loss

DeepPLTR Feed-Forward 0.384 0.438 0.578

Navigational AC with pairwise loss

moDPLTR Feed-Forward 0.381(-0.78%) 0.435(-0.69%) 0.585(+1.21%)

Listwise Softmax loss

LQIN QIN 0.417(+8.59%) 0.469(+7.07%) 0.601(+3.97%)

Listwise Approx αNDCG loss

DiALAllRank AllRank 0.404(+5.20%) 0.460(+5.02%) 0.662(+14.53%)
DiALAttDin AttDin 0.403(+4.94%) 0.460(+5.02%) 0.676(+16.95%)
DiALQIN QIN 0.409(+6.51%) 0.463(+5.70%) 0.681(+17.82%)

Table 5: Ranking and diversity metrics of DiALQIN
with varying QIN parameters: attention heads (H) and
encoder layers (L).

Attention Encoder AOL Search Logs

heads (H) Layers (L) MRR NDCG αNDCG

1 2 0.394 0.453 0.631
1 4 0.397 0.457 0.635
1 6 0.398 0.457 0.643

2 2 0.405 0.462 0.680
2 4 0.409 0.463 0.681
2 6 0.408 0.460 0.680

Results: In Tables 4 and 5 we present re-
sults comparing diversity and relevance for vari-
ous losses and encoder architectures. The trends
noted are similar to eCommerce dataset reflecting
that DiALQIN achieves significant improvement
in relevance and diversity over pairwise baselines.
We also exhibit improvement in query topics di-
versity for QAC using the AOL dataset in Fig. 9
using DiALQIN compared to baseline DeepPLTR
for an example prefix ‘i’. In the case of DeepPLTR
approach, we observe that 4 out of 6 queries per-
tain to the same topic ‘regional’, encompassing a
total of 3 topics (‘regional’, ‘news’, and ‘software
for engineering’) within the top 6 results. In con-
trast, with DiALQIN, we observe a broader range
of 5 topics (‘regional’, ‘software for engineering’,
‘associations’, ‘abuse’, and ‘directories’) in total.

Figure 9: Comparing diversity-aware listwise ranking
(DiALQIN) with pairwise ranking (DeepPLTR) for pre-
fix ‘i’ from the AOL search logs dataset.
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