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Abstract
Document logical structuring aims to extract
the underlying hierarchical structure of docu-
ments, which is crucial for document intelli-
gence. Traditional approaches often fall short
in handling the complexity and the variabil-
ity of lengthy documents. To address these
issues, we introduce SEG2ACT, an end-to-end,
generation-based method for document logi-
cal structuring, revisiting logical structure ex-
traction as an action generation task. Specifi-
cally, given the text segments of a document,
SEG2ACT iteratively generates the action se-
quence via a global context-aware generative
model, and simultaneously updates its global
context and current logical structure based on
the generated actions. Experiments on ChCa-
tExt and HierDoc datasets demonstrate the su-
perior performance of SEG2ACT in both super-
vised and transfer learning settings1.

1 Introduction

Document logical structuring is an essential task
for document understanding, which aims to ex-
tract the underlying logical structure of documents
(Tsujimoto and Asada, 1990; Summers, 1998; Mao
et al., 2003; Luong et al., 2010; Pembe and Güngör,
2015; Gopinath et al., 2018; Maarouf et al., 2021).
As shown in Figure 1, document logical structuring
transforms a document into a hierarchical logical
tree composing of headings and paragraphs. Under-
standing a document’s logical structure will benefit
numerous downstream tasks, such as information
retrieval (Liu et al., 2021), abstractive summariza-
tion (Qiu and Cohen, 2022), and assisting large
language models in question answering over long
structured documents (Saad-Falcon et al., 2023).

Document logical structuring is challenging due
to the complexity of text segment dependencies in

*Equal contribution.
†Corresponding author.
1The publicly available code are accessible at https://

github.com/cascip/seg2act.
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Figure 1: The illustration of document logical structur-
ing task, which aims to transform text segments into
a hierarchical tree structure containing the document’s
headings and paragraphs.

documents and the diversity of logical structures
across various documents. Firstly, real-world doc-
uments are mostly multi-page, lengthy and with
complex structures, while OCR tools often break
content into short and incomplete lines rather than
complete paragraphs. Such inconsistency between
text segments and hierarchical structure poses a sig-
nificant challenge to tracking and formulating text
semantics and long-range dependencies. Secondly,
due to the diversity of logical structures in vari-
ous documents (e.g., financial report and scientific
literature), it is very difficult to design a unified
approach with strong generalization abilities, i.e.,
it can solve different types of documents.

Currently, most document logical structuring
methods first decompose the extraction of logical
structure into multiple separated subtasks (mostly
including feature extraction, heading detection and
nodes relationship prediction), then compose the
components of different subtasks in a pipeline to
predict the final document logical structure (Rah-
man and Finin, 2017; Bentabet et al., 2019; Hu
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Figure 2: A generation step of SEG2ACT. The action generation model converts current text segments into actions
to incrementally construct the document logical structure. A global context stack is maintained to enhance the
model’s global awareness, while the generated actions then being employed to update the stack.

et al., 2022b; Wang et al., 2023). The main draw-
backs of these methods are: 1) By encoding frag-
mented text segments independently, these methods
cannot capture the global information of documents
and often result in semantic loss. 2) By pairwise
predicting the relationship between text segments,
these methods often ignore the long-range depen-
dencies and result in sub-optimal structures. 3) The
pipeline framework suffers from the error propa-
gation problem. Due to the varieties of document
structures, it is very challenging to design the opti-
mal composition architecture manually for differ-
ent types of documents.

To address these issues, in this paper, we pro-
pose SEG2ACT, a global context-aware action gen-
eration approach for document logical structuring.
As illustrated in Figure 2, instead of decompos-
ing the extraction of logical structure into subtasks,
we revisit structure extraction as an action genera-
tion task. Specifically, sequentially feeding a docu-
ment’s text segments, a global context-aware gener-
ative model is employed to generate a sequence of
actions for document logical structuring. We pro-
pose three types of actions, each corresponding to
an operation that maps text segments to the logical
structure, applicable across various types of docu-
ments. Furthermore, during the structuring process,
SEG2ACT maintains a global context stack which
selectively stores crucial parts of global document
information, expressing long-range dependencies
in a concentrated manner. In this way, SEG2ACT

can effectively handle various document types, gen-
erate the logical structure of a document in an end-

to-end manner, and leverage global document in-
formation for text segment encoding and structure
generation. Experiments on ChCatExt and Hier-
Doc datasets demonstrate that SEG2ACT achieves
superior performance in both supervised and trans-
fer settings, verifying the effectiveness and the gen-
eralization ability of the proposed method.

Our contributions are summarized as follows: 1)
This is the first work to make the logical structure
extraction as an one-pass action generation task,
which is more generalizable and easy to implement.
2) A generation framework called SEG2ACT is pro-
posed, which adopts a global context-aware gener-
ative model to better encode the semantics of text
segments and model the long-range dependencies
between them. 3) SEG2ACT significantly outper-
forms baselines in both supervised and transfer
settings, showing its effectiveness and the general-
ization ability.

2 SEG2ACT: Document Logical
Structuring as Action Generation

2.1 Overview

As mentioned, this work considers document log-
ical structuring task as an action generation task.
That is, given a sequence of text segments X =
x1, ..., xN , the goal is to produce a sequence of
actions Y = y1, ..., yN , which are further used to
construct the logical structure T of the document.
The overall framework of SEG2ACT is depicted
in Figure 2. Specifically, given a sequence of text
segments, a window with wI segments is input to
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the action generation model iteratively, to obtain an
action sequence consisting of three types of actions.
During a generation step, the previous actions and
segments are constructed as a global context stack,
which can provide global information for the action
generation model. After that, the generated actions
update both document logical structure and global
context stack simultaneously. Once all text seg-
ments have been processed, the complete logical
structure of target document will be produced.

2.2 Actions for Document Logical Structuring
The logical structure is a hierarchical tree com-
posed of heading and paragraph nodes, where the
depth of a node represents its level. Before structur-
ing, a level-0 heading node with no textual content
is added as the root. To achieve one-pass structur-
ing, we define three actions to map text segments
to the logical structure:

• New Level-k Heading: this action signifies
adding the text segment as a new level-k head-
ing node to the current document logical struc-
ture, with the last added level-(k− 1) heading
node serving as its parent. We use k consecu-
tive “+” to represent it.

• New Paragraph: this action denotes adding
the current segment as a new paragraph node
to the document logical structure, with the last
added heading node serving as its parent. We
use an asterisk “*” to represent it.

• Concatenation: this action indicates that the
corresponding segment is an extension of the
preceding text. It appends the text of the cor-
responding segment to the last added node of
the current document logical structure. We
use an equal sign “=” to represent it.

Previous works, such as TRACER (Zhu et al.,
2023), also define a series of actions, but they are
performed under pairwise local transitions, and
a segment may participate multiple times due to
the shift-reduce operation. In contrast, SEG2ACT

establishes a one-to-one relationship between seg-
ments and actions, directly mapping text segments
to specific positions in the document’s logical struc-
ture. This design reduces the number of necessary
predictions, resulting in a more efficient process.

2.3 Action Generation Model
The action generation model refers to a generative
language model, which is adopted to convert text

### STACK:
+ Government Bonds Credit Rating Report←↩
++ Credit Quality Analysis for this Series←↩
+++ Use of Proceeds←↩
∗ The funds raised from the Government Bonds are ... and

projects related to agriculture,←↩

### SEGMENT:
forestry, water resources and social services. ←↩
Payment Security Analysis←↩
The proceeds for the projects funded by this bond issue
are derived from project operational revenues←↩

### ACTION:
=←↩ +++←↩ *←↩

Table 1: A demonstration example of the model tem-
plate in a single prediction step. It utilizes the global
context stack and multi-segment multi-action strategy.
“←↩” denotes a line break.

segments into action sequence by considering the
global information. Specifically, as illustrated in
Table 1, this action generation model takes a global
context stack and the current input text segments
as input to predict actions for constructing the logi-
cal structure. In this section, we first describe the
global context stack, which enhances the action
generation as it provides global information. Then,
we present the multi-segment multi-action strategy,
wherein wI segments are converted into wO actions
at each step, which broadens the model’s perspec-
tive and accelerates the construction process.

2.3.1 Global Context Stack

To keep the action generation model informed
about the ongoing construction process, we design
a global context stack to provide global information
to aid the model in decision-making. Specifically,
as shown in Figure 2 and Table 1, we utilize the
same symbols (“+” and “*”) as actions introduced
in Section 2.2 to organize previous text.

The global context stack selectively contains a
subset of nodes from the constructed logical struc-
ture. Initially, the stack contains only the root node.
For each generation step, it is updated according
to the generated actions: New Level-k Heading
continuously pops nodes until the stack top is a
level-(k − 1) heading, then pushes the new level-k
heading node. New-Paragraph pops the paragraph
node (if any) from the top of the stack, then pushes
the new paragraph node. Concatenation appends
the current text segment to the top node of the stack.
Thus, the stack stores the last added node at the top,
followed by all the nodes along the upward back-
tracking path in the hierarchical tree, which we
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intuitively regard as being closely related to the
current structuring.

Based on this approach, the global context stack
models the long-distance dependencies in a cen-
tralized manner, enabling global information to be
facilitated within a limited input length.

2.3.2 Multi-segment Multi-action Strategy
Since documents are segmented at the line level,
there would be a lot of text segments for a docu-
ment waiting for action prediction. For example,
the average number of text segments in the Hier-
Doc dataset (Hu et al., 2022b) is 853.38. Therefore,
if we process text segments one by one, it is not
only insufficient for capturing the complete seman-
tics, but also inefficient for obtaining all actions of
segments. To this end, we propose a multi-segment
multi-action strategy to strengthen our SEG2ACT

framework to be more practical.
Specifically, we not only extend the length of the

input segment window, denoted as wI , but also ex-
tend the output action window’s length, denoted as
wO. On one hand, in a single prediction step, the ac-
tion generation model receives wI consecutive text
segments, which allows the input segment window
to encompass a more extensive range of contextual
information, facilitating informed decision-making
by the model. On the other hand, we can instruct
the action generation model to predict wO actions
in a single step to speed up the whole generation
process, thereby reducing the required number of
prediction steps to ⌈N/wO⌉, where 1 ≤ wO ≤ wI .
When wI = wO, it is our default setting, represent-
ing the one-pass mode.

2.4 Model Training and Inference
In this section, we first describe how to train the
action generation model, and then introduce the
inference process that includes constraints.

2.4.1 Training
The training dataset consists of a collection of
documents, each denoted as D. Each document
is comprised of text segments X = x1, ..., xN ,
along with a corresponding sequence of action an-
notations Y = y1, ..., yN . More details of data
pre-processing can be found in Appendix A. We
optimize the global context-aware action genera-
tion model using teacher-forcing cross-entropy loss,
which is defined as:

L = −
|D|∑

i=1

logP (yi:i+wI−1|si, xi:i+wI−1; Θ) (1)

Algorithm 1: Text segments to logical structure
Input :Text segments X = x1, ..., xN ,

input segment window’s length wI ,
output action window’s length wO .

Output :Document logical tree structure T .

Initialize :root← HeadingNode(),
stack S ← [root], tree T ← [root].

1 for i← 1 to ⌈N/wO⌉ do
2 segments← [x(i−1)·wO+1, ..., x(i−1)·wO+wI

];
3 actions←Model(S, segments);
4 for j ← 1 to wO do
5 if actions[j] = “New Level-k Heading” then
6 node← HeadingNode(segments[j]);
7 UpdateStackAndTree(S, T , node);
8 end
9 else if actions[j] = “New Paragraph” then

10 node← ParagraphNode(segments[j]);
11 UpdateStackAndTree(S, T , node);
12 end
13 else if actions[j] = “Concatenation” then
14 ConcatText(S, T , segments[j]);
15 end
16 end
17 end
18 return T ;

where si represents the global context stack asso-
ciated with the text segment xi and Θ denotes the
parameters of the model. For multi-segment multi-
action strategy, wI represents the input segment
window size. The model learns to predict actions
aligned with wI , namely, wI = wO, which means
the number of predicted actions is equal to the num-
ber of input segments during model training.

2.4.2 Inference
Given a sequence of text segments from a doc-
ument, as shown in Algorithm 1, we utilize the
trained action generation model to generate actions
for segments, and then parse the actions to obtain
the logical structure. During inference, after setting
the input size of segments wI , we can use wO to
control the speed of the iterative action execution
process. The greedy search algorithm is used to
generate the action sequence. At each generation
step, we parse wO actions to update the document
logical structure, as outlined in Section 2.2, and
update the global context stack as described in Sec-
tion 2.3.1. After all segments are processed, we can
obtain the final logical structure for the document.

To ensure the validity of the generated action
sequence and the effective updating of the logi-
cal structure and the stack, we apply some hard
constraints. For example, tokens outside of a pre-
defined set will be banned, and the concatenation
action "=" cannot be generated when the stack con-
tains only the root node. All constrains and the
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execution method can be found in Appendix B. In
rare cases where the output number of actions mis-
matches wI , we treat these as failures, skip these
segments, and continue to the next generation step.

3 Experiments

This section evaluates SEG2ACT by conducting ex-
periments in both supervised learning and transfer
learning settings.

3.1 Experimental Settings
Datasets. We conduct experiments on the follow-
ing datasets: 1) ChCatExt corpus (Zhu et al., 2023),
which contains text segments from 650 Chinese
documents and corresponding logical structures. 2)
HierDoc corpus (Hu et al., 2022b), consisting of
650 English scientific documents and correspond-
ing Table-of-Content (ToC) structures, which con-
tains only heading annotations.

Metrics. For evaluation, we use the same criteria
in previous work, including F1-score and TEDS
(Hu et al., 2022b; Zhu et al., 2023). Additionally,
we add a new criterion, DocAcc, to evaluate the
accuracy of logical structures at the document level.

DocAcc. A prediction is considered to be correct
only when the logical structure exactly matches the
ground truth; otherwise, it is judged as incorrect.

Baselines. We compare our method with the fol-
lowing two groups of baselines:

1) Baselines using text only: TRACER (Zhu
et al., 2023) is a transition-based framework for log-
ical structure extraction, which predicts transition
actions by encoding local pairwise text segments
through a pre-trained language model.

2) Baselines using text, layout and vision: MTD
(Hu et al., 2022b) is a multi-modal method that uti-
lizes pre-trained models to encode visual, textual,
and positional document information, extracting
ToC by attention and pairwise classification stages;
CMM (Wang et al., 2023) is a three-stage frame-
work that starts with a heuristic-based initial tree,
then encodes nodes with pre-trained models, and
finally refines the tree by moving or deleting nodes.

For our approach, we conduct the experiments
of two settings:

1) SEG2ACT. It is a global context-aware action
generation method proposed in this paper, which
generates the document logical structure in an end-
to-end, one-pass manner.

2) SEG2ACT-T. It is a modified version of
TRACER, in which we utilize our proposed global

Method Heading Paragraph Total DocAcc

Methods using RBT3 as Backbone
TRACER 90.49 84.33 82.39 -
TRACER∗ 90.04 83.96 82.07 26.15

Methods using GPT2-Medium as Backbone
TRACER∗ 91.15 88.53 85.40 47.38
SEG2ACT-T (Ours) 93.94 91.21 89.01 52.00
SEG2ACT (Ours) 94.88 92.99 90.96 57.23

Methods using Baichuan-7B as Backbone
TRACER∗ 94.91 91.62 89.55 53.85
SEG2ACT-T (Ours) 96.01 93.98 92.39 58.46
SEG2ACT (Ours) 96.01 94.19 92.63 63.69

Table 2: Overall performance on ChCatExt (Heading,
Paragraph, Total nodes in F1-score and logical structure
accuracy at the document level). TRACER∗ refers to
our implemented results.

Method Modality Backbone HD ToC

MTD T+L+V BERT+ResNet 96.1 87.2
CMM T+L RoBERTa 97.0 88.1

SEG2ACT (Ours) T
GPT2-Medium 96.3 93.3
Baichuan-7B 98.1 96.3

Table 3: Heading detection (HD) in F1-score and ToC
in TEDS (%) of baselines and SEG2ACT on HierDoc.

context-aware generative model as the action
parser, while still generating shift-reduce actions
and following constraints akin to TRACER.

Implementations. Our implementations are built
upon Pytorch (Paszke et al., 2019), Transform-
ers (Wolf et al., 2020) and PEFT (Mangrulkar
et al., 2022) libraries. For both GPT2-Medium
and Baichuan-7B backbone models (Radford et al.,
2019; Baichuan-inc, 2023), we employ the AdamW
(Loshchilov and Hutter, 2019) optimizer with a
learning rate of 3× 10−4. The number of training
epochs is set to 10, and the batch size is set to 128.
We set the input segment window and output action
window as wI = wO = 3. Experiments are con-
ducted on an NVIDIA A100 GPU. For the transfer
learning experiments, we initially pre-train models
on the Wiki corpus (provided by Zhu et al. (2023))
for 10,000 steps. Besides, we utilize the LoRA (Hu
et al., 2022a) technique to reduce the GPU memory
overhead during Baichuan-7B training. We set the
rank r to 8 and the alpha value α to 16. All ex-
periments are averaged results obtained from five
different random seeds to ensure robustness and
reliability.

3.2 Results in Supervised Learning Setting
Table 2 shows the performance of text-only base-
lines on the ChCatExt, And Table 3 compares the
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Test Set Method Zero-Shot
Few-Shot Full-Shot

BidAnn FinAnn CreRat BidAnn FinAnn CreRat3 5 3 5 3 5

BidAnn
TRACER 2.70 66.64 14.58 2.36 21.48 1.02 12.78 88.20 25.26 11.74

SEG2ACT-T (Ours) 42.92 96.53 97.07 86.45 85.89 88.78 89.53 99.40 95.74 73.49
SEG2ACT (Ours) 56.25 99.31 99.45 90.30 96.89 95.59 97.12 99.72 98.07 69.92

FinAnn
TRACER 11.39 67.04 15.51 3.52 32.57 1.77 25.29 8.10 68.59 20.17

SEG2ACT-T (Ours) 28.98 26.17 28.18 42.37 58.21 47.71 48.15 32.47 76.87 46.04
SEG2ACT (Ours) 43.30 25.00 23.51 56.17 75.19 48.38 55.11 47.92 85.17 60.25

CreRat
TRACER 14.07 79.03 16.42 4.52 27.53 18.66 19.24 7.00 30.82 92.29

SEG2ACT-T (Ours) 49.65 35.71 31.31 47.79 56.36 71.63 84.77 32.33 42.19 95.77
SEG2ACT (Ours) 67.86 55.22 54.75 24.32 65.73 82.77 86.59 61.20 70.14 97.76

Table 4: Performance (F1-score of total nodes) on transfer learning experiments in zero-shot, few-shot and full-
shot settings on three sub-corpora of ChCatExt: bid announcements (BidAnn) with 100 documents, financial
announcements (FinAnn) with 300 documents, and credit rating reports (CreRat) with 250 documents..

performance of multi-modal baselines on HierDoc
with text-only SEG2ACT. We can see that:

1) By generating the logical structure in an
end-to-end manner, SEG2ACT achieves state-of-
the-art performance. In Table 2, SEG2ACT pre-
dicts the document logical structure with high ac-
curacy, and outperforms TRACER under the same
Baichuan-7B backbone by +9.84 in DocAcc. Table
3 shows that our method performs better than multi-
modal methods in both HD and TEDS, even though
it only uses semantic information. These above in-
dicate that our SEG2ACT can better perceive the
overall logical structures of the documents.

2) Global contextual information plays a cru-
cial role in document logical structuring. In Ta-
ble 2, injecting global context stack into TRACER
produces a general performance improvement. In
both GPT2-Medium and Baichuan-7B backbones,
SEG2ACT-T surpasses TRACER in terms of F1-
score for headings, paragraphs, total nodes and
document-level accuracy. This highlights the sig-
nificance of the global context stack for document
logical structuring.

3.3 Results in Transfer Learning Setting

To assess the generalization of SEG2ACT, we first
pre-train the backbone model on the Wiki corpus
and then conduct a series of transfer learning ex-
periments under zero-shot, few-shot, and full-shot
settings, as shown in Table 4. For ease of presen-
tation, we use the F1-score of total nodes as the
representative metric. We observe that:

1) The action generation framework of
SEG2ACT can learn general document struc-
tures instead of capturing type-specific features.
Compared with SEG2ACT-T, SEG2ACT attains av-

Method Heading Paragraph Total DocAcc

SEG2ACT 96.01 94.19 92.63 63.69
- multi-segment multi-action 95.49 93.32 91.56 62.15
- GCS (symbol) 95.71 94.28 92.69 57.23
- GCS (text) 90.92 87.52 83.85 50.77
- GCS (both text and symbol) 89.45 85.36 81.15 44.92

Table 5: Performance on ChCatExt with ablated settings.
GCS denotes the global context stack.

erage improvements of +10.65, +6.04, +15.28 for
full-shot, few-shot, and zero-shot settings, exhibit-
ing its superiority in various scenarios.

2) SEG2ACT can robustly resist data scarcity,
displaying a quick adaptation capability. Tak-
ing the case of 5-shot training as an example,
SEG2ACT only averages a slight drop of 3.98 com-
pared to the full-shot setting.

3.4 Ablation Study
3.4.1 Effects of Global Context Stack
Table 5 shows the impact of global information
on SEG2ACT. We break down the global context
stack formatted in the schema into two components:
text and symbol. The symbol represents the hier-
archical mark before the text, such as “+” and “*”.
Therefore, deleting the global context stack (sym-
bol) means using only the texts in the schema, and
deleting the global context stack (text) means using
only symbols in the schema. We observe that:

1) The structural representation schema of-
fers an effective way to perceive the global doc-
ument structure. When hierarchical symbols are
removed, SEG2ACT’s ability to predict the overall
document structure significantly diminishes, result-
ing in a decrease of 6.46 in DocAcc.

2) There’s an inherent trade-off between hi-
erarchical prediction and paragraph concate-
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Input
Segment Window

Output Action Window
wO = 1 wO = 2 wO = 3 wO = 4 wO = 5

wI = 1
91.56

(10.43s)
- - - -

wI = 2
93.14

(17.61s)
92.99

(8.79s)
- - -

wI = 3
92.83

(24.73s)
91.73

(12.29s)
92.63

(8.13s)
- -

wI = 4
92.32

(31.23s)
91.41

(15.83s)
91.76

(10.48s)
91.74

(7.75s)
-

wI = 5
93.03

(38.44s)
93.06

(19.64s)
91.40

(12.96s)
92.76

(9.76s)
92.43

(7.63s)

Baseline 89.55 (10.58s)

Table 6: The F1-score of total nodes (inference time per
document) of scaling the lengths of the input segment
window and output action window for SEG2ACT on
ChCatExt. Baseline refers to TRACER in Baichuan-7B.

nation with the use of the global context stack.
We notice a slight change of -0.06, -0.09, +0.3 in
F1-score for total nodes, paragraph nodes and head-
ing nodes, respectively, when hierarchical symbols
are added. These symbols encourage SEG2ACT

to focus on hierarchical discrimination, slightly di-
minishing its ability to concatenate paragraphs and
resulting in a minor decrease in F1-score.

3.4.2 Effects of Multi-segment Multi-action

To verify the effect of the multi-segment multi-
action strategy on SEG2ACT’s performance and
efficiency, we scale the lengths of input segment
window and output action window from 1 to 5,
conducting experiments on ChCatExt. We take
F1-score for total nodes as the metric and measure
the average inference time for each document, as
shown in Table 6. We can see that:

1) Providing insights from the following con-
secutive segments mitigates short-sighted issue
and enhances performance. Extending the input
segment window length wI to 2, 3, 4, and 5, the
SEG2ACT method exhibits improvements in F1-
score of +1.58, +1.27, +0.76, and +1.50, compared
to the case where wI = 1.

2) Simultaneously generating multiple actions
ensures decoding efficiency of SEG2ACT. By
increasing the output action window length wO,
SEG2ACT experiences a reduction in inference
time while maintaining comparable performance.
For instance, when comparing (wI = 3,wO = 3)
with (wI = 1,wO = 1), SEG2ACT demonstrates
a notable improvement with a +1.07 increase in
F1-score and a ×0.28 boost in inference speed.

3.5 Analysis of Document Length

To analyze the impact of document length, we show
the performance on different subsets of ChCatExt
in Figure 3. We can observe that:
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Document Logical Depth

85

90

95

100

F1
-s

co
re

TRACER∗

SEG2ACT-T
SEG2ACT

(a)

0 ≤ t < 1000 1000 ≤ t < 5000 t ≥ 5000

Document Token Length

85

90

95

100

F1
-s

co
re

TRACER∗

SEG2ACT-T
SEG2ACT

(b)

Figure 3: Results (F1-score of total nodes) for docu-
ments with different logical tree depths (a) and token
lengths (b) on ChCatExt dataset.

1) Our proposed actions are more effective for
complex document logical structure than shift-
reduce actions. As the depth of the logical struc-
ture increases, the performance of all models signif-
icantly declines. However, SEG2ACT still achieves
the best performance among the three models.

2) Global contextual information improves
the logical structure handling of lengthy docu-
ments. As document token length increases, mod-
els with global context experience a smaller perfor-
mance drop compared to TRACER.

3.6 Case Study

We illustrate two cases in the prediction steps, as
depicted in Table 7. In the first scenario, the local
pairwise method TRACER fails to predict the cur-
rent input segment for the “Reduce” action due to
a lack of global perspective. On the contrary, our
SEG2ACT successfully predicts the correct type
and level with the assistance of the global context
stack. In the second case, expanding the input
segment window enables the model to make more
insightful decisions. These two cases highlight the
effectiveness of our method.
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Method Stack Segment Predicted Action

TRACER∗ Risk Principle←↩ Chapter 3 Basis and Scope for Determining the Hold-
ers of Employee Stock Ownership Plans←↩ New Paragraph ✗

SEG2ACT

(wI = wO = 1)

+ Summary of Employee Stock Ownership Plan (Draft)←↩
++ Chapter 2 Purpose and Basic Principles of Employee Stock
Ownership Plans←↩
+++ 2. The basic principles of employee stock ownership plans
←↩
++++ Risk Principle←↩
* Participants in this employee stock ownership plan ... equal
rights and interests with other investors. ←↩

Chapter 3 Basis and Scope for Determining the Hold-
ers of Employee Stock Ownership Plans←↩

New Level-2 Heading ✓

SEG2ACT

(wI = wO = 1)
+ Announcement on the Inquiry Letter on Matters Related to
the Company’s Application for Bankruptcy←↩ — Is the early acquisition decision reasonable? ←↩ New Paragraph ✗

SEG2ACT

(wI = wO = 3)
+ Announcement on the Inquiry Letter on Matters Related to
the Company’s Application for Bankruptcy←↩

— Is the early acquisition decision reasonable? ←↩
On January 20, 2021, the company announced that it
would acquire 100% equity of HNA Airport Group
from its related party Hainan Airlines Travel Service
Co., Ltd. for 500 million yuan, with a net asset value
of 34.073 million euros. The transaction←↩
appreciation rate is about 87%, and the main assets
of HNA Airport Group are 82.5% equity of Hahn
Airport in Frankfurt, Germany (hereinafter referred
to as Hahn Airport). In the short term, the company
has announced that HNA Airport Group and Hahn
Airport have filed for bankruptcy. ←↩

New Level-2 Heading
New Paragraph
Concatenation

✓

Table 7: A case study for models utilizing the Baichuan-7B backbone.

4 Related Work

Document logical structuring has received signif-
icant attention for an extended period (Tsujimoto
and Asada, 1990; Summers, 1998; Mao et al., 2003;
Luong et al., 2010; Pembe and Güngör, 2015;
Gopinath et al., 2018; Maarouf et al., 2021; Zhu
et al., 2023). Traditional methods have predom-
inantly focused on designing heuristic or hand-
crafted rules to extract logical structures (Fisher,
1991; Conway, 1993). For instance, text regular
matching methods can be employed to differenti-
ate headings from paragraphs. However, a notable
drawback of such rule-based approaches is their
specificity to certain document types, limiting their
applicability to others.

In recent years, the advent of deep learning has
opened up new avenues for document logical struc-
turing, with a particularly promising trend being
multi-modal and multi-stage modeling (Bourez,
2021; Cao et al., 2022). From a multi-modal per-
spective, the incorporation of layout and vision
modalities enhances the representation of semantic
structures (Hu et al., 2022b; Wang et al., 2023). On
the other hand, adopting a multi-stage approach in-
volves decomposing the task into subtasks, which
facilitates an easier and more manageable model-
ing process (Rahman and Finin, 2017; Bentabet
et al., 2019). While multi-modal methods excel
with single-page document images, they struggle to
effectively model the intricate structures of lengthy,
multi-page documents. Similarly, multi-stage meth-
ods encounter challenges related to error propaga-

tion when concatenating all stages in real-world
applications.

Another noteworthy direction is the transition-
based extraction (Koreeda and Manning, 2021; Zhu
et al., 2023). Transition-based methods parse texts
into structured trees from the bottom up, offering
efficiency and suitability for very long documents.
However, these methods focus on pairwise local
context, capturing only local information while
neglecting the global information of the documents.

In contrast to previous works, our research intro-
duces an end-to-end and generation-based method.
This approach minimizes error propagation and
enhances generalization. Furthermore, our frame-
work, incorporating global context information,
helps the action generation process and efficiently
predicts the logical structure of documents.

5 Conclusions

This paper proposes SEG2ACT, a novel method
that models document logical structuring task as
an end-to-end, one-pass action generation process.
By leveraging the generative language model as
an action generator and incorporating a global con-
text stack, SEG2ACT achieves significant perfor-
mance and strong generalization on two benchmark
datasets. For future work, we plan to explore the
integration of long-context language models and
multi-modal language models with the SEG2ACT

framework.
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Limitations

First, generating indefinite-length action sequence
using generative model may result in some cases
that are challenging to parse, despite being con-
strained by hard rules. For example, in the multi-
segment multi-action strategy, it cannot be guar-
anteed that the model will always output action
sequence matching the specified wI count.

Second, our approach does not utilize visual
information, thus requiring a proper order of in-
put text segments, making it difficult to handle
sequence with disrupted text segment order. There-
fore, more effort is needed to incorporate visual
information, making our method more flexible and
applicable in a wider range of scenarios.

Ethics Statement

In consideration of ethical concerns, we provide
the following detailed descriptions:

1) All the data and backbone model weights we
use come from publicly available sources. When
using these resources for this study, we strictly
adhere to their licensing agreements.

2) Our approach relies on large language models
such as Baichuan-7B (Baichuan-inc, 2023) as its
backbone. As these language models have been
trained on extensive text data sourced from the
Web, it may be susceptible to issues such as toxic
language and bias. However, our model is further
fine-tuned to only generate structural actions and
can only be used for document logical structuring,
significantly mitigating the impact of these con-
cerns.
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A Data Pre-processing

Currently, most datasets of document logical struc-
turing are labeled with logical tree structure. In
order to train our model, we convert the logical
tree structure to our training corpus using preorder
traversal, as illustrated in Algorithm 2.

Algorithm 2: Logical structure to training data
Input :Document logical tree structure T .
Output :Text segments X = x1, ..., xN ,

action sequence Y = y1, ..., yN .
Initialize :X ← [ ], Y ← [ ].

1 Procedure Travel(node):
2 X .extend( node.content );
3 if node.type = “Heading” then
4 Y .append( “+” * len(node.depth) );
5 else
6 Y .append( “*” );
7 end
8 segment_num← len(node.content);
9 if segment_num > 1 then

10 for i← 2 to segment_num do
11 Y .append( “=” );
12 end
13 end
14 child_num← len(node.children);
15 for child ∈ node.children do
16 Travel(child);
17 end
18 return X,Y after Travel(T .root);

B Action Constraints

For SEG2ACT-T, we conduct the same constraints
as TRACER (Zhu et al., 2023), which includes four
actions: Sub-Heading, Sub-Text, Reduce, Concat.
The constraints are as follows:

• The action between Root node and the first
input text segment can only be Sub-Heading
or Sub-Paragraph;

• The paragraph nodes can only be leaf nodes
in the logical tree structure. Thus, if the last
segment is predicted to be a paragraph node,
only Reduce and Concat actions are permitted
for the prediction of current segment.

For SEG2ACT, the constraints are as follows:

• The predicted token must be in the prede-
fined action set. We only allow token pre-
diction in predefined set {“+”, “*”, “=”,
“\n”} and ban all other predictions through
LogitsProcessor of the Transformer library
(Wolf et al., 2020), which supports forcibly
setting token prediction probability to 0;

• The Concatenation action cannot be per-
formed when the stack contains only the root
node. Therefore, the action for the first input
text segment can only be New Level-1 Head-
ing or New Paragraph (indicating that the ini-
tial predicted token can only be “+” or “*”).
We also utilize LogitsProcessor to execute
this constraint;

• Heading nodes are prohibited from skipping
levels, and if they do so, they are constrained
to be at the current maximum level plus 1 (for
example, if the generated action is “++++” but
the maximum level of the heading nodes in the
global context stack is only 2, we modify the
decoded action to be New Level-3 Heading).
This constraint ensures that the parent node
for newly added nodes can be found within
the stack and the tree structure.

For the first constraint of SEG2ACT, different
models may use different tokenizers, resulting in
different token prediction strategies. In addition,
the tokens allowed to be predicted are also re-
lated to the model’s last generated tokens. Table 8
shows the allowed token predictions for the GPT2-
Medium and Baichuan-7B models, respectively.

Last Token Next Token
\n + ++ ++++ * = </s>

\n √ √ √ √ √ √

+
√ √ √ √

++
√ √ √ √

++++
√ √ √ √

*
√

=
√

(a) The allowed token predictions in GPT2-Medium model.

Last Token Next Token
\n + ++ * = </s>

\n √ √ √ √ √

+
√ √ √

++
√ √ √

*
√

=
√

(b) The allowed token predictions in Baichuan-7B model.

Table 8: The allowed token predictions for models with
different tokenizers.

C Effects of Model Size

In this section, we explore the impact of model size
on our proposed framework.
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Method Heading Paragraph Total DocAcc

Methods using Baichuan-7B as Backbone
TRACER∗ 94.91 91.62 89.55 53.85
SEG2ACT-T (Ours) 96.01 93.98 92.39 58.46
SEG2ACT (Ours) 96.01 94.19 92.63 63.69

Methods using Baichuan-13B as Backbone
TRACER∗ 94.79 92.49 90.39 54.15
SEG2ACT-T (Ours) 95.97 93.73 92.06 60.62
SEG2ACT (Ours) 96.25 94.40 92.83 67.08

Table 9: The result on ChCatExt (Heading, Paragraph,
Total nodes in F1-score and logical structure accuracy
at the document level).

Model Total DocAcc TimeCost

Qwen1.5-0.5B 92.22 57.54 4.01s
Qwen1.5-1.8B 92.99 63.69 4.27s
Qwen1.5-4B 92.93 65.23 7.06s

Baichuan-7B 92.63 63.69 8.13s

Table 10: The result of SEG2ACT on ChCatExt (Total
nodes in F1-score, logical structure accuracy at the doc-
ument level and time cost per document).

As demonstrated in Table 9, enlarging models
can boost performance, and among models of equal
size, those integrating global context typically ex-
hibit superior performance.

However, the performance gains from increasing
the model size are not cost-effective compared to
the expenses of training larger models. Addition-
ally, larger models result in longer inference times,
making efficiency a critical concern in practical
applications. Therefore, we also discuss the per-
formance of our proposed SEG2ACT framework
when decreasing the model size. Since there is
no version of the Baichuan model smaller than 7B
size, we choose Qwen1.5 model (Bai et al., 2023)
for experiments. As shown in Table 10, we can
observe that:

1) Backbone model choice affects perfor-
mance. Comparing the Qwen1.5 and Baichuan
backbone models, the Qwen1.5-4B outperforms
the Baichuan-7B in F1-score and document-level
accuracy, while also being smaller in model size.

2) The action generation framework may
not necessarily require an oversize model. For
instance, in the Qwen1.5 series of models, the
Qwen1.5-1.8B model achieves similar performance
to the Qwen1.5-4B, but is ×0.65 faster.
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