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Abstract

We develop quantum RNNs with cells based on
Parametrised Quantum Circuits (PQCs). PQCs
can provide a form of hybrid quantum-classical
computation where the input and the output
is in the form of classical data. The previous
“hidden” state is the quantum state from the pre-
vious time-step, and an angle encoding is used
to define a (non-linear) mapping from a classi-
cal word embedding into the quantum Hilbert
space. Measurements of the quantum state pro-
vide classical statistics which are used for clas-
sification. We report results which are competi-
tive with various RNN baselines on the Rotten
Tomatoes dataset, as well as emulator results
which demonstrate the feasibility of running
such models on quantum hardware.

1 Introduction

Recurrent neural networks (RNNs) were transfor-
mative in the early stages of neural NLP (Sutskever
et al., 2014), and still offer competitive perfor-
mance over more recent architectures such as Trans-
formers (Orvieto et al., 2024). Now that quantum
computing is also emerging as a potentially trans-
formative technology (Preskill, 2018), it is natural
to consider quantum versions of NLP models, such
as RNNs, and ask whether they exhibit any ad-
vantages over their classical counterparts. Here
we develop quantum RNNs with cells based on
Parametrised Quantum Circuits (PQCs). PQCs
can be used to provide a form of hybrid quantum-
classical computation where the input and the out-
put is in the form of classical data, and a set of
parameters which controls the PQC’s computation
is classically optimised (Benedetti et al., 2019).

The excitement around quantum computing
comes from the expectation that it will enable
us to solve problems, or run models, efficiently
which cannot be run efficiently on a classical com-
puter (Nielsen and Chuang, 2000). The rapidly
advancing state of quantum hardware means that

we may soon cross the “quantum advantage” thresh-
old (Preskill, 2012; Moses et al., 2023). Moreover,
there are good reasons for exploring quantum mod-
els even when classically simulating them. Since
PQCs implement unitary (norm-preserving) trans-
formations, they are well-suited to modelling long-
range dependencies and mitigating the problem of
vanishing and exploding gradients (Arjovsky et al.,
2016; Orvieto et al., 2024).

We propose quantum RNNs where the previous
“hidden” state is the quantum state from the previ-
ous time-step, and the state is updated using one of
two methods. In the first method, the current word
is encoded as a quantum state using an angle encod-
ing, and entangled with the previous state. In the
second method, the word embedding is also trans-
formed into a set of angles, but applied directly to a
PQC which simply updates the previous state. Mea-
surements are applied at the end of the sequence,
and define a mapping from the quantum state to
classical statistics which can be used for classifica-
tion. Our models are hybrid in that words are first
encoded as classical embeddings, and then mapped
(non-linearly) into a quantum Hilbert space, via the
angles of the PQC. Quantum phenomenon such as
entanglement can then be exploited to manipulate
the quantum state representations.

Here, we train the models in simulation, exploit-
ing the fact that quantum computation can be simu-
lated using linear algebra, and hence is amenable to
optimisation with standard loss functions and back-
propagation. We show that the quantum recurrent
architectures can perform as well on a realistic NLP
task as the classical RNN, GRU and LSTM base-
lines. Our results on the Rotten Tomatoes dataset
are obtained with only 4 qubits, corresponding to a
16-d (24) complex Hilbert space, compared to the
200-d hidden states of the classical models. Since
the models can be run in simulation, our main mo-
tivation is to begin exploring quantum NLP models
in anticipation of more powerful quantum hardware
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in the future, as well as to provide a comparison
with existing models in the classical case. However,
in order to demonstrate the feasibility of running
such models on quantum hardware even today, we
also run the models at test time on a quantum com-
puter emulator, obtaining results close to those of
the exact, noise-free simulation.

2 Quantum Circuits

A quantum circuit consists of a sequence of quan-
tum gates operating on qubits (Nielsen and Chuang,
2000). Qubits are quantum units of information
which, unlike classical bits, can be in a superposi-
tion of 0 and 1. Mathematically the state |ψ⟩ of a
qubit is represented as a vector in a 2-d complex
Hilbert space:

|ψ⟩ = α|0⟩+ β|1⟩ =
[
α
β

]
∈ C2. (1)

The vectors |0⟩ =
[
1 0

]⊤ and |1⟩ =
[
0 1

]⊤
(written in Dirac notation on the left) form the com-
putational basis for the Hilbert space. The am-
plitudes α and β are complex numbers satisfying
|α|2+ |β|2 = 1. The only way to access a quantum
state is via a measurement, which is a probabilis-
tic operation which returns a particular basis state.
For a measurement in the computational basis, |α|2
is the probability of obtaining |0⟩ and |β|2 that of
obtaining |1⟩.

The information in qubits is carried by horizon-
tal wires in the diagrammatic circuit notation, and
multiple qubits are represented by stacking wires
vertically (see Fig. 1). For a circuit with 2 qubits,
measuring each qubit results in one of 4 possible
outcomes: |00⟩, |01⟩, |10⟩, or |11⟩. Hence a quan-
tum state |ψ⟩ from 2 qubits is represented by a
vector in a 4-d complex Hilbert space:

|ψ⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩
=

[
α00 α01 α10 α11

]⊤
, (2)

where
∑

x∈{0,1}2 |αx|2 = 1. The size of the Hilbert
space is 2n for n qubits and hence grows exponen-
tially with the number of qubits.

Computation in a quantum circuit consists of
transformations of the qubits. Such transforma-
tions have to produce state vectors with unit norm,
and so have to be unitary transformations, with the
property that UU† = 1 (where U† is the conjugate
transpose of U). An example of a single-qubit uni-
tary is the quantum NOT or X gate, which has the

matrix shown below (assuming the computational
basis). Just as in the classical case, it flips the |0⟩
state to |1⟩ and vice versa, and for a state |ψ⟩ in
superposition it acts linearly:

X|ψ⟩ =
[
0 1
1 0

] [
α
β

]
=

[
β
α

]
. (3)

Unlike X, many other gates are parametric and
contain parameters which can be learned via an
external optimisation procedure. An example is the
RX rotation gate with the unitary matrix:

RX =

[
cos

(
θ
2

)
−i sin

(
θ
2

)

−i sin
(
θ
2

)
cos

(
θ
2

)
]
, (4)

with θ the degree of rotation about the x-axis (for
the Bloch sphere representation of single-qubits).1

Quantum circuits are typically initialised with a
simple, easy-to-prepare state such as the all-zero
state (see Fig. 1). This state is a product state,
meaning that the measurement outcomes on each
wire are independent. Gates operating on more
than one wire allow the creation of correlations
between measurement outcomes, i.e. the creation
of entangled states. Entanglement is necessary to
fully exploit the exponentially-sized Hilbert space,
and can be achieved through the use of controlled
gates, consisting of a control qubit and a target
qubit. A standard example is a controlled X gate
(CX), which acts as the identity on the computa-
tional basis states |00⟩ and |01⟩, but flips the second
qubit when acting on |10⟩ and |11⟩:

α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩ CX7−−→
α00|00⟩+ α01|01⟩+ α10|11⟩+ α11|10⟩

The PQC we use in Fig. 1 has examples of con-
trolled rotation gates (RX and RY), where if the
control is |0⟩ then nothing happens to the target,
and if the control is |1⟩ then the rotation is applied;
and for a state in superposition, the gates act lin-
early on the basis states.

A quantum state can be measured using a spe-
cific basis, such as the Pauli-Z measurement in the
computational basis, yielding a scalar value (e.g.
for a single qubit, +1 can be associated with the
outcome |0⟩ and -1 with |1⟩). On actual quantum
hardware, because the measurement outcome is

1To describe general single-qubit unitary transformations,
it is useful to consider the Bloch sphere (Nielsen and Chuang,
2000) which can be used to represent single-qubit gates in
terms of rotations of the sphere.
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Figure 1: The quantum recurrent models. f is a classical affine transformation; W in (a) is the word ansatz (with
RX, RZ, and RX rotation gates on each wire); R denotes the ansatz shown in Fig. 2 in both models; l + 1 is the
sentence length. Output from measuring 2 wires shown in (a) and the possibility of measuring all 4 wires in (b).

probabilistic, the circuit is run many times and an
average is taken (where each run is referred to as a
shot), giving an output in [−1, 1]. This output can
then form part of a classical ML objective function.

3 Quantum Recurrent Models

The first model performs recurrent computation as
shown in Fig. 1a. At each time-step, the word is
encoded using a word ansatz W,2 using two of the
wires, always starting with the all-zero state. More
concretely, each word is represented as a classical
word embedding wi ∈ Rm, which gets mapped via
an affine transformation f into the parametrised
angles required by the rotation gates in W:

f : wi 7→ θi, (5)

with θi ∈ Rn and n the number of angles. This
produces a state on the two wires, which is com-
bined with the previous state using a tensor product,
resulting in a product state. All 4 wires are then
put through another ansatz R, which also has a set
of trainable and parametrised angles, and produces
an entangled state. The nature of a unitary transfor-
mation means that the number of wires going into
each ansatz has to be the same as the number com-
ing out, so 2 wires are “ignored”, or “discarded”,
shown with the ground symbol.

The second model is simpler, and results from
dispensing with W (Fig. 1b). Since there is no sep-
arate input state for each word, there is no need for
discarding. The ansatz at each time-step still has its
parameters supplied by a classical transformation
of a word embedding. Measurements are taken of
the final state and post-processed to give a classical
output. Here we measure two qubits and use the
scalar values as logits for a softmax (Fig. 1a).3

2An ansatz is a sequence of gates applied to specific wires.
3There are other options, e.g. measuring all 4 qubits

(Fig. 1b) and transforming those 4 classical values into logits.

There are two ways in which quantum computa-
tion can be simulated on a classical computer. The
first is to perform shot-based probabilistic comput-
ing, possibly including the modelling of noise from
the imperfect nature of current quantum devices.
Such simulators are often referred to as emulators.
The second approach is to perform exact simula-
tion, by calculating the measurement outcomes an-
alytically (Nielsen and Chuang, 2000). Here we
use exact, noiseless simulation for training, making
use of automatic differentiation tools. At test time
we use exact simulation and in addition perform
runs on a quantum computer emulator.

4 Experiments

We use TorchQuantum (Wang et al., 2022) for
analytical simulation – a PyTorch-based toolkit
for developing hybrid classical-quantum models
with batching and automatic differentiation sup-
port. The dataset is Rotten Tomatoes, a binary
classification sentiment analysis dataset.4 As
baselines we include results for an RNN, GRU
and LSTM. Some modifications were needed for
TorchQuantum, for example the addition of den-
sity matrices and some related operations such as
the partial trace (Nielsen and Chuang, 2000) to
allow discarding.5

Here we provide the most important architectural
details; hyperparameters are listed in Appendix B.
We use 4 qubits for all models and, for the model
with discarding, each word is encoded with a se-
quence of parameterised RX,RZ,RX gates on
each of the bottom two wires (Fig. 1a), and so
θi ∈ R6. We use the ansatz shown in Fig. 2

4https://huggingface.co/datasets/
rotten_tomatoes. A balanced dataset of 8,530
sentences for training, 1,066 for dev and 1,066 for test.

5Our code is available at https://github.com/
CQCL/QRNN-Sentiment.
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Figure 2: The choice of ansatz applied at each time-step
– ansatz 14 from Sim et al. (2019).

(θi ∈ R16) for R (in both the model with and with-
out discarding), taken from Sim et al. (2019) which
demonstrates experimentally that this ansatz is ex-
pressive, meaning that it has high entangling capa-
bility and can represent a large part of the Hilbert
space. Note that for all rotation gates in W and R,
each gate has one classical parameter θ associated
with it (4).

For the model with discarding, we found that
using the classical word embedding to provide the
parameters for the R as well as the W ansatze, via
a separate mapping g, resulted in higher accura-
cies. Hence the models have trainable parameters
associated with the following components: word
embeddings (randomly initialised); the mapping
f from word embeddings to angles for word en-
coding; the mapping g from word embeddings to
angles for recurrent encoding; and the output clas-
sification function. For the f and g functions we
use a single-layer affine transformation, and for
the output function a 2-class softmax. Dropout is
applied to the input embeddings (before f and g),
and the loss function is binary cross-entropy.

Experiments were run on a single A100/RTX-
6000 GPU. Table 1 shows the results, including
internal and published baselines. Here we chose
QRNN models which performed best on the devel-
opment data which were then appplied to the test
data. Overall we found little difference between the
discard and no-discard models, with the no-discard
model performing slightly better with the experi-
mental configurations used here. The QRNN mod-
els are performing competitively compared with the
classical baselines. What is particularly striking is
the difference between the numbers of parameters
used in the classical vs. the quantum models.

Appendix. A contains some additional results
showing how the accuracy varies across different
training runs, and also learning curves for the var-
ious models. The QRNN models are less stable
than the classical baselines, showing more varia-
tion across runs, but convergence is much faster.

For the emulator results, we use the cloud-

Model Dev Test |h| |e| |θ|
QRNN 76.9 78.7 16 100 1.6K
QRNNd 76.5 78.3 16 100 2.2K
RNN 76.9 76.8 200 100 60K
GRU 78.1 77.2 200 100 180K
LSTM 78.0 78.5 200 100 240K

LSTM† - 79.7 1,024 512 6M
LM-LSTM - 78.3 - - -
SA-LSTM - 79.7 - - -

Table 1: Classification accuracy on Rotten Tomatoes.
|h| = hidden state size; |e| = embedding dimension;
|θ| = parameter count; QRNNd: with discarding.
LSTM† is the LSTM with tuning and dropout, and LM-
LSTM and SA-LSTM apply pretraining to LSTM†, all
from Dai and Le (2015).

based native H1-1E simulator of the Quantinuum
H1 quantum processor, including a realistic noise
model, accessed through Quantinuum Nexus.6

We took two of the best-performing QRNN and
QRNNd models and obtained 80.1% and 77.2%
test accuracies on the emulator, respectively, with
1,000 shots used for measurements. In compari-
son, the classical results for these particular models
were 79.5% for both. Given the highly accurate na-
ture of the emulator, these results are encouraging:
they indicate that, even with the nascent state of
quantum computing technology today, we already
have hardware that can run well-performing NLP
models at a reasonable scale.

5 Related Work

A notable contribution to the development of
QRNNs is the work of Bausch (2020), which
provides a rigorous theoretical framework for
quantum-enhanced sequential learning and high-
lights the need for quantum hardware to fully real-
ize the potential of QRNNs. In this paper, Bausch
explores the potential for quantum models to out-
perform classical RNNs, particularly in scenarios
involving long-range dependencies and complex
temporal correlations. Bausch’s work introduces a
novel class of QRNNs designed to leverage the key
principles of quantum mechanics—such as super-
position and entanglement—to process sequential
data. Another key insight from Bausch’s work is
the demonstration that QRNNs can be trained us-
ing fewer iterations compared to classical RNNs,
as we also demonstrate.

6https://nexus.quantinuum.com/
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Another important development in the QRNN
literature is the Quantum Long Short-Term Mem-
ory (QLSTM) model, which extends the classical
LSTM architecture to the quantum domain. Pro-
posed by Chen et al. (2022), the QLSTM model
used quantum gates to represent the forget, input,
and output gates of classical LSTMs, allowing a hy-
brid model while retaining the potential to address
the vanishing gradient problem. This work demon-
strated that QLSTMs could outperform classical
LSTMs on certain benchmarks, achieving better
accuracy and faster convergence.

The hybrid QRNN model of Yu et al. (2024)
also explored a text classification task, although
only in the low-resource setting. Other QRNNs
have also been proposed (Li et al., 2023; Chen
and Khaliq, 2024; Siemaszko et al., 2023). Li et
al. also apply their model to a text categorization
task, although our model architectures are different,
and use novel ansatze and a discarding operation.
The latter two works use different circuits and are
particularly relevant for tasks in the continuous-
variable domain.

NLP has also used quantum models (Wu et al.,
2021; Widdows et al., 2024), often based on the ob-
servation that the mathematics of quantum Hilbert
spaces shares similarities with vector space models
of semantics (Clark, 2015). One focus has been on
compositional distributional models of language
(Coecke et al., 2010), with a recent demonstration
of solving a toy NLP problem on quantum hard-
ware (Lorenz et al., 2023).

Harvey et al. (2023) also investigate PQC-based
architectures for sequence modelling, including
some test runs on actual quantum hardware. Var-
ious architectures are considered, including some
based on syntactic structure. They also report re-
sults based on the Rotten Tomatoes dataset, obtain-
ing their best results using a convolution structure.

6 Conclusion

We have described quantum RNNs and simulation
experiments, on a realistic NLP task, obtaining re-
sults that are competitive with some challenging
classical RNN baselines. We believe this is the
first paper published at an NLP conference which
demonstrates a QNLP model being applied suc-
cessfully to such a task and the running of such
a model on a quantum emulator. One noteworthy
feature of the models is the relatively small number
of learnable parameters. Future work includes scal-

ing up the number of qubits, and to larger datasets,
with the potential to use anzatze which cannot be
efficiently simulated on a classical computer (with
the caveat that trainability could be an issue; see
the Limitations section below).

Although the main motivation has been to inves-
tigate the potential of quantum models in antici-
pation of the development of (rapidly improving)
quantum hardware, the models can also be thought
of bringing advantages to existing classical models,
such as the naturally bounded gradients from the
unitary transformations (Arjovsky et al., 2016).
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Limitations

The training has been carried out using exact an-
alytical simulation, with the models only being
run on the emulator at test time. Optimisation on
a quantum computer is non-trivial because of the
lack of a quantum equivalent of the backpropa-
gation algorithm (Benedetti et al., 2019). Also,
there are theoretical results to suggest that, as the
number of qubits grows, the loss landscape be-
comes flat almost everywhere resulting in “barren
plateaus”, which makes gradient-based optimisa-
tion extremely challenging (McClean et al., 2018).
However, research in this area is ongoing (Larocca
et al., 2024).

The results are not comparable to the state of
the art in NLP, but we argue that this is perfectly
reasonable given the nascent state of quantum com-
puting. We have also only applied the model to one
dataset in one language, but again this is reasonable
given that the goal of the work is to demonstrate the
feasibility of large-scale hybrid quantum-classical
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models in the future, where the models can also
be adapted to other datasets and tasks, as well as
the pre-training paradigm which has proved so suc-
cessful in NLP (Peters et al., 2018).
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Model Max Min µ
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Table 2: The max, min and average (µ) classification
accuracy on Rotten Tomatoes test set across 100 runs.
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A Additional Results

The results in Table 1 were obtained across 100
runs after the hyperparameters are tuned on the dev
set. To account for random seeds, we also report
here the min, max, and average accuracies on the
test set in Table 2, for completeness.

Fig. 3 shows the learning curves on the dev set
for the QRNN models and internal baselines in Ta-
ble 1. As can be seen, the QRNNs learn relatively
quickly, with only a small number of epochs re-
quired to converge, while the classical baselines
typically needed at least an order of magnitude
more epochs to converge, with the choice of hyper-
parameters shown below.

B Hyperparameters

The same hyperparameters are used for both the
QRNN and QRNNd models:

Optimiser Adam

Learning rate 1e−3

Weight decay 1e−4

ϵ 1e−10

|Batch| 200
|Embedding| 100
Embedding Dropout 0.2
Embedding init Xavier uniform (gain = 1.0)

Max grad norm 5.0

For the RNN, GRU and LSTM baselines, the hy-
perparameters are:

Optimiser Adam

Learning rate 1e−3

Weight decay 1e−4

ϵ 1e−10

|Batch| 200
|Embedding| 100
Embedding dropout 0.7
Embedding init N (0, 1)

Max grad norm 1.0
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Figure 3: Accuracy and loss curves (on the dev set) for the QRNN and QRNNd models and the internal baselines in
Table 1.
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