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Abstract

Hate speech detection is a prevalent research
field, yet it remains underexplored at the level
of word meaning. This is significant, as terms
used to convey hate often involve non-standard
or novel usages which might be overlooked
by commonly leveraged LMs trained on gen-
eral language use. In this paper, we intro-
duce the Hateful Word in Context Classifica-
tion (HateWiC) task and present a dataset of
∼4000 WiC-instances, each labeled by three
annotators. Our analyses and computational
exploration focus on the interplay between the
subjective nature (context-dependent connota-
tions) and the descriptive nature (as described
in dictionary definitions) of hateful word senses.
HateWiC annotations confirm that hatefulness
of a word in context does not always derive
from the sense definition alone. We explore the
prediction of both majority and individual anno-
tator labels, and we experiment with modeling
context- and sense-based inputs. Our findings
indicate that including definitions proves ef-
fective overall, yet not in cases where hateful
connotations vary. Conversely, including anno-
tator demographics becomes more important
for mitigating performance drop in subjective
hate prediction.

1 Introduction

This paper introduces the Hateful Word in Context
Classification (HateWiC) task, which aims to de-
termine the hatefulness of a word within a specific
context, as illustrated in Figure 1. We argue that
hateful word senses are not enough in focus within
Hate Speech Detection (HSD) research, and not
descriptive only, but highly subjective, asking for
another approach than other lexical semantic tasks
like Word Sense Disambiguation (WSD).

Hateful senses are not enough in focus within
HSD research. The current focus of HSD re-
search predominantly revolves around the classi-
fication of entire utterances, such as social me-

Figure 1: Illustration of the HateWiC Classification task
and a conceptual semantic space that underlies the tar-
geted phenomenona of hate-heterogeneous word senses,
highlighting the distinction between the descriptive as-
pects (e.g. cookie or person) and hateful connotation.

dia posts (Waseem and Hovy, 2016; Davidson
et al., 2017). Within these utterances, lexical cues
frequently play a significant role in the decision-
making process. Yet, the computational modeling
of context-specific hateful word meanings remains
largely unexplored, with a few exceptions in this
direction (Dinu et al., 2021; Hoeken et al., 2023b).

LMs commonly employed in HSD systems
demonstrate effective word meaning modeling
(Nair et al., 2020), but they tend to lack sensitivity
to domain-specific, non-standard or novel word
senses (Kumar et al., 2019; Blevins and Zettle-
moyer, 2020). This insensitivity becomes particu-
larly critical in detecting hateful word meanings,
that are used in unconventional or emerging con-
texts as the evolution of societal events gives rise
to the continuous invention of novel expressions of
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hate (Qian et al., 2021). Words within the estab-
lished lexicon, like Oreo, whose primary meaning
may not have any negative connotations (a cookie),
are repurposed to convey hate towards particular
groups or individuals (e.g. based on ethnicity).

Hateful senses are not descriptive only. Follow-
ing theoretic work by Frigerio and Tenchini (2019),
hateful terms could be positioned along a meaning
continuum from descriptive to expressive, closer to
but not at the expressive outer end. The descrip-
tive component comprises the truth-conditional at-
tributes of a term, often recorded in dictionary defi-
nitions. The expressive component, i.e. the conno-
tation of a term, concerns speakers’ attitudes and
emotions, making it highly context-specific and
subjective. A word’s sense definition could imply a
hateful connotation, but this is not always the case,
such as when used in a playful or self-identifying
way (e.g. the third usage in Figure 1). Thus, a
word’s hateful connotation is not exclusively tied
to its descriptive definition, a phenomena which
we term as hate-heterogeneous senses, but depends
on various contextual factors like conveyed con-
tent or the reader’s identity. This aspect is often
overlooked in HSD systems, typically developed
using data reflecting a single (majority) perspective
(Zampieri et al., 2019; Mathew et al., 2020).

Our contributions. In this study we address
the gap in HSD by focusing on subjective hate-
ful word meanings within context. We introduce
the HateWiC dataset, a dataset of ∼4000 WiC-
instances for which we collected three hatefulness
ratings each. We design methods to classify sense
representations and evaluate them both against the
majority and the individual annotator’s label. In
doing so, we experiment with modeling descriptive
and subjective aspects of hateful word senses by
incorporating sense definitions (as also provided to
annotators) and annotator information.1

2 Related Work

In this section, we discuss previous work on the
key aspects of this study: HSD at the word level
(2.1), incorporating subjectivity in HSD (2.2), and
methods for modeling word senses (2.3).

1
The code used for this study and the directly publicly available part of our data can be

found at: https://github.com/SanneHoeken/HateWiC. The full HateWiC dataset will be
open to public upon request and will be licensed under CC BY-NC 4.0.

2.1 Hate Speech Detection on Word Level

Although the main body of research into HSD has
focused on the level of utterances, some studies
have delved into hate speech on the lexical level.
Prior to LMs, feature-based HSD systems (e.g. Lee
et al. (2018)) often incorporated hate speech lex-
icons. Wiegand et al. (2018) demonstrated the
induction of an abusive word lexicon in a non-
contextualized setting. A specific subset of hate-
ful terms within context is addressed by Hoeken
et al. (2023b), who modelled slur detection em-
ploying a dimension-based method similar to the
identification of gender bias in word embeddings
(Bolukbasi et al., 2016). This approach, that re-
quires a pre-given set of minimal pairs, is much
more complex when tackling the broader spectrum
of hateful terms, including words with both hateful
and non-hateful meanings.

Qian et al. (2019) presented a framework aiming
to predict the definition of hateful symbols, terms
with a non-hateful surface form conveying hate,
yet not covering the disambiguation between hate
and non-hate. Mendelsohn et al. (2023) focused
on a related phenomenon, dog whistles, examining
whether GPT-3 can identify their covert meanings,
surface them in text generation and detect them
in real-world texts. Dinu et al. (2021) introduce
the task of disambiguating pejorative word usage,
presenting two small-scale datasets and evaluating
several methods, with an MLP model classifying
BERT embeddings (Devlin et al., 2019) as most
effective approach. Muti et al. (2024) addressed
pejorative word disambiguation as a preliminary
step for misogyny detection in Italian texts.

Our study focuses on the disambiguation of
words with hateful meanings, which, although over-
lapping with dog whistles and pejorative words,
belong to distinct categories. Unlike hateful words,
dog whistles are always intentionally ambiguous,
concealing one meaning from the out-group which
is not exclusively hateful. Pejorative words, encom-
pass any negatively connoted terms that may not be
hateful when not targeted at an individual or group.
More importantly, unlike the single-perspective an-
notations employed in the aforementioned studies,
our focus is on subjective hate speech annotation
and it is conducted on a much larger scale.

2.2 Subjective Hate Speech Detection

Most existing datasets and methods in HSD adopt
a single, majority perspective, ignoring the inher-
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ent subjectivity influenced by diverse social and
cultural factors (Zampieri et al., 2019; Founta et al.,
2018). This approach has been shown to result
in problematic biases, concerning e.g. ethnicity,
gender, and political beliefs and highlight the need
for new methodologies that account for the varying
interpretations of hateful connotations (Davidson
et al., 2019; Kumar et al., 2021; Sap et al., 2022).

Davani et al. (2022) took steps in this direction
by training a model to predict individual annota-
tions as subtasks, still ultimately aiming to predict
the majority label. Kanclerz et al. (2022) addressed
the task of predicting each individual annotator’s
label, by leveraging annotator’s labeling statistics
within the dataset. Alacam et al. (2024) study the
incorporation of gaze features (on token- and sen-
tence level) from human annotators for predicting
their subjective hate ratings. Another more com-
prehensive approach is presented by Fleisig et al.
(2023), who included annotators’ demographics,
preferences, and experiences as input, along with
text. They utilized RoBERTa (Liu et al., 2019) to
embed descriptions of these characteristics. Our
research continues this line of work by predicting
individual annotator labels and accounting for their
demographics in the classification of hateful words.

2.3 Modeling Word Senses
Shifting the focus from modeling hateful utterances
to the meaning of hateful words within utterances,
touches upon various lexical semantic NLP tasks
that involve the creation of word sense representa-
tions (Vulić et al., 2020a; Schlechtweg et al., 2020;
Martelli et al., 2021). Approaches to these tasks
often employ contextualized word embeddings ex-
tracted from pretrained (often BERT-based) LMs
(Loureiro and Jorge, 2019; Martinc et al., 2020;
Bommasani et al., 2020). Fine-tuning a model
on particular data or tasks, such as WSD or sen-
timent classification, is performed to potentially
inject relevant information into the resulting repre-
sentations (Giulianelli et al., 2020; Hoeken et al.,
2023a). Rachinskiy and Arefyev (2022) leveraged
an effective WSD model developed by Blevins and
Zettlemoyer (2020), which jointly optimizes two
encoders for the context and gloss of a word sense,
respectively. For the task of semantic change dis-
covery, they extracted the representations of the
context encoder of the WSD-finetuned model.

Recently, Giulianelli et al. (2023) introduced an
innovative approach to computational sense repre-
sentations. Their method adopts the definition-as-

sense paradigm, utilizing definitions generated by
a Flan-T5 model (Chung et al., 2022) fine-tuned
on datasets of definitions with usage examples.
Sentence embeddings of these generated context-
specific definitions show promising results on lex-
ical semantic similarity tasks. Despite these ad-
vancements focused on descriptive word senses,
effective approaches for modeling highly connota-
tive lexical phenomena remain unclear.

3 The HateWiC Dataset

We introduce the HateWiC dataset, which includes
hate ratings for words within example usages along
with their word sense definitions which may be
hate-heterogeneous, as illustrated in Figure 1. We
describe the dataset construction below.

3.1 Wiktionary Data

Data was scraped from the English Wiktionary in
November 2023, an online dictionary where any-
one can contribute to documenting and explaining
words in use. Therefore, Wiktionary provides up-
to-date insights from user perspectives and covers a
broader range of terms from diverse domains than
traditional dictionaries.

Each entry (word or multi-word expression) in-
cludes information such as definitions, example
uses, and category labels that provide additional
context about a word’s use (e.g., ‘British slang’
or ‘Archaic’). Using the Wiktionary API, we ex-
tracted all entries that had at least one word sense
tagged with the categories Offensive and Deroga-
tory and were also members of the category People,
to gather the most relevant terms for hate speech
detection purposes. For each of the resulting 1087
terms, we scraped all its sense definitions along
with all labeled categories and example sentences
(using the WiktionaryParser library). This resulted
in 3500 senses and 4671 examples.

To suit the dataset for our HateWiC classification
task, we manually excluded 642 examples due to
historical spelling or other deficiencies, as detailed
in Appendix A. After processing, the dataset com-
prised 4029 instances covering 1888 unique senses,
averaging 4.88 examples per sense, and 826 unique
terms, averaging 2.29 senses per term.

3.2 Annotation

The senses from the Wiktionary data include labels
regarding their offensiveness or derogatory nature.
However, these classifications do not represent the

174



Example Term Definition Annotations Binary
labels

Majority
label

Hate-hetero-
geneous sense

Agreement
on binary

(1) “Me having an up to date style even though
I’ve turned into a carrot cruncher.”

carrot cruncher
Someone from a rural
background.

Nh, Nh, Nh 0, 0, 0 0 True True

(2) “you’re a friggn’ carrot cruncher and
you support the bloody scally’s.”

carrot cruncher
Someone from a rural
background.

Sh, Sh, Sh 1, 1, 1 1 True True

(3) “The bugger’s given me the wrong change.” bugger A foolish person or thing. Wh, Sh, Sh 1, 1, 1 1 False True
(4) “He’s a silly bugger for losing his keys.” bugger A foolish person or thing. Nh, Wh, Sh 0, 1, 1 1 False False

Table 1: HateWiC examples with their annotations, illustrating the phenomena of annotator disagreement and
hate-heterogeneous word senses (Nh = Not hateful, Wh = Weakly hateful, Sh = Strongly hateful)

diverse interpretations of these labels due to their
subjective nature. In this study, we aim to survey
and model different beliefs, following a descrip-
tive data annotation paradigm as proposed in the
framework by Rottger et al. (2022). This paradigm
highlights the value of using crowd-sourced an-
notators from diverse backgrounds to encourage
annotator subjectivity and mitigate bias, without
relaying on a predefined detailed definition of hate
speech. Specifically, we collected crowd-sourced
annotations using Prolific with a link integration to
Argilla. Argilla, an open-source platform launched
on HuggingFace Spaces, is used to set up the anno-
tation task on HateWiC data.

For each annotation instance, annotators are pre-
sented with an example sentence, the target term,
and its sense definition. They are then prompted
with the question: “How would you rate the hate-
fulness of the meaning of the target term within
the specific example text?”. Annotators respond by
selecting from the labels: ‘Not hateful’, ‘Weakly
hateful’, ‘Strongly hateful’ and ‘Cannot decide’.
An example of an annotation instance and the user
interface are depicted in a screenshot provided in
Appendix B. In the annotation guidelines (accessi-
ble on our repository), annotators are instructed to
focus their evaluation on the specific usage of the
term within the example sentence, rather than the
overall connotation of the sentence, or the defini-
tion, which is only provided to aid in understanding
the term’s meaning. Additionally, we emphasize
the subjective nature of their judgements.

We aimed for three annotations per instance,
with each annotator labeling 250 instances.2 Using
Prolific’s pre-screening filters, we selected annota-
tors who indicated that their primary language is
English. To improve the quality of the collected
annotations, we excluded and replaced data from
annotators who were too fast and/or failed control
instances.3 Prolific provides demographic informa-

2The average reward per hour was £9.28.
3More than 2 out of 8 failed control instances and/or less

tion for each annotator, which can be connected
to their annotations. The final pool of annotators,
after exclusions, consisted of 48 individuals with
diverse genders and ethnicities averaging 28 years
old (more details in Appendix B).

3.3 Dataset Results

After excluding the ‘Cannot decide’ annotations4,
the dataset yielded 11902 individual annotations,
of which 5708 (48.0%) hateful and 6194 (52.0%)
not hateful (after converting to binary by merg-
ing ‘Weakly hateful’ and ‘Strongly hateful’). After
applying majority voting, out of the 3845 exam-
ple sentences with a clear majority binary label,
1815 (47.2%) were classified as hateful and 2030
(52.8%) as not hateful, yielding a balanced dataset
with respect to hatefulness.

Annotators agreed for 60% (i.e. 2414) of the
binary classification with a Krippendorff’s alpha
of 0.45. For the three-class classification, agree-
ment was 51.3% with a Krippendorff’s alpha of
0.33. In comparison, Mathew et al. (2020) reported
an agreement of 0.46 for a similar three-class task,
and Vigna et al. (2017) 0.26 for their binary set-
ting. The agreement scores underscore the inherent
subjectivity of the task, motivating us to include
individual demographics to our modeling.

The high degree of context dependency regard-
ing hate becomes even more apparent when we
examine the relationship between word senses
(the descriptive aspects outlined in their defini-
tions) and the hatefulness ratings assigned to ex-
amples of those senses. We identified 319 hate-
heterogeneous sense definitions, i.e. unique def-
initions for which example sentences exist in the
dataset with both hateful and non-hateful major-
ity annotations. Two examples from the annotated
data given in Table 1 illustrate this phenomenon.
Both examples mention the term carrot cruncher

than 45 min. completion time; median time was 90 min.
4The majority of the 514 ‘Cannot decide’ annotations were

found to concern deficient sentences upon closer analysis.
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with the sense definition “Someone from a rural
background.” where (1) is unanimously annotated
as not hateful and (2) is unanimously annotated
as strongly hateful. This observation solidifies the
idea, already implied by the inter-annotator agree-
ment for individual labels (and exemplified by (4)
in Table 1), that the hateful connotation of a word
sense is not exclusively determined by its descrip-
tive definition.

4 HateWiC Classification

Our HateWiC dataset enables the development and
evaluation of computational methods for predict-
ing whether the meaning of a target term is hateful
within a specific context. Figure 2 provides an il-
lustration of the primary methodological pipeline
we present in this paper. We introduce various clas-
sification methods that differ with respect to the
sense representations (outlined in 4.1) and incor-
poration of annotator information (4.2) as input
to a classification model (4.3), or that leverage an
instruction-tuned LLM (4.4).

4.1 Sense Representations

For representing the sense of a target term, we
primarily follow a common procedure in lexical
semantic NLP tasks and extract contextualized em-
beddings from pretrained LMs. To optimize ef-
fectiveness on the HateWiC task, we experiment
with various encoder models and embedding types.
Appendix C provides additional details on our em-
ployed methods.

Encoder models. We experiment with three dif-
ferent encoder models, each trained on differ-
ent data or tasks. We use the pretrained BERT
(base) model (Devlin et al., 2019) and HateBERT
(Caselli et al., 2021), a re-trained BERT model
on hate speech5. As third, we utilize a trained bi-
encoder model for Word Sense Disambiguation
(Blevins and Zettlemoyer, 2020), which we refer
to as WSD Biencoder. The model comprises a
contextualized word encoder and a gloss encoder
initialized with BERT-base encoders. We train it on
WordNet data (Miller et al., 1994), following the
same procedure as detailed in (Blevins and Zettle-
moyer, 2020), for 7 epochs with a batch size of
8. Following Rachinskiy and Arefyev (2022), the
WSD-optimized contextualized word encoder is
then used for obtaining embeddings.

5
https://huggingface.co/GroNLP/hateBERT

Embeddings. The encoders are used to generate
different word sense related representations. First,
we compute word in context (WiC) embeddings.
We feed the example sentence to the encoder model
and extract the last hidden layer for the subword-
tokenized position(s) that encode the target term
(averaging over them in case of multi-subword tar-
get terms). Second, we test the incorporation of
word sense definitions from Wiktionary. This defi-
nition (Def) embedding is obtained by averageing
over all token embeddings, using the same proce-
dure as for WiC embeddings but with the defini-
tion sentence as input. Third, considering that pre-
given definitions may not be available in practical
applications, we create T5-generated definition
(T5Def) embeddings. We generate definitions us-
ing a FLAN-T5 Base (250M parameters) model
developed by (Giulianelli et al., 2023)6 which was
fine-tuned on datasets of English definitions and
usage examples. We prompt the model with the
same template as it was trained on: “[SENTENCE]
What is the definition of [TERM]?”. Consequently,
the generated generated are more context-specific
than the Wiktionary definitions. These generated
definitions are embedded the same way as the Def-
embeddings.

4.2 Annotator Information
To address the subjective nature of the HateWiC
classification task, highlighted by the inter-
annotator agreement in our dataset, we incorpo-
rate this aspect into our modeling approaches. We
experiment with a similar strategy as presented in
Fleisig et al. (2023). For each individual annotation
of a HateWiC instance, we concatenate an annota-
tor (Ann) embedding to the corresponding sense
embedding, that represent a description of annota-
tor’s demograpics. This description is embedded
through the same procedure as the definition em-
beddings and follows this template:

“Reader is [AGE], [GENDER] and
[ETHNICITY].”

4.3 Classifying Embeddings
We test the effectiveness of (the concatenation of
combinations of) the embeddings proposed above
on our HateWiC classification task by using them
as input to a classification model. To this end, we
train and test a four-layer multi-layer perceptron
(MLP) model (a classification algorithm also used
in Dinu et al. (2021)) on the HateWiC dataset.

6
https://huggingface.co/ltg/flan-t5-definition-en-base
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Figure 2: Illustration of our main HateWiC classification pipeline.

4.4 Classification with LLaMA 2

In addition to the encoder-LM based approaches
above, we also experiment with a LLaMA 2 model
(Touvron et al., 2023). Due to their instruction-
tuning training regime, and huge amount of training
data, foundation models like LLaMA 2 are proven
to be superior to LMs on many zero-shot settings,
yet subjective HSD and WSD are by nature very
challenging tasks. We aim to see the abilities of
an instruction-tuned LLM on this task as a (strong)
baseline. We test zero-shot classification with a
7B-sized LLaMA 2 model7. We run the inference
of this model using the transformers library. In
our prompt, we input the example sentence and
the target term and instruct the model to classify
the meaning of the term as hateful or not hateful
(complete template and configuration parameters
are provided in Appendix C).

5 Evaluation Setup

We evaluate our proposed methods using various
test setups on the HateWiC dataset (5.1). Addition-
ally, we compare our methods with the work of
Dinu et al. (2021), as described in 5.2.

5.1 HateWiC

Our HateWiC dataset includes three hate ratings
for each example sentence, allowing evaluation on
two distinct tasks that vary in terms of subjectivity
inclusion. For both tasks, we utilize binary labels.

1. Majority label prediction: gold labels repre-
sent 4029 majority votes on each example.

7
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

2. Subjective label prediction: gold labels con-
sist of all 12442 individual annotations: a rat-
ing per example and annotator.

We conduct evaluations for each task using a
ten-fold cross-validation setup. For each fold, we
divide the dataset into training, development, and
test sets with an 80-10-10 ratio. We experiment
with two variants:

1. Random: The data is randomly split based
on example sentences, testing performance
on sentences not seen during training (similar
to common practice in WSD-like tasks (Dinu
et al., 2021)), which is particularly relevant
for individual annotator prediction where mul-
tiple instances of the same sentence occur.

2. Out-of-Vocabulary (OoV): The data is split
based on terms, testing performance on un-
seen terms, i.e. zero-shot capabilities.

5.2 Comparison with Dinu et al. (2021)
We also train and test on two small datasets of
English tweets developed and used in Dinu et al.
(2021). They collected these from existing hate
speech datasets, focusing on tweets that mention
one of the terms in a curated set of pejorative terms.
Each tweet was labeled based on whether the term
was used pejoratively. The first dataset, which
we will refer to as DINU1 comprised 1004 tweets
covering 31 terms. The second, which we name
DINU2, consisted of 301 tweets covering 11 terms.
Their reported best method involved MLP classi-
fication of BERTweet (Nguyen et al., 2020) and
BERT (base) embeddings (extracted as the sum of
all model layers for the target word position) on

177

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf


DINU1 and DINU2, respectively. We aimed to use
the same evaluation set-up as described in their pa-
per, using five-fold cross-validation and reporting
the average over accuracies per term.

6 Results

This section presents the results of our proposed
methods on the HateWiC classification, evaluated
using the above outlined setups.

6.1 Majority HateWiC Classification
Table 2 presents the accuracy results on HateWiC
classification compared to the majority label. Over-
all, the performance values demonstrate the ef-
fectiveness of all methods, with only minimal
differences (max. 2 %-points) between BERT,
HateBERT and WSD biencoder models. Training
BERT-based models on different types of informa-
tion regarding hatefulness or word senses does not
seem to have a substantial effect.

Embeddings BERT HateBERT WSD bien.
Random OoV Random OoV Random OoV

WiC 0.75 0.73 0.75 0.71 0.76 0.73
Def 0.77 0.75 0.78 0.73 0.78 0.73
T5Def 0.70 0.67 0.70 0.67 0.72 0.69
WiC+Def 0.78 0.77 0.80 0.77 0.79 0.78
WiC+T5Def 0.75 0.74 0.76 0.73 0.76 0.73

Table 2: Accuracy on HateWiC classification compared
to the majority label, with different input embeddings,
tested on a random data split (best underlined) and a test
split with OoV terms only (best in bold).

Def-embeddings achieve slightly higher accura-
cies than WiC-embeddings , and a combination of
the two yields the best results. For a test set with
OoV terms only, all embedding types show only a
slight drop in performance. WiC+Def-embeddings
exhibit the smallest decline on the zero-shot setting
and achieve 2-5 % higher accuracy than WiC- and
Def-embeddings. This indicates that definitions
provide valuable information, performing better
on their own than word information alone, and
the combination of both is most effective, espe-
cially for OoV-terms. T5-generated definitions
demonstrated the lowest accuracy on their own
but perform equally or slightly better than WiC-
embeddings when concatenated. An evaluation of
T5-generated definitions compared to Wiktionary
definitions showed a very low SacreBLEU score of
3.822 (in range 0 to 100), possibly explaining the
differences in performance between them.

The distinction between context-independent
Def-embeddings and context-specific WiC-

and T5Def-embeddings becomes more clear
upon examining their performance across hate-
homogeneous and hate-heterogeneous instances
(as defined in Section 3.3), presented in in Table 3.
In the case of hate-heterogeneous instances, we
observe an accuracy drop of up to 47% when
using Def-including embeddings compared to the
homogeneous instances. This drop is limited to
24-29% for the other embeddings, showcasing
their superior ability in handling less descriptive
scenarios. We define hate-homogeneous here as in-
stances where definitions have example sentences
in the dataset with either hateful or non-hateful
(majority) annotations whereas hate-heterogeneous
have both (as detailed in Section 3.3).

HateBERT
embeddings

Hate-homogeneous
True False

WiC 0.82 0.55
Def 0.91 0.44
T5Def 0.76 0.52
WiC+Def 0.91 0.49
WiC+T5Def 0.84 0.55

Table 3: Accuracy on HateWiC classification compared
to the majority label w.r.t. hate homogeneity of the
sense definition (best underlined).

LLaMA 2 result. The accuracy score on the
HateWiC classification using a LLaMa 2 model,
following the zero-shot experimental setup detailed
in Section 4.4, is 0.68. Unlike the superior per-
formance on many downstream tasks, the LLaMA
model falls short compared to the aforementioned
models on our HateWiC task. This outcome high-
lights the subjective nature of the task, indicating
that general-purpose models struggle to fully grasp
its nuances and perform well on it.

6.2 Subjective HateWiC Classification
Performance of our designed methods on predict-
ing individual annotation labels, which showed con-
siderable variation in Section 3.3, are presented in
Table 4. Overall, accuracy values are slightly lower
(by 2-5 %-points) compared to predicting the ma-
jority label, but remain robust. The results exhibit
the same patterns in terms of different models, test
data setups, and tested embedding types. Adding
the Annotator embedding has a minimal effect, gen-
erally resulting in equal or slightly improved per-
formance compared to the same type of embedding
without concatenated annotator information.

To better understand the impact of subjectivity,
we more closely examine instances where subjec-
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Embeddings BERT HateBERT WSD bien.
Random OoV Random OoV Random OoV

WiC 0.71 0.69 0.71 0.69 0.72 0.70
Def 0.74 0.71 0.75 0.73 0.74 0.71
T5Def 0.68 0.65 0.68 0.67 0.68 0.67
WiC+Def 0.75 0.74 0.75 0.73 0.75 0.73
WiC+T5Def 0.72 0.70 0.72 0.71 0.73 0.69

WiC+Ann 0.72 0.69 0.72 0.69 0.72 0.70
Def+Ann 0.74 0.72 0.76 0.72 0.75 0.72
T5Def+Ann 0.69 0.67 0.69 0.65 0.69 0.68
WiC+Def+Ann 0.75 0.73 0.75 0.74 0.75 0.74
WiC+T5Def+Ann 0.72 0.71 0.73 0.71 0.73 0.72

Table 4: Accuracy on HateWiC classification compared
to the individual annotator label, with different input
embeddings, on a random data split (best underlined)
and a test split with OoV terms only (best in bold).

tivity is most apparent (and thus potentially harmful
when methods fail). In Table 5 we report perfor-
mance results not only with respect to the hate
homogeneity of word senses, but also to annotator
agreement, i.e. whether the annotator agreed with
the majority. We present results for HateBERT
embeddings in an evaluation setting with random
test data split, but similar patterns are observed for
BERT and WSD Biencoder embeddings, as well as
on on a test data split with OoV terms only.

For sentence annotations where the annotator
disagreed with the majority label or the sense def-
inition is hate-heterogeneous, the performance of
all embeddings drops significantly. This effect
is most pronounced for definition-including em-
beddings (Wiktionary), less so for T5-generated,
which aligns with their more context-specific na-
ture. Specifically, there is an accuracy drop of up
to 47% in cases of annotator disagreement, and up
to 32% in cases of hate-heterogeneous definitions.
However, incorporating annotator information mit-
igates this effect by up to 11%. Annotator informa-
tion contributes to the cases where the subjective
annotation deviates from the majority label, these
cases also align with sense definitions that exhibit
both hateful and non-hateful labeled sentences.

6.3 Results on DINU Data
The DINU1 and DINU2 evaluation datasets do not
provide sense definitions or information on anno-
tators, thereby limiting our testing to our meth-
ods that do not require this information. Table 6
presents the results on both DINU1 and DINU2.
Our methods, except for those including T5Def-
embeddings only, demonstrate improvements over
the best-performing methods proposed by Dinu
et al. (2021). These improvements are particu-
larly substantial (by 8%) for the larger DINU1

HateBERT
embeddings

Majority annotation Hate-homogeneous

True False True False

WiC 0.77 0.40 0.77 0.55
Def 0.81 0.36 0.83 0.51
T5Def 0.72 0.42 0.72 0.53
WiC+Def 0.83 0.36 0.83 0.55
WiC+T5Def 0.78 0.39 0.78 0.56

WiC+Ann 0.77 0.49 0.77 0.59
Def+Ann 0.82 0.44 0.82 0.60
T5Def+Ann 0.73 0.47 0.72 0.59
WiC+Def+Ann 0.80 0.44 0.81 0.58
WiC+T5Def+Ann 0.77 0.48 0.78 0.58

Table 5: Accuracy on HateWiC classification compared
to the individual label w.r.t. annotator agreement with
the majority label and hate homogeneity of the sense
definition (best underlined).

Model Embedding DINU1 DINU2

BERT WiC 0.89 0.83
T5Def 0.81 0.79
WiC+T5Def 0.90 0.83

HateBERT WiC 0.87 0.83
T5Def 0.83 0.80
WiC+T5Def 0.90 0.84

WSD Bienc. WiC 0.90 0.82
T5Def 0.80 0.79
WiC+T5Def 0.90 0.84

Best Dinu 0.82 0.83

Table 6: Accuracy of our methods on the DINU datasets
compared the accuracy of the best performing method
as reported in Dinu et al. (2021) (best underlined).

dataset. Consistent with trends observed for the
HateWiC dataset, the concatenation of WiC and
T5-generated definition embeddings yields the best
performance across both DINU sets, underscoring
the potential of incorporating automatically gener-
ated definitions in the absence of dictionary defini-
tions for HateWiC classification.

7 Discussion

Our study offers valuable insights into the detec-
tion of hate speech through the lens of lexical se-
mantics, introducing the HateWiC dataset and pre-
senting classification experiments. The negligible
difference observed in our experimental outcomes
between HateBERT and general (WSD) models not
only questions the efficacy of extensive training on
hate speech data for accurately capturing hateful
semantics, but also underscores the necessity of a
more nuanced approach beyond the existing lexical
semantic methods for tasks like HateWiC classi-
fication. Our results demonstrate the impact of
incorporating sense definitions and annotator char-
acteristics on model performance, particularly in
scenarios involving out-of-vocabulary (OoV) terms
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or high subjectivity.

To define or not define? Hateful terms, accord-
ing to lexical semantic theory, primarily contain
an expressive component but not exclusively. In-
corporating sense definitions into our methods, to
encompass the descriptive component of hateful
terms, yielded mixed results. Overall, embedded
Wiktionary definitions proved highly effective, out-
performing Word in Context (WiC) embeddings
alone. T5-generated definitions demonstrated the
lowest accuracy on their own but performed equally
or slightly better than WiC-embeddings only when
concatenated with WiC-embeddings. However, in
cases with more variation in the subjective ratings,
the performance of all embeddings dropped signif-
icantly but most pronounced for Wiktionary def-
inition embeddings, though to a lesser extent for
T5-generated definitions (with a drop difference of
up to 23%). This highlights the usefulness of au-
tomatically generating context-specific definitions
for subjective lexical semantic tasks like HateWiC
classification. Future research will focus on more
advanced definition generation techniques, possi-
bly leveraging larger models or fine-tuning on Wik-
tionary definitions, while avoiding overreliance on
dictionary definitions as the ultimate standard.

To individualize anyway? The low inter-
annotator agreement in our dataset underscores
the importance of considering individual annotator
perspectives in hate speech detection. Our experi-
ments incorporating annotator information in our
computational methods proved beneficial, partic-
ularly in cases of annotator disagreement or hate-
heterogeneous definitions, where including annota-
tor information mitigated accuracy decline by up
to 11%-points. This highlights the value of per-
sonalizing models to account for subjectivity in
annotations. Future research could explore addi-
tional annotator information and conduct ablation
experiments to identify the most effective aspects
for HateWiC classification.

To consider as well? Our study paves the way
to obtaining deeper insights into the relationship
between hateful and non-hateful word senses. For
instance, whether certain semantic relations (e.g.
metaphorical, metonymical), categories (e.g. food,
animals), or attributes (e.g. color, material) are
more likely to distinguish between hateful and non-
hateful senses. And even next-level, whether these
discriminators are language-specific or show cross-

language parallels. Identifying such consistencies
between (non-)hateful senses could enhance the
(automatic) discrimination between them.

8 Conclusion

This paper introduces the Hateful Word in Context
Classification (HateWiC) task, addressing the un-
derexplored area of subjective hateful word mean-
ings within specific contexts. We present the
HateWiC dataset, comprising about 4000 WiC-
instances, each annotated with three hateful ratings.
Our study focused on the interplay between descrip-
tive and subjective aspects of hateful word senses.
We addressed the prediction of both majority and
individual annotator labels. We experimented with
different types of inputs to our classification sys-
tem, including sense definitions and annotator de-
mographics. We demonstrated the impact of these
factors on model performance, particularly in cases
involving out-of-vocabulary terms or high subjec-
tivity. The incorporation of established sense defi-
nitions proved highly effective overall but demon-
strating diminished performance in less descriptive
scenarios. Conversely, including annotator char-
acteristics proved beneficial, particularly in cases
of annotator disagreement or hate-heterogeneous
definitions. These findings underscore the value
of personalizing models to account for subjectivity
in annotations. Furthermore, our results suggest
the potential usefulness of automatically generat-
ing definitions for subjective lexical semantic tasks
like HateWiC classification.

Limitations

Although the Wiktionary data we utilize offers
insights from user perspectives for a wide array
of terms, its quality may be lower compared to
expert-curated dictionaries. The provided informa-
tion may contain inaccuracies, as users might not
have the necessary expertise, and inconsistency in
documentation could exist. However, the collabo-
rative nature of Wiktionary allows for censorship
by consensus and adherence to Wiktionary policies,
mitigating some of these concerns.

A constraint of our evaluation set-up lies in its
reliance on binary labels. Hate speech is a mul-
tifaceted phenomenon, and a more nuanced class
scheme may offer a more comprehensive under-
standing in future research.
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Ethics Statement

Our study includes demographic data of annotators
that concern Prolific prescreening responses which
are all with annotator’s consent, self-reported, and
are not provided with any direct identifiers like
name or address. All prescreening questions, ex-
cept for age and country of residence, are optional
for participants to answer, and most personal ques-
tions have a ‘Rather not say’ option. By incorporat-
ing demographic information from annotators, we
aim to enhance the understanding and prediction
of how different groups perceive hate speech. This
approach will ultimately lead to more robust and in-
clusive classification systems. However, the inclu-
sion of demographic data raises privacy concerns,
particularly the risk of re-identifying annotators.
To address this, we have made our dataset avail-
able only upon request, under the CC BY-NC 4.0
license. This measure allows us to better control ac-
cess to the information, ensuring it is used responsi-
bly, ethically, and exclusively for non-commercial
purposes.
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A Wiktionary Data Processing

Our data was scraped from the English Wiktionary
comprising entries with information on definitions,
example uses, and category labels that provide ad-
ditional context about a word’s use. We scraped all
sense definitions along with all labeled categories
and example sentences of the selected terms using
the WiktionaryParser library. This library method
did not split the examples over the set of sense def-
initions (i.e. provided all examples in one bundle),
so we manually matched the right examples with
the right sense definitions, through look up on the
Wiktionary website, afterwards.

To suit the dataset for the envisioned task we
manually excluded 642 examples that were either
written in historical spelling or not single in-the-
wild usages of the term. The latter concerned us-
ages, like the examples below (with the target term
in bold), that were (a) dictionary-typical nominal
phrases and not sentences, (b) concerned meta-
level discussions of the target term or (c) dialogues
or other indirect uses of the target term.

(a) “a bird feeder”

(b) “A ‘lot lizard’ was somebody who
walked the sales lot and looked at every
car and still didn’t buy.”

(c) “Threads on the social media giant
Reddit occasionally discuss or condemn
“transtrenders” [. . . ]”

Finally, we slightly edited some type of instances
that concerned non-exact matches between word
form of the term and its occurrence in the exam-
ple. For compounds or multi-word expressions,

this mismatch often concerned the (non-)use of
a whitespace or hyphen between compound parts
(e.g. the term baby face occurred also as babyface
or baby-face in examples). This type of mismatches
was solved by applying a simple rule-based replace-
ment strategy to the example sentences.

Other types of non-exact word form matches
were mainly caused by inflection (e.g. plural forms
for nouns) and some by misspellings. These cases
were left unchanged for the final dataset as remov-
ing could influence the meaning.

We also created groupings to aggregate category
labels, consolidating the 585 unique Wiktionary
labels present in our dataset into a manageable set
of usage tags. This enrichment potentially provides
useful information for future analyses on usages of
hateful terms.

B Annotation Details

Figure 3 displays the user interface for annotation,
with an example of an annotation instance.

Below, we report the distribution of our annota-
tors with respect to age, gender, and ethnicity. It is
important to note that we use the categories as pro-
vided through the Prolific provided presecreening
responses, which are simplified groupings intended
to give a general overview. As detailed in the Ethics
Statement, we acknowledge that this categorization
does not fully capture the complexity and diversity
of individual identities and may include sensitive
terminology.

The final pool of 48 annotators, after exclusions,
had an average age of 28 (ranging from 20 to 60)
and included 26 females, 28 males, and 1 unspec-
ified gender. Based on simplified ethnicity cate-
gories, 21 identified as White, 19 as Black, 4 as
Asian, 3 as Mixed, and 1 as Other.

C Method Details

Finding target term sentence positions. For all
WiC-embeddings, to find the indices of (the sub-
words that form) the target word in an example sen-
tence that concerned a non-exact wordform match
between target term and example mention (due to
inflection or misspellings), we applied two subse-
quent strategies: 1) we tried to replace the target
term with its plural form (through simple rules) and
if this plural formation did not result in a match, 2)
we tried to find the most similar word in the exam-
ple sentence (using the difflib library) and replaced
that wordform with the target term (as this most
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Figure 3: User interface for annotation

Embeddings BERT
Last All LastFour

WiC 0.75 0.75 0.75

Table 7: Accuracy on HateWiC classification compared
to the majority label, with BERT input embeddings
consisting of different layer combinations, on the ran-
dom data test split.

often concerned a misspelling).

Model layer configurations. We also tested the
extraction of different layer configurations, since
the effectivity of different configurations has shown
to differ within lexical semantic tasks (Vulić et al.,
2020b). We tested for BERT WiC-embeddings the
extraction of: all layers (12 for BERT), last four
layers or last layer only. The results in Table 7,
demonstrate no effect of layer configuration on the
method performance.

MLP classificaton model. The multilayer per-
ceptron model used for classification consisted of
four hidden layers with dimensionality 300, 200,
100 and 50, respectively. For training we used the
MLPClassifier module from the sklearn libaray and
we set the initial learning rate to 0.0005 the maxi-
mal number of training iterations to 10. These pa-
rameters were selected after a grid search on our de-
velopment dataset, using sklearn’s GridSearchCV
module, applied to the following parameter grid:
{‘hidden_layer_sizes’:[(300, 200, 100, 50), (200,
100, 50), (100, 50)], ‘learning_rate_init’:[0.0005,
0.001, 0.005], ‘max_iter’: [10, 20, 40, 80, 100,
200]}.

LLaMA 2. The following prompt template was
used for leveraging LLaMA 2 for HateWiC Classi-
fication.

### Instruction:

Given the following sentence that men-
tions a particular term, classify whether
the meaning of that term expresses hate
towards a person or group within that
specific sentence. Respond with exactly
one of the following corresponding
labels without an explanation:
“HATEFUL”
“NOT HATEFUL”

### Input:
Sentence: [SENTENCE]
Term: [TERM]

### Response:

We use the pipeline module from the transform-
ers library for running the ‘text inference’ task,
where we set the number of return sequences to 1
and the max new tokens to 10; we used the default
settings for the remaining parameters.

D Dimension Projection

We also tested the dimension approach of Hoeken
et al. (2023b), adapted to our task. In their method
for slur detection, they create a “hate dimension”
by computing the average over difference vectors
between representations of 10 minimal pairs of
slurs and non-hateful equivalents (e.g. ‘hillbillies’
- ‘rural people’). Unlike slurs, which generally
carry derogatory connotations regardless of con-
text (Hess, 2021), the hateful connotations of other
hateful terms are less clear-cut (Frigerio and Ten-
chini, 2019). This was also illustrated in the con-
ceptual semantic space in Figure 1. Consequently,
we did not expect an effective dimension hate di-
mension to be extractable using pretrained models
that encode general word semantics. Additionally,
pre-establishing a set of minimal pairs is hardly
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feasible for similar reasons.

Our approach. For our task, instead of using a
pre-established list of word pairs, we derived this
list from the training data. We calculated the cosine
similarities between all possible pairs of positive
and negative embeddings, i.e. sense representations
of hateful and non-hateful training examples, re-
spectively. We then selected pairs with a similarity
above a certain threshold to create the dimension,
trough the same computation procedure as Hoeken
et al. (2023b). After testing a range of thresholds
([0.7, 0.75, 0.8, 0.85, 0.9, 0.95]) on the develop-
ment set, we set the similarity threshold to 0.9 for
testing. Following Hoeken et al. (2023b), we clas-
sified positive cosine similarity values between the
hate dimension vector and the contextualized word
sense representation as hateful, and negative values
as non hateful.

Embeddings BERT HateBERT WSD bien.
Random OoV Random OoV Random OoV

WiC 0.52 0.53 0.44 0.43 0.44 0.44
Def 0.44 0.43 0.49 0.49 0.32 0.33
WiC+Def 0.49 0.49 0.44 0.45 0.49 0.48

Table 8: Accuracy on HateWiC classification compared
to the majority label, with dimension projection and
different input embeddings, tested on a random data
split and OoV terms only.

Results. The results of this approach on our
HateWic dataset are presented in Table 8, demon-
strate low accuracy scores (max. 0.52) and confirm
our expectations that a dimension approach as cur-
rently implemented is not effective for HateWiC
classification.
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