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Abstract

Many eCommerce systems source product in-
formation from millions of sellers and man-
ufactures, each having their own proprietary
schemas, and employ schema matching solu-
tions to structure it to enable informative shop-
ping experiences. Meanwhile, state-of-the-art
machine translation techniques have demon-
strated great success in building context-aware
representations that generalize well to new lan-
guages with minimal training data. In this work,
we propose modeling the schema matching
problem as a neural machine translation task:
given product context and an attribute-value
pair from a source schema, the model predicts
the corresponding attribute, if available, in the
target schema. We utilize open-source seq2seq
models, such as mT5 and mBART, fine-tuned
on product attribute mappings to build a scal-
able schema matching framework. We demon-
strate that our proposed approach achieves a
significant performance boost (15% precision
and 7% recall uplift) compared to the baseline
system and can support new attributes with pre-
cision ≥ 95% using only five labeled samples
per attribute.

1 Introduction

eCommerce retailers rely heavily on structured cat-
alogs containing essential product information to
provide best-in-class customer experiences such
as faceted product search, personalized recommen-
dations, and valuable product insights. However,
consolidating product data into a structured catalog
involves integrating information from various het-
erogeneous data sources such as manufacturer fact
sheets, brand websites, and GDSN feeds1 (Zheng
et al., 2018). These sources often present data in
diverse schema representations across product cat-

1GDSN stands for Global Data Synchronization Network.
It is a network of data pools that allows businesses to share
high-quality product information seamlessly with their trading
partners. https://www.gs1.org/services/gdsn

Brand:                SNYDER
Color:                 Yellow
Tank Material:   Polyethylene
Tank Volume:   120 gal

Brand:            Sure Water
Storage Capacity:  500 gallons
Material                    Food grade

Brand:              Amazon Basics
Color:                                 Black
Read Speed:             130 MB/s
Storage Capacity:       128 GB
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Figure 1: Different vendors may represent semantically
similar product facts using different attribute names (e.g.
Tank Volume and Storage Capacity). Conversely, same
attribute name (e.g. Storage Capacity) could be used
to represent two distinct logical attributes for different
product types (e.g. Storage Tanks and USB Drive).

egories, languages, and feed types as illustrated in
Figure 1.

Due to the sheer scale of product offerings, it
is prohibitively expensive and time-consuming to
manually curate a comprehensive product catalog
for eCommerce systems like Amazon, Walmart,
etc. Typically, each system operates with its own
unique proprietary schema, necessitating that sell-
ers (e.g. manufacturers or distributors) adhere to
specific schema constraints and complicates listing
management for the sellers. To address this, eCom-
merce systems typically employ automatic schema
matching models to consolidate product informa-
tion from disparate sources and simplify listing
experiences. Figure 2 illustrates a high-level view
of the schema transformation pipeline supporting a
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Figure 2: An overview of the automatic product listing creation pipeline utilizing a neural machine translation model
for automatic schema matching. Sellers provide their product data in heterogenous formats which is automatically
schema mapped and validated to be contributed to the catalog.

listing experience. Simplifying and automating the
listing process encourages sellers to onboard their
entire selection of products, thereby improving the
overall shopping experience for customers.

Existing schema matching approaches may ex-
hibit several critical limitations, such as: (i) address
schema matching as a closed-set problem, which
renders them unable to handle source attributes that
cannot be mapped to an existing target attribute,
(ii) train one model per attribute which require a
large amount of labeled training data per attribute,
(iii) require significant efforts, such as architec-
tural changes or model re-training, to support new
attributes, (iv) limit model input to the attribute
key-value pairs, which may potentially lack critical
product context, and (v) inefficient pairwise com-
parisons of embedding representations. These limi-
tations underscore the challenges faced by current
schema matching methodologies and highlight ar-
eas where improvements are necessary to enhance
model flexibility, efficiency, and contextual under-
standing.

Parallels can be drawn between the task of
schema matching and neural machine translation,
which has recently achieved state-of-the-art perfor-
mance in several NLP tasks, such as language trans-
lation, text summarization, and question answer-
ing (Stahlberg, 2020). Just as machine translation
converts text between languages while preserving
semantics, schema matching identifies correspon-
dences of product attributes from one schema to
another while preserving the intended information.
For instance, mapping the attribute Tank Volume
from one manufacturer’s schema to item_volume in
a target schema is analogous to translating the En-
glish word hello to hola in Spanish. Both processes

require understanding context and meaning of the
original term to ensure accurate and useful transla-
tion in the target format to address the problem of
impedance mismatch (Ireland et al., 2009).

In this work, we propose to leverage the machine
learning techniques used in language translation
to effectively and efficiently align diverse prod-
uct data sources to a standardized target schema,
facilitating faster and accurate product listings. In-
spired by similarities between machine translation
and schema mapping, we propose ASTRA (Auto-
matic Schema Matching via Machine Translation),
a generative approach to perform schema matching
for product entities in the eCommerce domain that
scales for thousands of product types as well as
disparate sources of data. Our main contributions
are summarized as:

• proposed a novel framework to model schema
matching as a generative neural machine trans-
lation task,

• addressed critical limitations of existing
frameworks, such as open-set schema match-
ing and extending attribute coverage without
requiring any changes to the model architec-
ture,

• proposed e-commerce specific components
and optimizations, like vocabulary augmenta-
tion, token budgeting, and confidence score
proxy, to achieve high precision schema
matching, and

• demonstrated scalability of the approach for
extending to new attributes with few shot
learning.
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2 Related Work

Traditionally, schema mapping approaches as-
sumed structured databases from a handful num-
ber of sources with clean data (Miller et al.,
2000; Rahm and Bernstein, 2001). However, such
techniques are not suited to large-scale eCom-
merce data, where the number of available domain
schemas is in the order of millions when accounting
for different manufacturers, vendors, and product
categories.

In recent literature, approaches have relied on
attribute value extraction to enrich product listings.
These approaches train supervised models to ex-
tract missing attribute values from free text, such as
product title and product description, using multi-
class classification (Ghani et al., 2006), neural se-
quence labeling (Zheng et al., 2018; Xu et al., 2019;
Yan et al., 2021) or extractive question answer-
ing (Wang et al., 2020; Ding et al., 2022). How-
ever, such approaches are better suited for products
with unstructured text (i.e. title, bullet points, de-
scriptions) and not directly applicable to schema
matching in situations where product information
is available in semi-structured form such as web-
sites or product feeds. Additionally, since these
approaches are often trained at attribute or category
level, achieving scale is difficult in settings where
there exist a large number of constantly evolving
applicable attributes and categories.

Recent studies have investigated using state-
of-the-art pre-trained large language models
(LLMs) for attribute value extraction in a
question-answering framework (Blume et al., 2023;
Brinkmann et al., 2023; Baumann et al., 2024).
However, it is not only prohibitively expensive
to extract each attribute value using LLMs at a
product level, they are also prone to hallucina-
tions (Jiang et al., 2024), producing outputs that
are not grounded to the input data.

On the other hand, unsupervised tech-
niques for schema matching have leveraged
Word2Vec (Nozaki et al., 2019; Kolyvakis et al.,
2018) and FastText (Shieh et al., 2021) to generate
learned representations of source and target
attribute key-values and computed semantic
similarity to perform schema mapping. While
unsupervised approaches scale well with large
number of attributes and categories, they are
unable to achieve the required precision for
hands-off-the-wheel schema matching.

3 Method

3.1 Problem Formalization

The problem of attribute matching may be formal-
ized as follows: given an input attribute as from
a source schema S, the goal is to identify an at-
tribute at, if it exists, from a target schema T . Each
attribute a may be characterized by a key (i.e. at-
tribute name) k and a set of values V . For our use-
case, we assume that our models will be trained to
match an unspecified number of source schemas to
a single fixed target schema (which in our case is
the Amazon product schema).

3.2 Schema Mapping Framework

Attribute schema mapping and machine transla-
tion share significant similarities in their funda-
mental processes. Both involve transforming in-
put data from one structured format to another
while preserving the inherent meaning and intent.
Our schema mapping framework uses neural ma-
chine translation models to learn and infer product
attribute correspondences between various exter-
nal source schemas and a known target schema.
Specifically, we employ transformer-based multi-
lingual sequence-to-sequence (seq2seq) generation
models, namely mT5 and mBART, leveraging self-
attention mechanisms to generate context-aware
schema mappings.

We model schema matching as a translation task,
where the input token sequence contains serialized
product information, including product type, at-
tribute name and attribute value from the source
schema. The output token sequence is the cor-
responding attribute, if available, from the target
schema. To map a source attribute to the correct
target attribute, it is crucial to use the context (prod-
uct information) to disambiguate between potential
target attributes as illustrated in Figure 1.

3.2.1 mT5: Multi-lingual Text-to-Text
Transfer Transformer

An mT5 model (Xue et al., 2020) is a multi-lingual
variant (supports 101 languages) of T5 model (Raf-
fel et al., 2020), a basic encoder-decoder Trans-
former architecture (Vaswani et al., 2017), pre-
trained as a masked language model, where con-
secutive spans of input tokens are replaced with a
mask token and the model is trained to reconstruct
the masked-out tokens. This innovative design of
T5 model allows it to be pre-trained on a massive
corpus and then fine-tuned for specific tasks using
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Serialized Input Text Sequence Output Sequence
<PT> SUITCASE <KEY> Made in: <VAL> China country_of_origin

<PT> COMPUTER_DRIVE_OR_STORAGE <KEY> Disk Speed (RPM) <VAL> 7200rpm hard_disk rotational_speed

<PT> CAMERA_DIGITAL <KEY> Image Sensor Size <VAL> 35mm Full Frame (36 x 24 mm) photo_sensor size

<PT> JUMP_STARTER <KEY> バッテリータイプ <VAL>リチウムイオンバッテリー battery cell_composition

<PT> SHIRT <KEY> fabric <VAL> 85% Cotton / 15% Polyster material_composition

<PT> PERSONAL_FRAGRANCE <KEY> This deodorant works so well <VAL> so much better <NOMAP>

Table 1: Serialized input data including product context using special tokens <PT>, <KEY>, and <VAL>. Output
sequence is either the expected target attribute or <NOMAP> if the model is expected to reject the attribute.

the same architecture, providing a unified solution
for a wide range of applications such as transla-
tion, summarization, question answering, and text
classification. Compared to previous SOTA se-
quence modeling approaches, T5 model leverages
a transformer-based architecture to enable efficient
parallel processing and advanced attention mecha-
nisms, ensuring high performance and scalability.

3.2.2 mBART: Multi-lingual Bidirectional and
Auto-regressive Transformer

An mBART model (Liu et al., 2020) is a multi-
lingual variant of the BART model (Lewis et al.,
2019), an encoder-decoder Transformer architec-
ture (Vaswani et al., 2017), pre-trained as a denois-
ing auto-encoder. In this setup, the input text is cor-
rupted by masking out tokens or shuffling the order
of tokens, and the model is trained to reconstruct
the original text. It works well for comprehension
tasks but is particularly effective when fine-tuned
for text generation.

3.3 Data Pre-processing and Setup

3.3.1 Data Cleaning

Product data from heterogeneous sources (e.g.
web scraping, GDSN feeds) often contains noise,
such as whitespace characters, formatting sym-
bols, and HTML tags. Additionally, attributes
in the target schema can be represented in a
nested format, like battery.cell_composition and
hard_disk.rotational_speed, which differ from typi-
cal natural language text used in model pre-training.
To address this, we use regular expressions to clean
the data and replace dot notation (".") with a whites-
pace character2, to produce text that closely resem-
ble natural language. This preprocessing step en-
hances model efficiency by allocating more input

2During inference, the whitespace characters in the model
prediction are replaced back with the dot symbol (".") to gen-
erate the nested attributes.

bandwidth to the product data and enabling faster
training.

3.3.2 Data Serialization
Seq2Seq models take a sequence of tokens as input
and generate a sequence of tokens as output. For
schema matching, the input sequence includes se-
rialized product information: product type, source
attribute, and source value. The output sequence is
the target attribute. We use special tokens <PT>,
<KEY>, and <VAL> as markers to assist the model
in understanding the beginning of product type, at-
tribute key, and attribute value, respectively, in the
input text. Examples of serialized input data are
shown in Table 1.

3.3.3 Vocabulary Augmentation
The product data and the target schema may
contain complex eCommerce-specific attributes
like eu_spare_part_availability_duration and
oem_equivalent_part_number which needs to be
tokenized before input to the model. We augment
the tokenizer’s existing vocabulary with the
complex target attributes which do not need to be
split into smaller tokens3. This allows the model to
train faster by reducing tokenization complexity,
improving context understanding, optimizing mem-
ory usage and ensuring consistent representation.
Additionally, vocabulary augmentation allows us
to extract a confidence score proxy (as explained
in Section 3.3.6) and filter out low confidence
token sequences (potential hallucinations), thereby
enhancing precision.

3.3.4 Model Input
Token budgeting involves managing the distribu-
tion of tokens across input sequences to ensure
that the model’s capacity is effectively utilized
without exceeding its maximum limit. Both mT5

3We add a total of 2402 new tokens, increasing the vocab
size from 250112 to 252514 for mT5 model, and from 250054
to 252456 for mBART model.
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and mBART models have a maximum input token
limit of 1024 tokens. However, for our datasets,
the average token length per input sequence is ap-
proximately 80 tokens, with a maximum of 330
tokens due to some longer attribute values. To
ensure efficient model training, we limit the max-
imum token length to 128 tokens. This covers
98% of the training data, while we truncate the
attribute values in the remaining sequences that
exceed this length. The serialized input sequence
containing product type, source attribute and source
value(as shown in Table 1) is passed to the generate
method of MBartForConditionalGeneration and
MT5ForConditionalGeneration for mBART and
mT5 models, respectively.

3.3.5 Model Fine-tuning
Each fine-tuning experiment was run for a max-
imum of 20 epochs with evaluation during train-
ing enabled, using a validation set, for every N
steps and early stopping patience of 10, where
N = 8000/batch_size. The model checkpoint
with the lowest validation loss is saved and used for
evaluation of the test set. We use a linear schedule
with warm up for the learning rate adjustment for
both mT5 and mBART. We utilize a batch_size
of 16, 8, 2, and 4 for the mT5-small, mT5-base,
mT5-large, and mBART-50-large models, respec-
tively. All experiments4 are conducted using the
open-source SimpleTransformers5 library.

3.3.6 Confidence Score Proxy
Our use case of automatic schema matching at
scale requires a minimum precision of ≥ 95%.
Therefore, it is essential to identify the confident
model predictions and filter out the rest. Both mT5
and mBART models, similar to other transformer-
based models such as BERT (Devlin et al., 2018)
and GPT (Brown et al., 2020), do not inherently
provide a confidence score with their predictions.
These models generate output sequences token by
token, selecting the most probable token at each
position, but this probability is not usually exposed
as a confidence score for the entire sequence. In
our datasets, due to the vocabulary augmentation,
the output sequences (i.e. target attributes) have a
maximum length of two tokens, with over 80% of
the target attributes represented by a single token.

4Experiments were conducted on a GPU linux server ma-
chine with 4× 16GB Nvidia Tesla V100 GPUs running with
CUDA version 12.2.

5Simple Transformers Library https://github.com/
ThilinaRajapakse/simpletransformers

Approved Attributes Reject Attributes

Approach P R F1 P R F1

Baseline (mUSE) 0.83 0.44 0.58 - - -

mT5-small 0.94 0.48 0.64 0.92 0.40 0.56

mT5-base 0.98 0.51 0.67 0.96 0.42 0.58

mT5-large 0.98 0.49 0.65 0.96 0.43 0.59

mBART-Large-50 0.95 0.50 0.66 0.95 0.42 0.58

Table 2: Precision (P), Recall (R), and F1-score (F1)
metrics of the proposed approach for automatic schema
matching compared to baseline model on the DEn

dataset. The baseline model did not have the capability
to automatically reject the attributes.

This allows us to extract and utilize the logit scores
of the predictions as a proxy for the model’s confi-
dence score. Post training, we utilize the validation
set to determine the best score threshold to ensure
precision ≥ 95%.

3.3.7 Handling Unavailable Attributes
Any source attribute that can be mapped to an ex-
isting attribute in the target schema is called an
Approved attribute, while others that cannot be
mapped to any available target attribute are con-
sidered as Reject attributes. This determination is
made by subject matter experts, including product
ontologists and trained auditors. Reject attributes
include two cases: Case-I: input keys that does not
represent any valid product information (e.g. in-
correct scrape, non-product keys such as “Review
rating”), and Case-II: input product attributes that
can not be currently mapped to unavailable in the
target schema. As shown in Table 1, the model is
trained to handle Case-I attributes by utilizing a
special token <NOMAP> as the target sequence.
On the other hand, any model prediction (i) outside
the set of valid target attributes, or (ii) within the
set of valid target attributes but with a confidence
score below a certain score threshold, learned from
the validation dataset, is considered as a Case-II
type of Reject attributes.

4 Experiments

4.1 Datasets

In this study, we utilize three datasets: DEn,
DMulti, and DHQ. DEn contains 36, 281 English-
only samples (attribute key-value pairs) from more
than 3, 500 heterogenous schemas across 1, 631
product types. These samples map to 2, 824 unique
product attributes in the target schema, averag-
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French German Italian Japanese Spanish

Approach P R F1 P R F1 P R F1 P R F1 P R F1

Baseline (mUSE) 0.82 0.29 0.43 0.79 0.28 0.41 0.81 0.23 0.36 0.85 0.29 0.43 0.82 0.40 0.54

mT5-small 0.96 0.33 0.49 0.94 0.37 0.53 0.92 0.26 0.41 0.95 0.35 0.51 0.90 0.44 0.59

mT5-base 0.98 0.38 0.55 0.97 0.40 0.57 0.96 0.27 0.42 0.97 0.35 0.51 0.93 0.46 0.62

mT5-large 0.98 0.37 0.54 0.96 0.41 0.57 0.97 0.28 0.43 0.95 0.34 0.50 0.93 0.47 0.62

mBART-Large-50 0.96 0.38 0.54 0.96 0.40 0.56 0.95 0.26 0.41 0.97 0.35 0.51 0.92 0.43 0.59

Table 3: Precision (P), Recall (R), and F1-score (F1) metrics for the cross-lingual transfer learning capability when
models are trained on English language and evaluated on five non-English languages, namely, French, German,
Italian, Japanese and Spanish.

ing 12 labeled training samples per target attribute.
DMulti contains 993 samples in five non-English
languages (French, German, Italian, Japanese, and
Spanish) sourced from 38 schemas across 13 prod-
uct categories. DHQ contains 7, 523 high-quality
samples, manually curated by ontologists, for two
product categories (DIGITAL CAMERA and SOFA)
containing 175 unique attributes. We use DEn

and DMulti to evaluate the performance of our pro-
posed approach (ASTRA) in English and multi-
lingual schema matching use-cases. We use DHQ

in our ASTRA-Lightning experiment to assess the
approach’s efficacy in supporting unseen attributes
with only a few labeled samples.

4.2 Performance Evaluation Metrics

The model performance is evaluated for the two
categories of Approved and Reject attributes6 for
the English dataset (DEn). The other two datasets
DMulti and DHQ have been sourced from human-
annotated tasks for model development, and con-
tain only approved attributes. In our experiments,
we use Precision, Recall, and F1-score metrics for
performance evaluation.

4.3 Results

4.3.1 ASTRA: Automatic Schema Matching
using Machine Translation

In this experiment, we evaluate the performance
of neural machine translation models, mT5 and
mBART, for schema matching. We fine-tune three
variants of mT5: mT5-small (300M parameters),
mT5-base (580M parameters, mT5-large (1.2B pa-
rameters), and one variant of mBART: mBART-
Large-50 (610M parameters). We use the DEn

6An approved attribute incorrectly excluded by the model
causes funnel loss (i.e. preventing valuable product facts from
being displayed) while incorrectly mapping a reject attribute
to a target attribute results in poor customer experience.

dataset containing English-only samples, with a
70/10/20 split for train / validation / test sets, en-
suring no overlap of source schemas across the
splits. For the baseline comparison, we fine-tune a
multi-lingual Universal Sentence Encoder (mUSE)
model (Yang et al., 2019), a dual-encoder archi-
tecture, and compute pairwise similarity between
the learned embedding representations to match
attributes. As presented in Table 2, the proposed
mT5-base model achieves a 15% precision and 7%
recall uplift compared to the baseline model for the
Approved attributes. The baseline model, based on
pairwise embedding similarity, could not exclude
any Reject attributes, leading to significant man-
ual labeling effort. The proposed approach can
exclude such attributes with precision ≥ 95% and
recall ≥ 40%. We also evaluate the cross-lingual
transfer learning capabilities of the models by test-
ing the fine-tuned English models on the DMulti

dataset, containing five non-English languages, as
unseen test set. As shown in Table 3, the overall
best performing model, mT5-base, achieves an av-
erage F1-score increase of 10% over the baseline
model.

4.3.2 ASTRA Lightning

In this experiment, we evaluate the hypothesis:-
Can the ASTRA model learn to map unseen at-
tributes when fine-tuned using only a few training
samples per target attribute?, hence the term light-
ning. To test this, we use the DHQ dataset (see
Section 4.1 for details) containing over 7, 500 high-
quality labeled samples from two product types and
175 unique target attributes.

To simulate unseen attributes, we removed occur-
rences of these 175 unique target attributes from the
training data used to train the ASTRA model (DEN

dataset). This resulted in 25, 344 training samples
(compared to 32, 653 samples in the original train-
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Training Samples per
Target Attribute (n)

Train Samples
25344+

Validation
Samples (m)

Test Samples Precision Recall F1 Area Under
Curve (AUC)

Baseline 0 0 6019 - - - 0.5027

n = 1 95 95 6019 1 0.005 0.010 0.754

n = 5 475 190 6019 0.95 0.872 0.909 0.919

n = 10 950 190 6019 0.95 0.881 0.914 0.937

Table 4: Performance metrics to evaluate the minimum number of labeled samples required to onboard unseen
product attributes to ASTRA model for auto-mapping.

ing data). We included n ∈ {1, 5, 10} samples per
target attribute in the training data for each experi-
ment. The number of validation samples (m) used
for early stopping is defined as min(2, n) provid-
ing no more than two samples per target attribute.
All remaining samples were used as test data.

We report four metrics: precision, recall, F1
score, and Area Under the Curve (AUC). We re-
port the best model performance in maximizing
recall, with the condition that precision ≥ 95%
(required for auto-mapping). If the model cannot
achieve 95% precision, the AUC metric is included
for comparison. Table 4 presents the performance
metrics for onboarding unseen attributes. We ob-
serve that with just five labeled samples, the model
achieves precision ≥ 95% with high recall, meet-
ing the requirements for auto-mapping.

5 Conclusions

This paper introduced application of neural ma-
chine translation to perform schema matching and
showcased how this approach outperforms attribute
embedding similarity based schema matching so-
lutions. The performance evaluation experiment
demonstrates effectiveness of vocabulary augmen-
tation using product metadata, token budgeting and
confidence score proxy for achieving reliable, con-
sistent and precise schema matching. Finally, AS-
TRA Lightning, lays out a blueprint to extend the
schema matching solution to new attributes with
minimal new training data, thus making this ap-
proach suitable in cases where schema matching
target is ever evolving.
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