
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 98–112
November 12-16, 2024 ©2024 Association for Computational Linguistics

INDUS: Effective and Efficient Language Models for Scientific Applications
Bishwaranjan Bhattacharjee1*, Aashka Trivedi1, Masayasu Muraoka1,

Muthukumaran Ramasubramanian3, Takuma Udagawa1, Iksha Gurung3,
Nishan Pantha3, Rong Zhang1, Bharath Dandala1, Rahul Ramachandran2,

Manil Maskey2, Kaylin Bugbee2, Mike Little4, Elizabeth Fancher2, Irina Gerasimov5,
Armin Mehrabian5, Lauren Sanders6, Sylvain Costes6, Sergi Blanco-Cuaresma7,

Kelly Lockhart7, Thomas Allen7, Felix Grezes7, Megan Ansdell8, Alberto Accomazzi7,
Yousef El-Kurdi1, Davis Wertheimer1, Birgit Pfitzmann10†, Cesar Berrospi Ramis1,

Michele Dolfi1, Rafael Teixeira de Lima1, Panagiotis Vagenas1, S. Karthik Mukkavilli1,
Peter Staar1, Sanaz Vahidinia8, Ryan McGranaghan9, Tsendgar Lee8

1IBM Research AI, 2NASA MFSC, 3UAH, 4 Navteca, 5 NASA GSFC, 6NASA Ames,
7Harvard-Smithsonian CfA, 8NASA HQ, 9 JPL, 10Smart City & ERZ Zurich

Abstract

Large language models (LLMs) trained on gen-
eral domain corpora showed remarkable re-
sults on natural language processing (NLP)
tasks. However, previous research demon-
strated LLMs trained using domain-focused cor-
pora perform better on specialized tasks. In-
spired by this insight, we developed INDUS,
a comprehensive suite of LLMs tailored for
the closely-related domains of Earth science,
biology, physics, heliophysics, planetary sci-
ences and astrophysics, and trained using cu-
rated scientific corpora drawn from diverse data
sources. The suite of models include: (1) an
encoder model trained using domain-specific
vocabulary and corpora to address NLP tasks,
(2) a contrastive-learning based text embedding
model trained using a diverse set of datasets
to address information retrieval tasks and (3)
smaller versions of these models created using
knowledge distillation for applications which
have latency or resource constraints. We also
created three new scientific benchmark datasets,
CLIMATE-CHANGE NER (entity-recognition),
NASA-QA (extractive QA) and NASA-IR (IR) to
accelerate research in these multi-disciplinary
fields. We show that our models outperform
both general-purpose (RoBERTa) and domain-
specific (SCIBERT) encoders on these new tasks
as well as existing tasks in the domains of in-
terest. Furthermore, we demonstrate the use
of these models in two industrial settings- as
a retrieval model for large-scale vector search
applications and in automatic content tagging
systems.

1 Introduction

Large language models (LLMs) trained on huge
amounts of data have demonstrated impressive ca-
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pabilities on natural language understanding and
generation tasks. Most popular LLMs rely on the
transformer architecture (Vaswani et al., 2017)
and are trained using general-purpose corpora
like Wikipedia or CommonCrawl (Devlin et al.,
2019; Liu et al., 2019; Lewis et al., 2020; Raffel
et al., 2020; Brown et al., 2020; Touvron et al.,
2023). Although these general-purpose models ex-
hibited strong performance, the distributional shift
of vocabulary led to sub-optimal performance on
domain-specific natural language understanding
and generation tasks (Beltagy et al., 2019). Follow-
ing this observation, several domain-specific LLMs
like SCIBERT (Beltagy et al., 2019), BIOBERT (Lee
et al., 2019), MATBERT (Walker et al., 2021), BAT-
TERYBERT (Huang and Cole, 2022) and SCHOL-
ARBERT (Hong et al., 2023) were developed to
improve accuracy on in-domain NLP tasks.

In this research, we specifically focused on inter-
disciplinary scientific topics related to astrophysics,
physics, Earth science, heliophysics, planetary sci-
ences and biology. While the training corpora of
existing domain-specific models such as SCIBERT,
BIOBERT and SCHOLARBERT partially cover some
of these fields, there is no model available that en-
compasses all of the fields of interest collectively.

Thus, we developed INDUS, a collection of
encoder-based LLMs focused on these domains of
interest (Figure 1) trained using curated corpora
from diverse sources. Specifically, we make the
following contributions:

1. Utilizing the byte-pair encoding (BPE) al-
gorithm, we constructed INDUSBPE, a cus-
tomized tokenizer from the curated scientific
corpus.

2. We pretrained encoder-only LLMs using cu-
rated scientific corpora and the INDUSBPE to-
kenizer (§2, §3). We further created sentence-
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Figure 1: Overview of INDUS models: the general-purpose encoder model and the retriever built from it, and their
distilled counterparts. Also shown are the benchmarks used for evaluation, highlighting our new benchmarks,
NASA-QA, CLIMATE-CHANGE NER and NASA-IR.

embedding models by fine-tuning the encoder-
only models with a contrastive learning objec-
tive (§4). We also trained smaller, efficient
versions of these models using distillation.

3. We created three new scientific benchmark
datasets, CLIMATE-CHANGE NER (an entity
recognition task), NASA-QA (an extractive ques-
tion answering task) and NASA-IR (a retrieval
task) (§5) to further accelerate research in this
multi-disciplinary field.

4. We demonstrate strong performance by our
models on these benchmark tasks as well as on
existing domain-specific benchmarks, outper-
forming general-purpose models like RoBERTa
(Liu et al., 2019) as well as scientific-domain en-
coders like SCIBERT (Beltagy et al., 2019). We
also show that the knowledge-distilled models
achieved a significant reduction in latency while
maintaining strong performance compared to
the original models on most of these tasks.

5. We describe two industrial application areas of
INDUS models in the scientific domain, where
they outperform existing general-purpose mod-
els.

2 Data

Sufficient high-quality in-domain corpora is essen-
tial to develop models that perform better than
their counterparts trained on open-domain corpora.
We meticulously identified corpora for each of the
aforementioned domains, and created English-only
models for containment. Specifically, for each
domain, we used open-source data which has a

Dataset Domain #Tokens Ratio
NASA CMR Earth Science 0.3B 1%
AMS and AGU papers Earth Science 2.8B 4%
English Wikipedia General 5.0B 8%
PubMed Abstracts Biomedical 6.9B 10%
PMC Biomedical 18.5B 28%
SAO/NASA ADS Astronomy, 32.7B 49%

Astrophysics,
Physics,

General Science
Total 66.2B 100%

Table 1: Basic statistics of our pretraining dataset.

permissive license, and further augmented them
with full text papers and material contributed by
providers mentioned below. We now briefly de-
scribe each data source, and present statistics of the
data in Table 1.

• SAO/NASA Astrophysics Data System (ADS)1:
The biggest source of data, covering publica-
tions in astronomy and astrophysics, physics
and general science including all arXiv e-prints.

• PubMed Central (PMC)2 : An archive of
biomedical and life science journal literature
maintained by National Library of Medicine
and National Institutes of Health. We used the
portion of PMC that has a commercial-friendly
license, along with the PubMed abstracts of all
the articles in PMC.

• American Meteorological Society (AMS)3:
We used full-text journal documents span-
ning topics in Earth systems, Earth interac-

1https://ui.adsabs.harvard.edu
2https://www.ncbi.nlm.nih.gov/pmc
3https://www.ametsoc.org/index.cfm/ams/publications/
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Tokenizer ADS PMC Wikipedia
RoBERTa 12,867,439 7,549,075 15,859
+lower_cased 12,862,227 7,557,868 16,901
INDUSBPE 12,309,023 6,920,659 16,056

Table 2: Number of tokens produced by RoBERTa and
INDUSBPE tokenizers on 1k samples from each dataset.
Fewer tokens lead to a smaller computation cost.

tions, applied meteorology, climatology, phys-
ical oceanography, atmospheric sciences, cli-
mate, hydrometeorology, weather, forecasting,
and societal impacts.

• American Geophysical Union (AGU)4: Jour-
nal documents on the topics of atmospheres,
biogeosciences, Earth surface, machine learning
and computation, oceans, planets, solid Earth,
and space physics.

• NASA Common Metadata Repository
(CMR)5: A high-quality, continuously evolving
metadata system that catalogs all data and
service metadata records for NASA’s Earth
Science Data and Information System.

3 Methodology: Encoder Models

INDUSBPE Tokenizer We trained an uncased
BPE tokenizer (Radford et al., 2019), INDUSBPE,
using a subset of our training dataset (§2). We set
the vocabulary size to 50265 (equal to that of the
RoBERTa tokenizer (Liu et al., 2019)).

We performed a brief analysis of the differences
between the vocabularies of INDUSBPE and the
RoBERTa tokenizer. Out of 50265 tokens, 44.5%
tokens are common in both tokenizers while the
remaining 55.5% tokens are included only in ei-
ther tokenizer, indicating a significant distributional
shift in domain. To further understand this effect,
we applied both tokenizers on 1000 randomly sam-
pled text fragments from our datasets. As shown
in Table 2, INDUSBPE tokenizer produced fewer
tokens than the RoBERTa tokenizer, leading to an
8% drop in computation cost during training.

Encoder Model We trained INDUSBASE
6 using a

masked language modeling objective. The model
architecture follows RoBERTaBASE (Liu et al., 2019),
with 12 layers and 125M parameters.

Knowledge Distillation for Efficient Encoder
Model We also trained a smaller model, IN-

4https://agupubs.onlinelibrary.wiley.com/
5https://www.earthdata.nasa.gov/eosdis/science-system-

description/eosdis-components/cmr
6https://huggingface.co/nasa-impact/nasa-smd-ibm-v0.1

DUSSMALL
7, with 38M parameters through knowl-

edge distillation using INDUSBASE as the teacher.
INDUSSMALL follows a 4-layer architecture recom-
mended by the Neural Architecture Search engine
(Trivedi et al., 2023) with an optimal trade-off be-
tween performance and latency. We adopted the
distillation objective proposed in MiniLMv2 (Wang
et al., 2021) to transfer fine-grained self-attention
relations, which has been shown to be the current
state-of-the-art (Udagawa et al., 2023).

4 Methodology: Sentence Embedding
Models

Sentence embedding models represent text as low-
dimensional vectors for efficient use in dense re-
trieval systems, such as Retrieval Augmented Gen-
eration, where relevant passages for a query are
identified by the similarity between their embed-
dings (Karpukhin et al., 2020). Embedding mod-
els are trained using a contrastive learning objec-
tive (Khosla et al., 2020; Gao et al., 2021), which
pushes the embeddings of a query closer to those
of relevant passages and further away from those of
non-relevant ones. We use the improved contrastive
loss proposed in Li et al. (2023) which introduces
an additional bidirectional signal to expand nega-
tives.

Base Embedding Model We created our sen-
tence embedding model, INDUS-RETRIEVERBASE

8,
by fine-tuning INDUSBASE, following a bi-encoder
framework (Reimers and Gurevych, 2019). Similar
to prior work (Wang et al., 2022; Li et al., 2023;
Xiao et al., 2023), we employed a stage-wise train-
ing approach. We first train on a large corpus of
naturally occurring pairs collected from internet
sources, and specifically include data from the sci-
ence domain. Furthermore, we created a domain-
specific dataset from the ADS data (§2) by includ-
ing title-abstract pairs. Then, we finetune on high
quality annotated datasets (e.g., question-answer
pairs). Appendix B contains comprehensive details
about the datasets used in training. For both stages,
we used large batch sizes and in-batch negatives to
better approximate the contrastive objective.

Knowledge Distillation for Embedding Model
To optimize the latency for retrieval applications,
we also created a small retriever model, INDUS-

7https://huggingface.co/nasa-impact/nasa-smd-ibm-distil-
v0.1

8https://huggingface.co/nasa-impact/nasa-smd-ibm-st-v2
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Train Validation Test
Num. Abstracts 382 77 75
Num. Tokens 32,031 6,443 5,850
Entity Labels
climate-nature, climate-greenhouse-gases, climate-assets,
climate-problem-origins, climate-mitigations,
climate-properties, climate-impacts, climate-datasets,
climate-organizations, climate-observations,
climate-models, climate-hazards, climate-organisms

Table 3: CLIMATE-CHANGE NER statistics and entities.

RETRIEVERSMALL
9, with the aim to transfer the

capability of the large teacher model (INDUS-
RETRIEVERBASE, with 12 layers and an embed-
ding dimension of 768) to smaller student model
(INDUSSMALL, with 4 layers and an embedding di-
mension of 576), by distilling the teacher’s distri-
bution of similarity scores. Specifically, we use the
distillation loss described in Xu et al. (2023)

Here, we find it beneficial to first conduct an
embedding-oriented pretraining step, as presented
in Retro-MAE (Xiao et al., 2022), on about 56M
sentences from English Wikipedia, BooksCorpus,
and StackExchange data. We observed that this
step is not necessary in the larger model, but pro-
vides significant improvement in the smaller one.
For distillation, we found that a stage-wise training
approach does not benefit performance (ablation
presented in Appendix E). We thus distilled in a
single step with all the data described in Appendix
B, also adding labelled pairs from FEVER (Thorne
et al., 2018) and HOTPOTQA (Yang et al., 2018).

5 Creating Benchmarks

Benchmark datasets play a crucial role in assessing
the language understanding capabilities of models.
However, there is an absence of datasets tailored
for the diverse and multidisciplinary fields under
study. Thus, to effectively benchmark the proposed
NLP models, we introduced three new datasets for
NER, QA and IR. Appendix D compares the sizes
of these datasets to popularly used benchmarks.

5.1 CLIMATE-CHANGE NER

CLIMATE-CHANGE NER10 focuses on understand-
ing and addressing climate-related topics across
various domains. This comprises 534 abstracts
sourced from Semantic Scholar Academic Graph
(Kinney et al., 2023), collected using a seed set of
climate-related keywords such as wildfire or floods.

9https://huggingface.co/nasa-impact/nasa-ibm-st.38m
10https://huggingface.co/datasets/ibm/Climate-Change-

NER

The abstracts were annotated with entities of inter-
est that originate from complex taxonomies used
in climate-related literature as shown in Table 3.

5.2 NASA-QA

We created NASA-QA11, an extractive QA bench-
mark dataset focused on the Earth science domain
(ES). Specifically, we sourced 39 paragraphs from
ES papers appearing in AGU and AMS journals (§2),
and subject matter experts formulated questions
and annotated the spans of the paragraph that con-
tain the answer. We used 29 paragraphs (145 ques-
tions) as the training set and remaining 10 para-
graphs (50 questions) for evaluation. The training
set was further augmented with paragraphs and
QA pairs related to ES (oxygen, amazon rain forest
and geology) from the SQuAD dataset (Rajpurkar
et al., 2018). This resulted in a training set com-
prising 686 paragraphs with 5,081 questions (2,817
answerable and 2,264 unanswerable).

5.3 NASA-IR

Finally, we constructed a domain-specific informa-
tion retrieval benchmark dataset, NASA-IR12, span-
ning almost 500 QA pairs related to the Earth sci-
ence, planetary science, heliophysics, astrophysics
and biological physical sciences domains. We sam-
pled a set of 166 paragraphs from AGU, AMS, ADS,
PMC and PubMed (§2) and manually annotated
them with 3 questions that are answerable from
each of these paragraphs, resulting in 498 ques-
tions (398 questions in the test set and 100 in the
validation set- this test is designed to be evaluated
in a zero shot fashion). We also sampled random
abstracts from ADS to enhance our corpus. Each
question has only one relevant document, and we
use the Recall@10 evaluation metric.

6 Experimental Results

Baselines We compared INDUS models against
open source models of similar sizes (all models
obtained from HuggingFace):

• INDUSBASE was compared to RoBERTaBASE,
SCIBERT, PUBMEDBERT, and BI-
OLINKBERT.

• INDUSSMALL was compared to MINILM (6-layer)
and TINYBERT (4-layer).

11https://huggingface.co/datasets/nasa-impact/nasa-smd-
qa-benchmark

12https://huggingface.co/datasets/nasa-impact/nasa-smd-
IR-benchmark
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Base model (125M params.) Small model (∼30M params.)
Task Metric Dataset RoBERTa SCIBERT PUBMED BIOLINK INDUSBASE TINYBERT MINILM INDUSSMALL

NER Entity F1

BC5-chem 90.3 (0.2) 91.4 (0.2) 93.2 (0.1) 93.3 (0.2) 93.3 (0.2) 84.6 (0.2) 86.1 (0.3) 90.7 (0.1)
BC5-disease 81.5 (0.3) 83.7 (0.3) 85.4 (0.3) 85.3 (0.3) 85.2 (0.3) 74.0 (0.4) 77.4 (0.3) 81.3 (0.3)

NCBI-disease 87.6 (0.6) 87.6 (0.4) 88.2 (0.6) 88.2 (0.5) 88.3 (0.4) 81.2 (0.4) 83.1 (0.5) 85.6 (0.6)
BC2GM 82.1 (0.3) 82.3 (0.2) 84.3 (0.3) 84.7 (0.2) 84.0 (0.3) 74.7 (0.4) 77.1 (0.2) 79.7 (0.3)
JNLPBA 79.1 (0.2) 78.2 (0.2) 79.3 (0.2) 78.9 (0.2) 80.3 (0.2) 70.3 (0.2) 73.4 (0.3) 75.7 (0.2)

PICO Macro F1 EBM PICO 72.3 (0.3) 72.4 (0.3) 72.9 (0.3) 73.4 (0.2) 73.1 (0.2) 67.4 (0.2) 70.3 (0.1) 73.1 (0.2)

Relation
Extraction Micro F1

ChemProt 50.4 (28.2) 73.9 (0.7) 77.2 (0.6) 77.9 (0.4) 76.9 (0.5) 56.2 (3.2) 55.9 (2.1) 71.7 (0.9)
DDI 78.6 (1.5) 80.1 (1.0) 80.6 (1.1) 81.2 (0.6) 81.7 (0.5) 39.3 (5.3) 51.5 (2.9) 69.0 (1.2)
GAD 80.0 (1.1) 81.6 (1.2) 82.4 (1.2) 82.1 (1.5) 79.4 (5.6) 76.4 (1.3) 77.3 (1.0) 81.3 (0.7)

Document
Classification Micro F1 HoC 82.2 (0.7) 83.1 (0.6) 84.5 (0.4) 84.4 (0.5) 83.7 (0.5) 41.6 (6.8) 62.8 (4.7) 80.2 (0.6)

Question
Answering Accuracy

PubMedQA 53.1 (3.3) 54.3 (3.8) 55.2 (5.5) 59.1 (6.2) 58.2 (6.7) 50.3 (1.4) 51.6 (1.7) 56.1 (1.4)
BioASQ 69.1 (4.8) 74.6 (4.5) 84.3 (5.5) 84.9 (10.5) 69.6 (5.8) 74.3 (3.6) 66.7 (2.3) 75.4 (3.3)

Sentence
Similarity Pearson BIOSSES 79.8 (6.3) 86.3 (3.5) 92.2 (1.1) 91.1 (2.6) 72.2 (9.5) 88.2 (1.1) 26.6 (8.7) 70.4 (3.3)

Micro Average - - 75.9 (3.7) 79.2 (1.3) 81.5 (1.3) 81.9 (1.8) 78.9 (2.4) 67.6 (1.9) 66.1 (1.9) 76.2 (1.0)
Macro Average - - 74.9 (3.7) 78.2 (1.6) 80.9 (1.4) 81.2 (3.9) 76.4 (3.2) 65.6 (2.4) 60.6 (3.0) 74.3 (1.3)

Table 4: Evaluation on BLURB. Standard deviation across 10 random seeds in parenthesis. Macro avg. reported
across datasets and micro avg. computed by averaging scores on each task then averaging across task averages.

• INDUS-RETRIEVERBASE was compared to
BGEBASE and a RoBERTaBASE model finetuned
with the same method presented in §4.

• INDUS-RETRIEVERSMALL was compared to
MINILM-V2 and BGESMALL.

6.1 Natural Language Understanding
Benchmarks

6.1.1 BLURB
We evaluated our models on BLURB (Gu et al.,
2021), a benchmark suite for natural language un-
derstanding and reasoning tasks in the biomedical
domain. We followed the original work to compute
the overall score (i.e., macro average).

Table 4 shows the evaluation results. Among
base models, INDUSBASE significantly outper-
formed the general-purpose RoBERTa model while
achieving competitive performance to the bio-
domain-specific models, namely SCIBERT, PUB-
MEDBERT, and BIOLINKBERT, in which the
Macro Average of our model is still within two stan-
dard deviations (76.4+3.2∗2 = 82.8), thus, the dif-
ferences are not statistically significant. For smaller
models, we noticed INDUSSMALL outperformed the
baselines, TINYBERT and MINILM, by a large mar-
gin in most cases, showing significant difference
from second best models in NER, PICO, relation
extraction, and document classification tasks. This
demonstrates the effectiveness of knowledge dis-
tillation from our domain-specific teacher model,
INDUSBASE.

We noticed domain specific large baseline mod-
els tend to perform better than our model on paired
input-text tasks, such as QA and semantic simi-
larity tasks, although the results have relatively
large standard deviations. We hypothesize that pre-
training with paired texts in BERT-style models

Model CLIMATE-CHANGE NER NASA-QA

F1 (SD) F1 (SD)
RoBERTa 60.8 (0.8) 66.8 (3.1)
SCIBERT 61.8 (0.7) 63.5 (1.9)
INDUSBASE 64.0 (1.0) 68.2 (2.9)
TINYBERT 34.3 (1.6) 43.2 (2.3)
MINILM 44.7 (1.3) 59.2 (3.9)
INDUSSMALL 54.8 (0.8) 47.4 (1.8)

Table 5: CLIMATE-CHANGE NER and NASA-QA bench-
mark results. Standard deviation for CLIMATE-CHANGE
NER over 10 random seeds and NASA-QA over 3 random
seeds in parenthesis.

(e.g., SCIBERT and PUBMEDBERT) in contrast to
the RoBERTa-style models (e.g., RoBERTa and IN-
DUS) may be beneficial for such paired input-text
tasks. This is consistent with the observations of
Tinn et al. (2023)13.

6.1.2 CLIMATE-CHANGE NER

As shown in Table 5, our models clearly outper-
formed the corresponding baseline models on the
CLIMATE-CHANGE NER task, suggesting the effec-
tiveness of training on large domain-specific data.

6.1.3 NASA-QA

As mentioned in §5, we augmented the training
set with relevant SQuAD pairs for fine-tuning. All
models are fine tuned for 15 epochs, and the results
are shown in Table 5. We observed that INDUSBASE

outperformed all models of similar sizes, while IN-
DUSSMALL had relatively strong performance com-
pared to its counterparts.

13Specifically, as noted in their paper,“pretraining with sin-
gle sequences leads to a substantial performance drop in the
sentence similarity task. ... therefore pretraining with 2 text
segments helps.”
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Model NASA-IR ↑ BEIR Avg. ↑ Retrieval Time ↓
(Recall@10) (NDCG@10) (s)

RoBERTaBASE 0.66 0.37 1.20
BGEBASE 0.67 0.52 1.18
INDUS-RETRIEVERBASE 0.71 0.41 1.19
MINILM-V2 0.62 0.39 0.24
BGESMALL 0.66 0.51 0.42
INDUS-RETRIEVERSMALL 0.73 0.42 0.26

Table 6: Evaluation results on NASA-IR and BEIR, and
average retrieval time per query on the NQ test set on an
A100 GPU. Retrieval time includes time to encode the
query & corpus and time to retrieve relevant documents.

6.2 Information Retrieval Benchmarks

We evaluated our models on the NASA-IR dataset
as well as BEIR Benchmark (Thakur et al., 2021),
which consists of 12 retrieval tasks spanning a vari-
ety of domains. The BEIR benchmark used the Nor-
malized Cumulative Discount Gain (nDCG@10)
metric. As shown in Table 6, both of our sentence
embedding models significantly outperform the
baselines on the NASA-IR task while still maintain-
ing good performance on several of the BEIR tasks
(individual results on BEIR tasks shown in Ap-
pendix F). Notably, INDUS-RETRIEVERSMALL out-
performed INDUS-RETRIEVERBASE, on both NASA-
IR and BEIR, while being about 4.6x faster.

7 Industrial Applications of INDUS

We show industrial applications of INDUS models
for downstream tasks in the scientific domain.

7.1 Retrieval and Vector Search

NASA developed the Science Discovery Engine
(SDE)14, a search capability that enables the dis-
covery of open data, software and documentation
across astrophysics, biological and physical Sci-
ences, Earth science, heliophysics and planetary
science (Bugbee et al., 2022). To improve search
performance, we developed a document retrieval
and extractive QA pipeline using the finetuned IN-
DUS models, with the following components:
• Sentence Embedding Model: We use INDUS-

RETRIEVERBASE to encode a corpus into a vec-
tor database, enabling the retrieval of relevant
documents based on a user query.

• Document Re-Ranker Model: To further im-
prove the relevancy of search results, the re-
trieved documents are ranked using a document
re-ranker model INDUSRANKER

15. This model is

14https://sciencediscoveryengine.nasa.gov/
15https://huggingface.co/nasa-impact/nasa-smd-ibm-

ranker

RoBERTaBASE INDUSBASE

MS-MARCO (MRR@5) 35.9 36.4
NASA-QA (MRR@5) 31.1 33.2

Table 7: MRR@5 on re-ranking NASA-QA and MS-
MARCO tasks using rerankers finetuned from different
base models.

Model Document Retrieval Score Answer Quality
MRR@1 MRR@3 Avg. Quality Score

RoBERTaBASE 0.54 0.62 0.60
INDUSBASE 0.69 0.78 0.88

Table 8: Avg. Document Retrieval and Answer Quality
Scores for 26 questions formulated by experts across
astrophysics, biology & physical science, Earth science,
heliophysics & planetary science domains.

fine-tuned from INDUSBASE on the MS-MARCO
dataset (Bajaj et al., 2016).

• Extractive QA Model: Answers are extracted
using a QA model finetuned from INDUSBASE.

This system is expected to be live by mid-
December 2024.

First, we compare the performance of IN-
DUSRANKER to an identical re-ranker finetuned from
RoBERTaBASE in Table 7. Here, we measure
MRR@5 of correctly ranking the most relevant
paragraph for the given question. While the IN-
DUSRANKER has comparable performance to the
RoBERTa-reranker on the MS-Marco dev set, it sig-
nificantly outperforms the latter on the NASA-QA

dataset, alluding to better domain contextualization
of the INDUSBASE model.

We then evaluated the end-to-end performance
of the domain-adapted model verses the generic
RoBERTa model in the aforementioned pipeline.
Both systems were queried with a set of questions
spanning various thematic areas, and then manually
scored by human annotators based on the document
relevance and correctness of the extracted answers.
For assessing document retrieval quality, we use the
MRR@1 and MRR@3 metric, which computes
the average reciprocal rank of the highest ranked
document from the system’s top-1 and top-3 re-
trieved documents respectively. For answer quality,
experts mark an Answer Quality Score. A score
of 1 indicates the correct answer is returned within
the first three snippets (a contiguous chunk from
the document), 0.5 indicates that the answer is re-
turned in more than three snippets, and 0 indicates
no relevant answer is returned. Table 8 shows the
superior scores when using INDUS models, most
likely due to the overlap in domain and verbiage of
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Figure 2: Average Precision Scores of the EJ Indicators
Classification Test Set.

the content indexed by the SDE and training corpus
of INDUS models. Example responses from both
systems, and a screenshot of the system is shown
in Appendix G.

7.2 Automated Content Curation
Environmental Justice Portal in SDE Content
curation is a crucial step in providing a high-quality
search experience the SDE, where Subject Matter
Experts (SMEs) identify scientifically relevant in-
formation to make available for search and discov-
ery. INDUS models are being used to automate
this time consuming process, for example to iden-
tify datasets for specialized search applications like
the Environmental Justice Data Search Interface16,
which focuses on data and metadata related to en-
vironmental justice (EJ). SMEs identified relevant
EJ datasets and tagged them with eight indicators:
Human Dimensions, Health & Air Quality, Cli-
mate Change, Food Availability, Disasters, Urban
Flooding, Extreme Heat, Water Availability. This
resulted in 139 classification samples which was
used to finetune INDUSBASE to develop the multi-
label classifier, EJCLASSIFIER

17. We also added an-
other "Not-EJ" class to identify documents that are
not related to EJ. This classifier is being used to
identify relevant EJ content from the SDE (live by
mid-December 2024). To evaluate model perfor-
mance, we used a held-out test set comprising 20%
of the 139 samples, stratified equally across all indi-
cators. As shown in Figure 2, the domain-specific

16https://sciencediscoveryengine.nasa.gov/app/nasa-sba-
ej/#/ej/home

17https://huggingface.co/nasa-impact/ej-classification

Figure 3: F1-Scores of the classes (GCMD Applied
Research Areas) over 1036 test samples.

model fine-tuned from INDUSBASE has higher preci-
sion than the general-purpose model RoBERTaBASE.

GCMD Applied Research Area Tags Beyond
SDE, we apply INDUSBASE to categorize scientific
publications into 21 Applied Research Areas from
the Global Change Master Directory (GCMD), as
part of a collection that cites datasets from NASA’s
Goddard Earth Sciences Data and Information Ser-
vices Center (GES-DISC) and have been annotated
by experts. Each publication is annotated with
multiple applied research areas allowing for multi-
label classification, as detailed in Gerasimov et al.
(2024). INDUSBASE was finetined to categorize sci-
entific texts into the aforementioned categories,
and is used to enhance publication and dataset
discovery in GES-DISC Portal. We evaluate the
model’s performance on 1036 unseen publications,
and show in Figure 3 that INDUSBASE outperforms
finetuned RoBERTaBASE by 16% in terms of macro
average F1 score.

8 Conclusion

In this work, we presented INDUS, a constellation
of models for use in the science domain and show
their applications in industrial settings. We demon-
strated the effectiveness of a custom tokenizer and
in-domain data for training high-quality encoder
models and sentence embedding models. Further,
we created smaller versions of the models suitable
for applications with latency or resource constraints
through state-of-the-art knowledge distillation tech-
niques. For the benefit of the scientific community,
we have released all models and benchmarks.
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A Training Details: Encoder Models

INDUSBASE was trained with the masked language
modeling objective, using the default hyperpa-
rameters recommended in Table 9 of Liu et al.
(2019).We change the effective batch size to 9216,
training for 500K steps on 192 V100 GPUs.

INDUSSMALL was distilled using the MiniLMv2
approach (Wang et al., 2021), with an effective
batch size of 480 for 500K steps on 30 V100 GPUs.

B Sentence Embedding Training Data

Table 9 shows the various data sources used for
training embedding models. All data is presented
in the form of text-pairs, where each item in the pair
may be a sentence or a paragraph. We used about
360 million pairs for training and used in-batch
negatives.

C Training Details: Sentence Embedding

For the base retriever model, we use the following
loss: for a triple {q, p+, P−} of a query, a rele-
vant (positive) passage, and a set of non-relevant
(negative) passages P− = {p−j }mj=1, We define the
InfoNCE loss (van den Oord et al., 2019) as:

LIC = − 1

n

n∑

i=1

log
es(qi,p

+
i )

Zi
(1)

Zi =
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j

es(qi,pj) +
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j

es(qj ,p
+
i )

+
∑

j ̸=i

es(qi,qj) +
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j ̸=i

es(p
+
i ,pj)

− (2)

where s(q, p) is a measure of temperature-scaled
cosine similarity between the embeddings of query
and a passage measured by (where E(·) denotes
the embedding function and τ is the temperature):

s(q, p) =
1

τ

E(q) ·E(p)

∥E(q)∥∥E(p)∥ (3)

We trained each stage on 2 A100 GPUs with an
effective batch size of 1,024. We first trained with
unsupervised data for 300K steps followed by an
additional 100K steps with the supervised data. We
used a learning rate of 2e− 5 and τ = 0.02 during
both these steps.

We used knowledge distillation techniques in-
troduced in (Xu et al., 2023) to create a smaller,
more efficient retriever (INDUS-RETRIEVERSMALL)
through the supervision of INDUS-RETRIEVERBASE.
Specifically, for a sentence xi and its correspond-
ing in-batch element pairs {xi, xj}mj=1,j ̸=i, we min-
imized the cross entropy between the teacher’s dis-
tribution pt of similarity scores between pairs and
the student’s distribution, ps. Following Hinton
et al. (2014), we also scaled the output distribution
of both teacher and student by a temperature, τKD:

LKD = −
n∑

i=1

m∑

j=1

pt(xi, xj)logps(xi, xj) (4)

ps(xi, xj) =
ess(xi,xj)/τKD

∑m
k=1 e

ss(xi,xk)/τKD
(5)

pt(xi, xj) =
est(xi,xj)/τKD

∑m
k=1 e

st(xi,xk)/τKD
(6)

Here, ss(xi, xj) and st(xi, xj) represent the sim-
ilarity scores between two pairs {xi, xj}, defined
in Equation 3 for the student and teacher respec-
tively. Note, τKD is the distillation temperature and
is unrelated to the distance-temperature τ defined
in Equation 3.

For the Retro-MAE style pretraining (Xiao et al.,
2022), we trained on 8 A100 GPUs with an effec-
tive batch size of 128 for 2 epochs with a learn-
ing rate of 2e− 5. For the stage-wise distillation,
we trained on 2 A100 GPUs for 300K steps with
an effective batch size of 2,048, and learning rate
of 7e − 4. Through experimentation, we found
that τKD = 4 performed the best, and we keep
τ = 0.02 as in the non-distilled case.

D Size of Proposed Benchmarks

The aim of our benchmark is to measure perfor-
mance of models on three important yet orthogo-
nal natural language understanding tasks, namely
Named Entity Recognition, Extractive Question
Answering and Information Retrieval. Each task
further focuses on a different subset of domains of
interest, specifically including those which are not
covered by existing tests.
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Dataset Num. Pairs Data Category Data Format
StackOverflow† 18562443 Title-Body s2p
StackExchange Math† 2201906 Title-Body s2p
S2ORC [title - abstract] (Lo et al., 2020) 41769185 Title-Body s2p
S2ORC Citation Pairs [Abstracts] (Lo et al., 2020) 52603982 Title-Body p2p
StackExchange [title - body]† 5415570 Title-Body s2p
Wikipedia (Fader et al., 2014) 6458670 Title-Body s2p
Arxiv (Clement et al., 2019) 2358545 Title-Body s2p
NASA ADS [title - abstract] (§2) 2633240 Title-Body s2p
PubMed [title - abstract] (§2) 24001387 Title-Body s2p
PMC [title - abstract] (§2) 2585537 Title-Body s2p
StackExchange Duplicate Questions [title-body - title-body]† 250460 Duplicate Questions p2p
StackExchange Duplicate Questions [body - body]† 250519 Duplicate Questions p2p
StackExchange Duplicate Questions [title - title]† 304525 Duplicate Questions s2s
WikiAnswer Pairs (Fader et al., 2014) 77427422 Duplicate Questions s2s
Specter Pairs (Cohan et al., 2020) 684100 Citation Pairs s2s
S2ORC Citation Pairs [Titles] (Lo et al., 2020) 52603982 Citation Pairs s2s
SQuAD (Rajpurkar et al., 2016) 87599 Question Answers s2p
NQ (Kwiatkowski et al., 2019) 100231 Question Answers s2p
SearchQA (Dunn et al., 2017) 582261 Question Answers s2p
StackExchange [title - answer]† 4067139 Question Answers s2p
StackExchange [title-body - answer]† 187195 Question Answers p2p
PAQ (Lewis et al., 2021) 64371441 Question Answers s2p
FEVER (Thorne et al., 2018)∗ 109810 Fact Verification s2p
HotpotQA (Yang et al., 2018)∗ 85000 Question Answering s2p

Table 9: Training Data for Embedding Models. The training data totals to around 360M pairs. Data Format denotes
s2p for sentence-to-paragraph mappings, s2s for sentence-to-sentence mappings, and p2p for paragraph-to-paragraph
mappings. †Downloaded from https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml.
∗Only used for Distillation.

Moreover, we believe the size of each dataset
to be comparable to other widely used domain-
specific test sets in IR (eg. num. queries in BioASQ
(Tsatsaronis et al., 2015), FiQA (Maia et al., 2018),
DBPedia (Hasibi et al., 2017) and SciFact (Wad-
den et al., 2020) tasks from BEIR), QA (eg. num.
questions in BioASQ (Nentidis et al., 2020) from
BLURB ), and NER (eg. num. entities in NCBI-
disease (Doğan et al., 2014), BC5-Chem (Li et al.,
2016), BC5-Disease (Li et al., 2016) from BLURB).
We hope that the introduction of these datasets will
serve as a much needed first step towards advancing
benchmarking capabilities in this important field.

E Ablation Study: Stage-wise Distillation
for Embedding Model

For the distilled embedding models, we find that
stage-wise distillation does not benefit performance
as much as a one-step process, combining all the
supervised and unsupervised data. As shown in
Table 10, the stage-wise approach underperformed
the one-stage approach by 1 percentage point for
both NASA-IR and on BEIR.

Model Training NASA-IR BEIR Avg.
INDUS-RETRIEVERSMALL One-Stage 0.73 0.42
INDUS-RETRIEVERSMALL Stagewise 0.72 0.41

Table 10: Ablation Study: Evaluation results on NASA-
IR and BEIR. NASA-IR showed Recall10 while BEIR
reported nDCG10.

F Complete Results on BEIR Benchmark

Table 11 shows the per-dataset results on the BEIR
tasks.

G Applications of INDUS for Retrieval:
Performance and Interface

We show the interface for the Science Discovery
Engine, the information retrieval system built with
INDUSBASE in Figure 4, showing retrieved docu-
ments relevant to the seach query along with snip-
pets with pertinant information.

Table 12 and Table 13 contain a few sample
queries created for benchmarking by a human eval-
uator to compare the performance of the knowledge
retrieval system leveraging INDUSBASE finetuned
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Model BEIR Eval
TREC- NFCorpus NQ HotPotQA FiQA ArguaAna Touche DBPedia Scidocs FEVER Climate SciFact AVG.
Covid FEVER BEIR

RoBERTaBASE 0.47 0.30 0.54 0.34 0.38 0.52 0.18 0.25 0.22 0.46 0.14 0.67 0.37
BGEBASE 0.78 0.37 0.54 0.73 0.41 0.64 0.26 0.41 0.22 0.86 0.31 0.74 0.52
INDUS-RETRIEVERBASE 0.56 0.32 0.54 0.49 0.36 0.54 0.17 0.31 0.21 0.56 0.14 0.74 0.41
MINILM-V2 0.47 0.32 0.44 0.47 0.35 0.50 0.17 0.32 0.22 0.52 0.25 0.65 0.39
BGESMALL 0.76 0.34 0.50 0.70 0.40 0.60 0.26 0.40 0.21 0.87 0.32 0.71 0.51
INDUS-RETRIEVERSMALL 0.55 0.31 0.53 0.48 0.29 0.50 0.21 0.33 0.23 0.61 0.23 0.71 0.42

Table 11: Evaluation results BEIR.

Figure 4: Interface to the Information Retrieval System built with INDUS. A user searches for a query and obtains
snippets extracted from the document that contain relevant information, along with a list of relevant documents
from which these snippets are extracted (screenshot edited to protect anonymity).

models with the one using generic RoBERTaBASE

model. As shown, INDUSBASE usually provides a
higher document and answer quality.
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Question Document Title Retrieved
Document
Rank

Retrieved Document Answer
Quality
Score

What does MODIS mea-
sure?

The MODIS Near-IR Wa-
ter Vapor Algorithm

3 MODIS is a major facility instrument on the EOS polar orbiting
satellite platforms (Asrar and Greenstone, 1995; King et al., 1992;
Salomonson et al., 1989) designed to measure biological and
physical processes on a global scale every 1 to 2 days. It is a
36-channel scanning radiometer covering the spectral region 0.4
- 15 µm. Five near-IR MODIS channels are useful for remote
sensing of water vapor.

0.5

Which algorithm docu-
ment describes the ZAVG
product?

CERES ATBD Subsystem
8.0 - Monthly Regional,
Zonal, and Global

1 Compute Regional, Zonal and Global Averages (Subsystem 8.0)
This appendix describes the data products which are produced by
the algorithms in this subsystem. The table below summarizes
these products, listing the CERES and EOSDIS product codes
or abbreviations, a short product name, the product type, the
production frequency, and volume estimates for each individual
product as well as a complete data month of production. The
product types are defined as follows: Archival products:

0.5

Where did Perseverance
land on Mars?

None No relevant
document re-
trieved

Perseverance’s First Autonav Drive This image was taken during
the first drive of NASA’s Perseverance rover on Mars on March
4, 2021. Perseverance landed on Feb. 18, 2021, and the team
has been spending the weeks since landing check... Perseverance
Is Roving on Mars This map shows where NASA’s Perseverance
Mars rover will be dropping 10 samples that a future mission could
pick up. A Map of Perseverance’s Depot Samples This image is
an edited version of the last 360-degree panorama taken by the
Opportunity rover’s Pancam from May 13 through June 10, 2018.

0.0

At what point in space is
the JWST located?

#JwstArt Juried Art Show 1 Lines depict the direction of the waves reaching the telescope’s
instruments. Heat waves depicted highlight the temperature dif-
ference between the two sides of the solar shield. In order to
analyze infrared light, the JWST needs to operate at 50 Kelvin
(-223C/-370F) because the heat from the sun can interfere with
the data entering the instruments. The bottom portion shows the
relative location of the telescope after launch just outside earth
umbra at the L2 Point about 1.5 million km from Earth.

1.0

What is the data policy for
JWST?

Quick Start Guide -
MAST Docs - STScI
Outerspace

No Relevant
Document
Retrieved

No Answer Found 0.0

Table 12: Sample Questions from Human Evaluation of Vector Search pipeline leveraging RoBERTaBASE model.
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Question Document Title Retrieved
Document
Rank

Retrieved Document Answer
Quality
Score

What does MODIS mea-
sure?

DRAFT OF THE MODIS
LEVEL 1B ATBD version
2.0 (ATBMOD - 01)

1 The MODIS raw output is a small, rapidly varying signal super-
imposed on a large background that varies more slowly, due to
the thermal drifts and 1/f noise. Like its predecessor instruments,
MODIS views space as its background subtraction reference and
a full-aperture blackbody as its second reference for calibration.
MODIS measures space and blackbody reference before and af-
ter each Earth view scan line. If 1/f noise is known at the time
MODIS is viewing the space and blackbody reference then 1/f
noise in the Earth view sector can be interpolated between four
known

1.0

Which algorithm docu-
ment describes the ZAVG
product?

CERES ATBD Subsys-
tem 8.0 Monthly Regional,
Zonal, and Global

1 Monthly Zonal and Global Radiative Fluxes and Clouds (ZAVG).
The Monthly Zonal and Global Radiative Fluxes and Clouds
(ZAVG) product is a summary of the zonal and global averages of
the radiative fluxes and cloud properties, probably most suitable
for inclusion in the Earth. Observing System Data and Information
System (EOSDIS) Information Management System (IMS) as a
browse product. This product is the CERES equivalent to the zonal
averages and global averages in the ERBE S-4 product. ZAVG
is an archival product produced by the TISA subsystem for each
instrument and for each combination of instruments.

0.5

Where did Perseverance
land on Mars?

Sample Tube 266 - NASA
Mars Exploration

1 Perseverance will land at the Red Planet’s Jezero Crater a little
after 3:40 p.m. EST (12:40 p.m. PST) on Feb... Perseverance on
Mars NASA’s Perseverance Mars rover is using its self-driving
capabilities as it treks across Jezero Crater seeking signs of ancient
life and gathering rock and soil samples for planned return to Earth.
How Perseverance Drives on Mars This high-resolution image
shows one of the six wheels aboard NASA’s Perseverance Mars
rover, which landed on Feb.18, 2021. The image was taken by one
of Perseverance’s color Hazard Cameras

1.0

At what point in space is
the JWST located?

#JwstArt Juried Art Show
Webb/NASA

3 None 1.0

What is the data policy for
JWST?

Solar System Observa-
tion FAQ For Scientists
Webb/NASA

1 The JWST Science & Operations Center will be located at the
Space Telescope Science Institute (STScI) in Baltimore, MD. Com-
petition will be fierce! What is my proprietary time? The baseline
period for exclusive access to your JWST data is one year, as for
HST and other missions. Some types of programs will have a
shorter or zero exclusive access period. Proposers can also volun-
tarily reduce or waive their proprietary data rights. After the end
of the exclusive access period the observations will be available
for archival research.

1.0

Table 13: Sample Questions from Human Evaluation of Vector Search pipeline leveraging INDUSBASE model
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