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Abstract

We present Any-Modality Augmented Lan-
guage Model (AnyMAL), a unified model that
reasons over diverse input modality signals (i.e.
text, image, video, audio, IMU motion sensor),
and generates textual responses. AnyMAL in-
herits the powerful text-based reasoning abil-
ities of the state-of-the-art LLMs including
Llama-3 (70B), and converts modality-specific
signals to the joint textual space through a pre-
trained aligner module.

In this paper, we provide details on the opti-
mizations implemented to efficiently scale the
training pipeline, and present a comprehensive
recipe for model and training configurations.
We conduct comprehensive empirical analysis
comprising both human and automatic evalua-
tions, and demonstrate state-of-the-art perfor-
mance on various multimodal tasks compared
to industry-leading models – albeit with a rela-
tively small number of trainable parameters.

1 Introduction

Large Language Models (LLMs), known for their
substantial size and complexity, have significantly
enhanced the capacity of machines to understand
and articulate human language. The progress in
LLMs has also led to notable advancements in
the vision-language domain (Tsimpoukelli et al.,
2021; Alayrac et al., 2022; Li et al., 2023b; Ope-
nAI, 2023), bridging the gap between image en-
coders and LLMs to combine their reasoning ca-
pabilities. Prior multimodal LLM research has
concentrated on models that combine text and one
other modality (Li et al., 2023b; Laurençon et al.,
2023), such as text and image models, or has cen-
tered on proprietary language models that are not
open sourced (Alayrac et al., 2022; OpenAI, 2023).

To tackle the previously mentioned challenges,
we introduce Any-Modality Augmented Lan-
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guage Model (AnyMAL) — a collection of multi-
modal encoders trained to transform data from vari-
ous modalities, including images, videos, audio,
and IMU motion sensor data, into the text em-
bedding space of an LLM. To achieve this, we
extend the work by (Tsimpoukelli et al., 2021)
to (1) more capable instruction-tuned LLMs (i.e.
Llama-3-70B-chat (AI@Meta, 2024)), (2) larger
pre-trained modality encoders, and (3) advanced
projection layers to handle variable input lengths.
The output examples are shown in Figure 1, and an
illustration of the methodology is in Figure 2.

The key contributions of the work are as follows:

• We present an efficient and scalable recipe
for building Multimodal LLMs. We provide
projection layers pre-trained on large datasets
with diverse modalities (e.g. 500M images,
2.2M audio, 500K IMU time-series, 28M
videos) all aligned to the same LLM (Llama-
3-70B-chat), thus enabling interleaved multi-
modal in-context prompting.

• We fine-tune the model with the multimodal
instruction set and human preference data
across three modalities (image, video, and
audio) covering diverse unconstrained tasks
beyond simple QA domains. The dataset fea-
tures high-quality manually collected instruc-
tion data, which we thus also use as a bench-
mark for complex multimodal reasoning tasks.

• We provide details on the GPU optimization
strategies implemented to scale the training
pipeline to 70B models, and the recipe for
model and training configurations.

• Our best model achieves strong zero-shot per-
formance in both automatic and human evalu-
ation on diverse tasks and modalities, setting
new SOTA on MMBench, AI2D and Math-
Vista, and +14.5% relative CIDEr improve-
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Figure 1: Example AnyMAL outputs. The model understands various input signals (i.e. vision, audio, motion sensor
signals), and responds to free-form user queries. When multiple modalities are interleaved and given as input (e.g.
right-most: image + IMU motion sensor signals), the model reasons over them jointly.

ment on AudioCaps, when compared with the
models available in the literature.

2 Related Work

Large Language Models (LLM): There has been
a surge of LLMs with varying model sizes re-
cently, showcasing remarkable reasoning capabili-
ties. While the most well-known commercial ser-
vice is GPT4 (OpenAI, 2023), the publicly released
models include FlanT5 (Chung et al., 2022), OPT
(Zhang et al., 2022), Llama 1 & 2 (Touvron et al.,
2023a,b), Vicuna (Chiang et al., 2023), and more
recently, Llama-3 (AI@Meta, 2024).

Our work builds upon the powerful text-based
reasoning capabilities of these LLMs, extending
these capabilities to multimodal inputs.
Vision-Language Models: Numerous studies have
addressed the task of instructing a unified model
that integrates both visual and linguistic elements,
finding practical implementations in domains like
image captioning (Xu et al., 2015) and visual ques-
tion answering (VQA) tasks (Antol et al., 2015;

Das et al., 2017; Anderson et al., 2018). While
the relative scarcity of data sources aligning dif-
ferent modalities has conventionally been consid-
ered the bottleneck in scaling, recent works have
shifted towards harnessing the capabilities of pre-
trained LLMs, tapping into the knowledge accrued
from extensive textual corpora. These work include
Flamingo (Alayrac et al., 2022), OpenFlamingo
(Awadalla et al., 2023), Palm-E (Driess et al., 2023),
BLIP-2 (Li et al., 2023b), InstructBLIP (Dai et al.,
2023), LLaVA (Liu et al., 2023b), IDEFICS (Lau-
rençon et al., 2023), MiniGPT-4 (Zhu et al., 2023)
and many more (Li et al., 2023a; Ye et al., 2023;
Gong et al., 2023; Gao et al., 2023; Zhang et al.,
2023a; Su et al., 2023; Lyu et al., 2023), where each
model uses different variants of base LLMs. These
models typically undergo fine-tuning stages as well,
re-purposing several task-specific vision-language
datasets (Liu et al., 2023b; Li et al., 2023c).

Our work extends the previous approaches by
(1) allowing for diverse input modalities beyond
vision signals, (2) presenting a fine-tuning process
with our manually collected multimodal instruction
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tuning and human preference data, and (3) scaling
the LLM parameters to 70B via an efficient pre-
training approach.

3 Methods

3.1 Pre-training

Modality Alignment: We achieve the multimodal
understanding capabilities by pre-training LLMs
with paired multimodal data (modality-specific sig-
nals and text narrations) (Figure 2). Specifically,
we train a lightweight adapter for each modality
to project the input signals into the text token em-
bedding space of a specific LLM. In this way, the
text token embedding space of the LLM becomes
a joint token embedding space, with tokens rep-
resenting either text or other modalities. During
alignment training we freeze the parameters of the
underlying LLM, allowing the projection layers to
reach convergence faster than if trained end-to-end,
and to inherit the reasoning capabilities of the LLM
at inference time. To maximize feature compatibil-
ity between the modality encoders and the LLM,
we use pre-trained encoders g(·) that have already
been aligned to a text embeddings space, e.g. CLIP
(Radford et al., 2021; Schuhmann et al., 2022) for
images, CLAP (Wu* et al., 2023) for Audio sig-
nals, or IMU2CLIP (Moon et al., 2022) for IMU
signals. For each text caption and modality pair
(Xtext,XMM), we align them using the following
objectives with a projection module (i.e. Perceiver
Resampler (Alayrac et al., 2022) for vision encoder,
and linear layers for other modalities).

pθ(Xtext|XMM) =
L∏

i=1

pθ(X
[i]
text|ZMM,Z

[1:i91]
text ) (1)

ZMM = Projectionθ(hlatents, g(XMM)) (2)

To handle modalities larger than what can be
accepted by the encoder g(·) (e.g. high-resolution
images, long audio clips, etc.), we split the modal-
ity into pieces

(
X

[1]
MM ,X

[2]
MM , . . .X

[k]
MM

)
and project

each piece independently, concatenating the result:

Z
[i]
MM =Projectionθ(hlatents, g(X

[i]
MM)) (3)

ZMM =Z
[1]
MM ∥ Z[2]

MM ∥ . . . ∥ Z[k]
MM (4)

Audio, IMU signals and videos are split into fixed-
length pieces in the time dimension. For images,
similar to Liu et al. (2024a), we split the image into
an NxN grid after resizing to the next largest mul-
tiple of the encoder’s input resolution. However,

since we use a Perceiver Resampler to compress the
image embeddings into a smaller number of tokens,
we can use much larger grids for high-resolution
images (up to 9.1 megapixels) without exceeding
the LLM’s maximum context length. The exact
hyperparameters used at inference time are shown
in Appendix E.3.
Training Optimization: Training a 70B model
presents significant challenges due to memory us-
age limits during training. While quantization
strategies (4 bits and 8 bits) (Dettmers et al., 2023)
are popular choices, they often incur a trade-off
between precision and accuracy at inference time.

To minimize GPU memory usage during train-
ing, we implement 3D parallelism using FSDP
(Zhao et al., 2023) (for sharding model parame-
ters, gradients, and optimizer states), interleaved
tensor, and sequence parallelism (Korthikanti et al.,
2022), and context parallelism (Liu et al., 2023a)
for handling large sequences.

We provide more details on scaling the training
pipeline in Appendix B.

3.2 Supervised Fine-tuning with Multimodal
Instruction Datasets

To further improve the model’s instruction-
following capability with respect to diverse
input modalities, we perform additional fine-
tuning with our multimodal instruction-tuning
(MM-IT) dataset. We concatenate the input
as [<instruction> <modality_tokens>], such
that the response target is grounded on both textual
instructions and the modality input. We perform
ablations over (1) training the projection layers
without altering the LLM parameters, or (2) using
Low-Rank Adaptation (Hu et al., 2021) to further
tune the LM behaviors.
Manual Annotation: While there are publicly
available third-party datasets on various VQA tasks,
we observe that many of these data have insuffi-
cient diversity and quality – in particular for align-
ing LLMs towards diverse multimodal instruction-
following tasks that go beyond simple QA queries
(e.g. “Create a poem using this image”, “Extract
the phone number on this flyer”).

Therefore we collect 60K examples of high-
quality multimodal instruction tuning data for mul-
tiple modalities using an iterative model in the loop
process, as illustrated in Table 10 in Appendix C.
Annotators are instructed to provide queries that
are strictly multimodal, such that they cannot be
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Figure 2: AnyMAL Training. (a) Modality alignment pre-training allows for mapping the output of each modality
encoder into the joint LLM embeddings space through projection layers. (b) With multimodal instruction tuning, the
model learns to associate system instructions and text queries with input multimodal contexts. Our modality-specific
encoder zoo includes: CLIP ViT-L, ViT-G, DinoV2 (image), CLAP (audio), IMU2CLIP (IMU motion sensor), and
Intervideo (video).

answered without understanding the accompany-
ing multimodal context. We then generate model
responses using the queries and ask annotators to
correct them as needed, which helps reduce an-
notation errors compared to having to construct
responses from scratch.

We show that our results notably improve using
these fewer but well-balanced and higher-quality
examples from our own vendor-based annotations.
Synthetic Augmentation: In addition to the high-
quality ground-truth instruction tuning data above,
we augment the dataset using the Llama-3 (70B)
(AI@Meta, 2024) model, following similar ap-
proaches proposed by LLaVA (Liu et al., 2023b).
Specifically, we use a textual representation of the
image (i.e. multiple captions, bounding boxes in-
formation and objects) to generate question-answer
pairs for the image. We generate 150K image-
instruction-response pairs on varying domains and
question types. Note that our process strictly uses
only open-sourced models – as opposed to other
works that use commercial services such as GPT-4.

3.3 Human Preference Alignment

Direct Preference Optimization: We further fine-
tune the model on pairwise human preference
data using Direct Preference Optimization (DPO)
(Rafailov et al., 2023). Specifically, we initial-
ize a policy πθ and reference model πref using
the SFT’ed model. Given modality XMM, instruc-
tion Zi, preferred response Z+

r and dispreferred

response Z−
r , we optimize the loss:

Ldpo = − log σ

(
β log

r(XMM,Xi,X
+
r )

r(XMM,Xi,X
−
r )

)
(5)

r(XMM,Xi,Xr) =
pθ(Xr|XMM,Xi)

pref(Xr|XMM,Xi)
(6)

where β is the hyperparameter controlling the
strength of the KL penalty. We train for 1 epoch
on a dataset of 11K (image, query, preferred re-
sponse, rejected response) tuples, where images
and queries are sourced from the MM-IT dataset,
and responses are generated using a number of
models trained during the development process.
Details of the DPO dataset collection are provided
in Appendix C.

4 Experiments

Given the high-level of alignment among the
modalities, we evaluate the model’s reasoning
and instruction-following abilities which it inherits
from the core instruction-tuned LLM, as well as
from the multimodal instruction-tuning process.

We conduct a comprehensive comparison with
strong baseline models for each respective modality
pair (vision-language and audio-language) from the
open-sourced literature and industry.
VQA Benchmarks: Table 1 shows the zero-shot
performance on the MMMU dataset (Yue et al.,
2024), VQAv2 (Antol et al., 2015), TextVQA
(Singh et al., 2019), MMBench (Liu et al., 2024c),
AI2D (Kembhavi et al., 2016), and MathVista (Lu
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Models MMMU VQAv2 TextVQA MMBench AI2D MathVista ChartQA

OpenFlamingo (Awadalla et al., 2023) - 50.5 24.2 5.7 - - -
Flamingo-80B (Alayrac et al., 2022) - 56.3 35.0 - - - -
InstructBLIP (Dai et al., 2023) - - 50.7 33.9 - - -
IBELICS-80B (Laurençon et al., 2023) - 60.0 30.9 54.6 - - -
CogVLM (Wang et al., 2023) 41.1 - - 77.6 - 34.5 -
Llava-Next-34B (Liu et al., 2024b) 51.1 - 69.5 79.3 - 46.5 -
InternVL 1.5-26B (Chen et al., 2024) 45.2 - - - 80.7 53.5 83.8

Claude 3 Haiku (Anthropic, 2024) 50.2 - - 60.6 86.7 46.3 81.7
Gemini Pro (Team et al., 2023) 47.9 71.2 73.5 75.2 73.9 52.1 74.1
Claude 3 Sonnet (Anthropic, 2024) 53.1 - - 67.8 88.7 47.9 81.1
Grok 1.5 (xAI, 2024) 53.6 - 78.1 - 88.3 52.8 76.1
Claude 3 Opus (Anthropic, 2024) 59.4 - - 63.9 88.1 50.5 80.8
GPT4V (OpenAI, 2023) 56.8 77.2 78.0 81.4 78.2 49.9 78,5
Gemini Ultra (Team et al., 2023) 59.4 77.8 82.3 - 79.5 53.0 80.8

AnyMAL 8B 44.2 71.0 62.9 66.2 47.8 26.7 -
AnyMAL 70B 60.4 78.7 77.0 81.7 88.8 57.8 81.7

Table 1: Zero-shot Image-based QA accuracy (%) results on 6 different VQA datasets (using pixels only, without
external OCR model outputs). The top half of the baselines are the open-source models, whereas the bottom half are
the proprietary models. Bold denote the top performance. AnyMAL demonstrates competitive zeroshot multimodal
reasoning capabilities, compared to the baseline vision-language models.

Figure 3: Image-based reasoning pairwise human
evaluation results (% win, tie and lose) with baseline
outputs against the AnyMAL responses on MM-IT (2K
test set). AnyMAL responses are preferred by human
judges more frequently than the baseline responses.

et al., 2024) compared against the models in the
literature that report zero-shot results on the respec-
tive benchmark. We focus on zero-shot evaluation
to best estimate the model’s performance on the
open-ended queries at inference time.

Overall, our AnyMAL exhibits competitive per-
formance compared to the industry-leading models
(e.g. Gemini, GPT4) across multiple tasks, despite
the relatively small number of parameters. Among
the base LLM models for AnyMAL, 70B shows the
most robust performance, underscoring the influ-
ence of substantial reasoning proficiency inherent
in larger LLMs on tasks involving visual reasoning.
Human Evaluation on Image-based Reasoning
Tasks: We evaluate the performance of our mod-
els against the most competitive vision-language
models publicly available to run inference on (i.e.
Gemini 1.5 Pro (Team et al., 2023), and Claude 3

Models MM-IT
Accuracy

InternVL 1.5 (Chen et al., 2024) 66.5
Llava-Next (Liu et al., 2024b) 67.8

Claude 3 (Anthropic, 2024) 62.2
Gemini 1.5 (Team et al., 2023) 65.0

AnyMAL 70B 71.8

Table 2: Human evalaution of Image-based Reason-
ing. We sample 2K multimodal queries each from MM-
IT, and report the percentage of responses deemed by
human annotators to be relevant to the query, factually
correct and without any hallucinations.

Opus (Anthropic, 2024), LLaVA-NeXT (Liu et al.,
2024b), InternVL (Chen et al., 2024)). Since the re-
sponses are subjective in nature (e.g. creative writ-
ing – “Write a poem about this image”, we believe
that human assessment provides the most precise
insight into the performance and capabilities of our
proposed model.

We therefore collect pairwise comparisons for
each baseline against 2K test set (Figure 3), as well
as the pointwise evaluation (see the full rubrics in
Appendix C.2). Specifically, we use the response
accuracy which measures whether the response con-
tains the relevant, factually correct and verifiable
information (without any hallucinations) with re-
gards to the image and the instruction.

Table 2 shows the pointwise evaluation on the
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Models EgoS MVB

mPLUG-Owl (Ye et al., 2023) 31.0 29.7
LongViViT (Papalampidi et al., 2024) 33.0 -
VideoChatGPT (Maaz et al., 2023) - 32.7
VideoLlama (Zhang et al., 2023b) - 34.1

Gemini 1.5 (Team et al., 2023) 63.0 -

AnyMAL 70B 66.8 46.4

Table 3: Zero-shot Video-based QA accuracy (%) on
EgoSchema, and MVBench. AnyMAL demonstrates
competitive zeroshot multimodal reasoning capabilities,
compared to the baseline vision-language models.

Models AudioCaps

CIDEr SPICE SPICEr

TD-Aligned (Kim et al., 2019) 59.3 14.4 36.9
CNN10-VGG (Xu et al., 2021) 66.0 16.8 41.4
ACT (Mei et al., 2021) 67.9 16.0 42.0
PANNs + BERT (Liu et al., 2022) 66.7 17.2 42.0

AnyMAL 7B (CLAP) 70.4 21.0 45.7
AnyMAL 13B (CLAP) 72.1 22.0 47.0
AnyMAL 70B (CLAP) 77.8 23.0 50.4

Table 4: Zero-shot Audio Captioning results on Au-
dioCaps. Ablations (bottom) over our AnyMAL with
varying base LLMs and sizes. AnyMAL attains the
best performance across multiple metrics, showing the
model’s strong performance in audio understanding.

MM-IT test set. Specifically, it can be seen that
AnyMAL attains the highest response accuracy and
relevancy score (10.4% relative improvement com-
pared to the strongest baseline: Gemini 1.5). This
result highlights the enhanced capability of the
model to comprehend and precisely answer ques-
tions in accordance with provided instructions. In
Figure 3, we show that AnyMAL responses are
preferred more frequently than the baseline model
responses in the side-by-side pairwise evaluation,
confirming the trend in the pointwise evaluation.
Video QA benchmarks: We evaluate our model on
two challenging video question-answering bench-
marks in Table 3: MVBench (Li et al., 2024),
and EgoSchema (Mangalam et al., 2024). Our
model demonstrates competitive results compared
to the baselines, and achieves state-of-the-art per-
formance. Note that we compare against ap-
proaches that process the full, untrimmed video
clip to generate answers. Prior work has shown ad-
ditional improvements with careful frame-selection
strategies (Yu et al., 2023). Our approach is com-
patible with such strategies, however that is beyond
the scope of our experiments.

Audio Caption Generation: Table 4 shows the au-
dio captioning results on the AudioCaps (Kim et al.,
2019) benchmark dataset. AnyMAL significantly
outperforms other state-of-the-art audio captioning
models in the literature (e.g. +10.9pp in CIDEr,
+5.8pp in SPICE), showing the versatility of the
proposed approach on various modalities. We note
that our 70B model displays notably strong perfor-
mance compared to the 7B and the 13B variants –
showing the importance of the reasoning module
for the task. Table 7 show example model outputs
for audio reasoning tasks.
IMU Motion Description Generation: We use
Ego4D (Grauman et al., 2022) to train an IMU-
aligned AnyMAL, leveraging the synchronized
IMU sensor data and textual narrations. Given that
the task of generating textual descriptions from
motion signals has not been previously achievable
or reported, we solely present the performance
achieved by our own model.

On the held-out test, we achieve 52.5 CIDEr and
23.2 ROUGE-L against the ground-truth captions,
showing the feasibility of the newly proposed task.
Qualitative Analysis: We provide example out-
puts from AnyMAL in Appendix A, and qualita-
tive analysis against the baselines for each modal-
ity. Tables 5, 6 show outputs from various vision-
language models on diverse example image and
prompt pairs, compared with AnyMAL. Combin-
ing the audio and IMU captioning ability with the
reasoning capbility of LLMs, in Tables 7, 9, and 8
we show examples of novel applications AnyMAL
allows, e.g. inferring user motion states and incor-
porating these as part of its response (e.g. “What’s
the safest way to stop?”→“To stop safely on a bike,
...” without any textual or visual cues that the user
is biking), or interleaving multiple modalities (i.e.
vision + IMU signals) for complex reasoning tasks.

5 Conclusions

Our proposed AnyMAL showcases a novel and
natural way of interacting with an AI model, e.g.
asking questions that presume a shared understand-
ing of the world between the user and the agent,
through the same lens and combinatory perceptions
(e.g. visual, auditory, and motion cues). The pro-
posed scalable way of training AnyMAL makes it
possible to leverage the powerful reasoning capa-
bilities of LLMs within the multimodal settings.
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A Qualitative Analysis

Image-based Reasoning: We provide qualitative
examples in Tables 5, 6 comparing outputs from
various baselines (Liu et al., 2024b; Chen et al.,
2024; Team et al., 2023; Anthropic, 2024).

It can be seen that AnyMAL exhibits strong vi-
sual understanding capabilities (such as identifica-
tion of objects and their states), as well as language
generation capabilities. While other baselines do
present reasonable and fluent responses, their ac-
curacy is not consistently ensured, either in their
visual understanding (e.g. what objects are present
in an image) or secondary reasoning. These exam-
ples effectively highlight the benefits of the pro-
posed approach which allows for large-scale pre-
training covering diverse visual concepts, while in-
heriting strong reasoning capabilities derived from
instruction-tuned LLMs.

To keep the response concise, we add the fol-
lowing phrase to each query: “Keep your answers
within 1-2 sentences unless necessary and do not
exceed a maximum of 40 words."

Note that we use the latest checkpoints made
available for each baseline to generate responses.
Reasoning with IMU Motion Signals: Combin-
ing the IMU captioning ability with the reasoning
capbility of LLMs, in Table 9 we show examples
of novel applications AnyMAL allows, e.g. infer-
ring user motion states and incorporating these as
part of its response (e.g. “What’s the safest way to
stop?”→“To stop safely on a bike, ...” without any
textual or visual cues that the user is biking).
Interleaved Modalities: The flexible model archi-
tecture of AnyMAL allows for combinatory modal-
ities as conditioning context (e.g. image + IMU
motion sensor signals), which allows for more com-
prehensive multimodal reasoning. We demonstrate
the model’s zero-shot capabilities of handling such
interleaved modalities in Table 8 (e.g. composing a
message with a given image (Golden Gate Bridge),
with the user’s prevalent motion (biking) as part of
the context).

This result illustrates the new and natural way
of interaction with an AI model made possible by
AnyMAL, wherein a user can presume a shared un-
derstanding of combined sensory perceptions (e.g.
visual, auditory, and motion cues) when composing
queries – avoiding the need to specify multimodal
contexts.

B Training Optimization

To fully utilize the pre-trained language model’s
context length and limit the number of padding
tokens used, we pack samples together in the se-
quence dimension and use a block diagonal atten-
tion bias to prevent the model from attending to
hidden states across sample boundaries.

To limit the amount of GPU memory required to
train the model, we implement 3D parallelism:

1. We use FSDP (Zhao et al., 2023) to shard
model parameters, gradients and optimizer
states.

2. We implement interleaved tensor and se-
quence parallelism as described by Kor-
thikanti et al. (2022).

3. We shard the input sequence using context
parallelism. (Liu et al., 2023a) to handle se-
quences that would not otherwise fit on a sin-
gle tensor parallel group.

We store the sharded weights and gradients in
fp32 and cast them to bf16 during the forward and
backward pass using FSDP’s mixed precision API.
We use Transformer Engine (NVIDIA, 2022) fused
modules, which increases bf16 training throughput
by ~40%.

We reduce the number of activations recomputed
during the backward pass by utilizing a custom
backward method to implement activation check-
pointing, following Touvron et al. (2023a).

C Dataset Collection and Human
Evaluation

C.1 Fine-tuning Dataset Collection

SFT Dataset Collection: We collect 60K examples
of high-quality multimodal instruction tuning data
for multiple modalities, as illustrated in Table 10.
Specifically, we use various Creative Commons
licensed, publicly available images, augmenting
these images with manually created instructions
and responses.
DPO Data Collection: We train on a dataset of
11k (image, query, preferred response, rejected
response) tuples. Response pairs were initially
generated by using two variants with and without
SFT tuning. We update our response pairs further
through iterative training until evaluation metrics
stabilize.
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Example 1. Science Understanding

Input Image

Prompt Given the graph of the velocity vs. time of a duck flying due south for the winter. at
what point did the duck stop its forward motion?

InternVL The duck stopped its forward motion at point C on the graph, where the velocity is
zero.

LLaVA-
NeXT

The duck stopped its forward motion at point C on the graph.

Gemini 1.5 The duck stopped its forward motion at point D where the velocity reaches zero.

Claude The duck stopped its forward motion at point C. This is where the velocity reaches zero
on the graph, indicating the duck came to a stop before starting to move backwards.

AnyMAL 70B The duck stopped its forward motion at point D.

Example 2. Landmarks

Input Image

Prompt Where is this place located? also, what is the name of this place?

InternVL The image shows a large stadium with a dome-shaped roof, and it is located in the
United States. The name of the place is not visible in the image.

LLaVA-
NeXT

This place is located in the United States, and it is the Metrodome, a stadium in
Minneapolis, Minnesota

Gemini 1.5 This is the Kingdome, a multi-purpose stadium located in Seattle, Washington.

Claude This image shows the Louisiana Superdome, a large multi-purpose stadium located in
New Orleans, Louisiana. It is home to the New Orleans Saints NFL team.

AnyMAL 70B This is the Kingdome, a former multi-purpose stadium located in Seattle, Washington.

Table 5: Examples comparing AnyMAL with various baselines. AnyMAL demonstrates competitive performance
in science and less popular landmarks
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Example 3. Historical Facts

Input Image

Prompt When was the first time one of these desserts were made?

InternVL The first time a chocolate cake with cherries was made is not discernible from the
image.

LLaVA-
NeXT

The first chocolate cake with cherries on top was made in the 19th century, but the
exact date is not known.

Gemini 1.5 There is no information about when these desserts were first made.

Claude The first known chocolate cake recipe dates back to 1764, when it appeared in Dr.
James Baker’s book "The Experienced English Housekeeper". However, cakes in
general have a much longer history, with ancient Egyptian bread sweetened with honey
being an early precursor.

AnyMAL 70B The first chocolate cake was made in 1764 by Dr. James Baker.

Example 4. Recipe

Input Image

Prompt what is a recipe for a cocktail that would resemble the one shown here.

InternVL To make a cocktail similar to the one in the image, you would need a champagne flute,
a bottle of champagne, and a slice of lemon. Fill the champagne flute with champagne,
add a slice of lemon on the rim, and enjoy.

LLaVA-
NeXT

A cocktail that resembles the one shown in the image could be a simple glass of
sparkling wine with a twist of lemon. To make it, pour a glass of sparkling wine, such
as champagne or prosecco, and add a twist of lemon for a refreshing touch.

Gemini 1.5 The cocktail in the image resembles a French 75. It is made with gin, lemon juice,
simple syrup, and topped with Champagne.

Claude The cocktail resembles a French 75, which is made by combining gin, lemon juice,
simple syrup, and champagne or sparkling wine, then garnishing with a lemon twist

AnyMAL 70B A recipe for a cocktail that resembles the one shown here is a French 75, made with
gin, lemon juice, simple syrup, and champagne.

Table 6: Examples comparing AnyMAL with various baselines. AnyMAL demonstrates competitive performance
in both historical facts (e.g. Chocolate cake creator) and identifying objects to share recipes(only the bigger models
got the drink right).
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Audio Signals Input AnyMAL Output
Gold Caption: Typing on a keyboard is occurring in a quiet
environment
Prompt: Can you guess my location? Reply with one or two
sentences.
Response: Based on the sound of the typing, I would guess
that you are located in a quiet, indoor setting, possibly in an
office or study. The sound of the typing is clear and crisp,
with a slight echo or reverb that suggests a room with a high
ceiling or a large, open space.

Gold Caption: Very strong wind is blowing, and waves are
rustling
Prompt: Based on the weather, what should I wear? Reply
with one or two sentences.
Response: Based on the sound of the wind and the waves, it
seems like a stormy weather is approaching. It’s best to dress
in layers and wear something waterproof and warm to stay
comfortable and safe.

Gold Caption: A baby cries while electronic speech occurs
in the background, an adult female speaks, a sneeze occurs,
and an adult female speaks once more.
Prompt: Describe the sound in one or two sentences.
Response: The sound is a loud, high-pitched scream of a
child, with a hint of a whine, as if the child is crying and
screaming at the same time. The sound is accompanied by
the muffled voices of adults in the background, possibly the
child’s parents or caregivers, speaking in a soothing tone.

Table 7: Example outputs from AnyMAL on unseen audio samples. Gold captions are shown as a reference for the
audio signals. The text prompt and the audio signals are used as input.

C.2 Human Evaluation

To measure if the AnyMAL response is relevant
and correct with respect to the query and the im-
age, we use the following rubrics to collect human
feedback data.
Recognition Accuracy: Did the model correctly
understand and identify the objects or scenarios in
the image relevant to the query?

• 0: The model completely misinterprets the
image or fails to recognize key objects in the
image relevant to the query.

• 1: The model partially misinterprets the image
or recognizes some but not all key elements.

• 2: The model correctly interprets the image
and identifies key elements.

Response Accuracy: Does the response provide
factually correct information? Does it Hallucinate?

• 0: The response contains factually incorrect
information or even partially incorrect infor-
mation.

• 2: The response provides factually accurate
information.

Integrity: Does the response show any harmful or
offensive language or signs of unjust or prejudiced
treatment related to characteristics such as race,
age, gender, nationality, etc.?

• 0: The response shows some sign of bias or
harmful/offensive language.

• 2: The response shows no signs of bias or
harmful/offensive language.

Pairwise Comparison: choose the response that
better answers the given question, and that is more
contextually appropriate and accurate (win, tie, or
lose).
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Input Modality 1 Input Modality 2 AnyMAL Output
Prompt: (Given the motion signals) Write a social
media caption for this view.

Response: Pedaling along the San Francisco
Bay, taking in breathtaking views of the
Golden Gate Bridge! The salty sea breeze in-
vigorates me as I make my way to my next
destination.

Table 8: Example outputs from AnyMAL, with multiple interleaved modalities as input. The text prompt and two
other modalities (e.g. image & IMU motion sensor signals) are used as input. The underlined text in the response
demonstrates the evidence that the output is grounded on multiple modalities.

IMU Signals Input Reference Video AnyMAL Output
Prompt: Describe the motion.
Response: [Camera wearer] looks
around.

Prompt: Describe the motion.
Response: [Camera wearer] walks in
the house.

Prompt: What’s the safest way to stop?
Response: To stop safely on a bike, use
the brakes gradually and look where
you want to go. Lean the bike slightly
to one side and keep your body upright.

Table 9: Example outputs from AnyMAL, on IMU motion sensor samples from Ego4D. The text prompt and the
IMU signals are used as input. We display a few frames from the synchronized video as a reference for readers. The
reference video is not used as input to the model.

D Safety

Inference Time Integrity: To ensure the safety
and integrity of the AnyMAL model, several mea-
sures are made on the following categories of poten-
tial integrity violations: (1) input images, (2) input
& output texts, and (3) multimodal combination of
input images and text outputs. If any of these de-
tect an integrity violation, we proceed to reject the
entire user query. For streaming use-cases, we run
output classifiers for each generated sentence and
halt generation if any detect an integrity violation.

(1) Input image: we use a pre-trained image clas-
sifier based on RegNetY (Radosavovic et al.,
2020) to detect any content that violates in-
tegrity standards. This detection encompasses

graphic material, violent imagery, hate sym-
bols, instances of bullying, harassment, etc.

(2) Input & output texts: we use a RoBERTa-
based text classifier (Liu et al., 2019) trained
to detect integrity-violating utterances such as
violence, harassment, hate speech, etc. within
the input text or generated output text.

(3) Multimodal association in input image & out-
put text: we use a multimodal AnyMAL-
based classifier conditioned on the input im-
age and generated response to account for
cases where individually-benign images and
texts might be integrity-violating when asso-
ciated.

Training Time Safety: The datasets used for pre-
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Example 1. Creative Instructions (Image)

Instruction Prompt
Write a short story about the scene in this photo. Include some
dialogue between the characters.
Response
The restaurant table stood empty but adorned with remnants of a
meal. A seagull landed on its edge, spreading his wings in a display
of dominance. With a raucous cry, he fiercely guarded the plate
before him, which he intended to make his dinner. His piercing
gaze fixed upon another seagull, wings poised for landing, his eyes
locked on the feast. "Back off!" the first seagull screeched. Beak
open wide, he emitted a symphony of squawks, challenging the
attacker. Undeterred, the second seagull hesitated, torn between his
desire for snacks, and fear of the defending seagull. The tension
hung in the air, and as the first seagull prepared to yell again, the
second replied with a sullen "Fine," and flew off. Triumphant, the
first gull tucked into his dinner.

Example 2. Detailed Description (Image)

Instruction Prompt
Explain all the details of the scene, starting from left to right.
Response
This is a photo of a small delivery truck. In the background of
the photo is a loading dock of some type with green and yellow
structures under an awning. The small truck stands at the center of
the photo. It has a flatbed and awning over the flatbed and some
type of white cabinet on the back and a black storage compartment
under. The bed is green and has black and green milk crates stacked
on it. The cab of the truck is small and tall with large windows all
around. It is white with a green lower section and fine yellow stripe
separating the green and white paint. The front of the truck has
‘Dairy Crest’ painted on it in green and has a European style license
plate. There is a partial image of a man in the background.

Example 3. Open-ended Question and Answering (Video)

Instruction Prompt
What is this animal doing and why are they doing it?
Response
Pheasants eat gravel to help them in the digestion of their food. This
helps them survive multiple weeks without feeding during extreme
weather. A newly hatched chick will survive on insects for a few
weeks of its life.

Example 4. Multimodal Reasoning (Audio)

Audio File (Freesound Link)

Instruction Prompt
What could be the likely momentous occasion in this sound clip?
Response
This is a countdown to a rocket taking off into space by a robotic
voice.

Table 10: Example data from our MM-IT dataset, manually collected instruction prompt and response pairs
for diverse modalities (i.e. image, video, audio). The collected instructions cover diverse domains (e.g. creative
writing, open-ended reasoning), and are strictly grounded to the provided multimodal context (i.e. queries cannot
be answered without understanding the accompanying multimodal context). The MM-IT data serves as both a
fine-tuning dataset as well as an evaluation benchmark for complex multimodal reasoning tasks.
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training (e.g. (Radenovic et al., 2023; Singer et al.,
2022)) have gone through a filtration process to
remove harmful language or images that compro-
mise integrity, thereby reducing the potential for
the model to generate content that violates integrity
standards.
LLM Safety: Since our AnyMAL pre-training
does not alter the parameters of the base LLM,
we carry over the same safety precautions imple-
mented for its language generation. For instance,
LLaMA-3 (the version we report most of our re-
sults on) places safeguards such as negative exam-
ple fine-tuning, reinforcement learning with human
feedback (RLHF) (Christiano et al., 2017; Bai et al.,
2022; Rafailov et al., 2023).

E Additional Notes on Experiments

E.1 Multimodal Prompts

Different prompts were used to get the model out-
put in the desired format for each task (e.g. multiple
choice questions, yes/no questions). Below is the
full list of prompts used for each task.

MM-IT System message: “You are a multimodal
assistant, designed to provide helpful answers to
users’ image-related questions. \n\n Here is the
image: <img>”. User message: “{question}”

VQA, TextVQA, OKVQA System message:
“You are a multimodal assistant, designed to pro-
vide direct answers to users’ image-related ques-
tions. Reply directly with only one phrase. *Do
not* start your answer with ‘Sure ...’. \n\n Here is
the image: <img>”. User message: “In the image,
{question} Reply in one word.

VizWiz System message: “Answer the questions
based on the image when possible, otherwise say

‘unanswerable‘. \n\n Here is the image: <img>”.
User message: “In the image, {question} Reply in
one prahse/word or say ‘unanswerable‘

Hateful Meme System message: “You are a so-
cial media content moderator, designed to detect
hateful memes. \n\n Here is the meme: <img>\n
This meme contains text: ‘{ocr}’”. User message:
“Is this a hateful meme? Answer yes or no.

Coco Caption System message: “You are a mul-
timodal assistant, designed to provide direct and
concise answers to users’ image-related requests.
\n\n Here is the image: <img>”. User message:

“Describe the image with one *generic* sentence
using json format. Here are two examples:\n Spe-
cific: {"caption": "Body-Solid (Best Fitness) Inver-
sion Table-2"} \n Generic: {"caption": "A man
laying on top of an exercise table."}.”

MMMU, ChartQA, AI2D System message:
“Given the image, choose the correct option for
the following question. Your response must be just
a single letter that corresponds to the correct op-
tion (e.g. A, B) \n\n Here is the image: <img>.”
User message: “{context} Question: {question}
\n\n Options: {choices} \n\n Reply in a single
letter.”

AudioCap System message: “You are a multi-
modal assistant. Designed to provide direct an-
swers to users’ audio-related questions. Here is
the audio: <audio>” User message: “Describe the
sound.

EgoSchema, MVBench System message: “You
are a multimodal assistant. Designed to provide
direct answers to users’ video-related questions.
\n\n Here is the video: <video>.” User message:
“{question} Select exactly one option from the fol-
lowing: [options].”

IMU-Ego4d System message: “You are a multi-
modal assistant, designed to provide helpful, con-
cise and direct answers to users’ questions, based
on the user’s motion sensor signals reading from
a head-mounted IMU device. The signals may in-
dicate that a user may be running, walking, biking,
driving, looking around, etc. Always answer un-
der 30 words. \n\n Here are the user’s predicted
motions: <IMU>” User message: “Describe this
motion.”

E.2 Multimodal Inputs

Figure 4 shows the diagram for performing
modality-interleaved inference (for examples
shown in Table 8).

E.3 Hyperparameters

Pre-training: Table 11 report the hyper-
parameters used in this work for model pre-
training.

Supervised Fine-tuning: We use LoRA adapters
to fine-tune the projection layers and language
model on the MM-IT training set with the prompt
described in E.1. We initialize the projection layer
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Figure 4: AnyMAL Inference example with multiple modality as input.

Models Batch Size Initial LR # Steps # Modality Projection Module (#Layers)Embeddings

AnyMAL (13B, Image) 2048 2× 10−4 100k 64 Resampler (6)
AnyMAL (70B, Image) 26880 2× 10−4 25k 64 Resampler (12)
AnyMAL (13B, Audio) 128 1× 10−4 1k 32 Linear (1)
AnyMAL (70B, Audio) 128 1× 10−4 1k 32 Linear (1)
AnyMAL (13B, Video) 1024 1× 10−4 20k 32 Resampler (4)
AnyMAL (70B, Video) 1024 1× 10−4 20k 32 Resampler (4)
AnyMAL (8B, IMU) 256 1× 10−4 2k 32 Linear (1)

Table 11: Hyperparameters for AnyMAL Pre-training

using the weights produced by the pre-training pro-
cess. We set LoRA r = 8, α = 32, and add LoRA
modules on all linear layers. We finetune the model
for 3k steps with a global batch size 128. Training
warms up to an initial learning rate of 5× 10−5 lin-
early over 40 steps, decaying to 10% of the initial
learning rate via a cosine schedule by the end of
training. We apply NEFTune (Jain et al., 2023) to
the language model with α = 10.

Human Preference Alignment: We initialize
the reference model and policy using the Super-
vised Fine-tuned model. For the policy, we con-
tinue fine-tuning the LoRA adapters that we trained
during Supervised Fine-tuning, and keep all other
parameters frozen. We use a global batch size of
32. Training warms up to an initial learning rate of
1× 10−5 linearly over 20 steps, decaying linearly
to 2/3 of the initial learning rate by the end of train-
ing. We use Conservative DPO (Mitchell, 2023)
with the label smoothing parameter ϵ = 0.05. We
apply NEFTune (Jain et al., 2023) to the language
model with α = 10.

E.4 Code Base & Hardware

The implementations of the transformer-based mod-
els are extended from the HuggingFace1 code
base (Wolf et al., 2020) and other cited authors’
released code-bases. Our entire code-base is im-
plemented in PyTorch (Paszke et al., 2019). All
models in this work are trained on a varying num-
ber of Nvidia A100 2 and H100 3 GPUs.

F Limitations

We discuss the current limitations of our work as
follows. First, the proposed causal multimodal
language modeling approach still encounters chal-
lenges in establishing a robust grounding with the
input modality. Specifically, we observe that during
the generation, the model occasionally prioritizes
focusing more on the generated text rather than the
input image. This leads to the generation of output
that incorporates biases acquired from the underly-
ing language model (LLM), which can incur inac-
curacies when compared against the image context.

1https://github.com/huggingface/transformers
2https://www.nvidia.com/en-us/data-center/a100/
3https://www.nvidia.com/en-us/data-center/h100/
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We expect that additional architectural adjustments
or unfreezing LLM parameters are necessary to
address this limitation effectively (albeit the much
higher computational costs it might entail).

Second, while we greatly increase the size of the
pretraining dataset, the understanding of visual con-
cepts and entities remains constrained by the quan-
tity of paired image-text data included in the train-
ing process. In the domain of text-only language
models, it is commonly observed that approaches
incorporating external knowledge retrieval signif-
icantly enhance the model’s ability to overcome
its knowledge limitations. These approaches of-
fer a potential means to alleviate the limitations
mentioned earlier.

Lastly, in the scope of our work, the multimodal
adaptation of an LLM is bounded by four modali-
ties: image, video, audio, and IMU signals. While
we believe that the proposed approach has the po-
tential to encompass any other modality, provided
there exists a paired dataset, its effectiveness for
such modalities still needs to be substantiated.
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