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Abstract

In the rapidly evolving field of conversational
AI, Ontology Expansion (OnExp) is crucial
for enhancing the adaptability and robustness of
conversational agents. Traditional models rely
on static, predefined ontologies, limiting their
ability to handle new and unforeseen user needs.
This survey paper provides a comprehensive
review of the state-of-the-art techniques in On-
Exp for conversational understanding. It cate-
gorizes the existing literature into three main
areas: (1) New Intent Discovery, (2) New Slot-
Value Discovery, and (3) Joint OnExp. By ex-
amining the methodologies, benchmarks, and
challenges associated with these areas, we high-
light several emerging frontiers in OnExp to im-
prove agent performance in real-world scenar-
ios and discuss their corresponding challenges.
This survey aspires to be a foundational refer-
ence for researchers and practitioners, promot-
ing further exploration and innovation in this
crucial domain.

1 Introduction

Conversational understanding (CU) is a core com-
ponent in the development of conversational agents
(Li et al., 2017; Carmel et al., 2018). The objec-
tive of the CU module is to accurately capture
and interpret user needs during interactions. As
illustrated in Figure 1, these capabilities are gener-
ally encapsulated within a conversational ontology,
which defines a collection of possible user intents,
slots, and values for each slot (Mrksic et al., 2017;
Budzianowski et al., 2018; Neves Ribeiro et al.,
2023). Effective CU models must not only iden-
tify the overall purposes (intent detection) (E et al.,
2019) expressed by users but also pinpoint relevant
pieces of information (slot filling) (Wang et al.,
2021a) that fulfill these intents.

Traditionally, CU research assumes a well-
defined, static ontology where all intents, slots, and
most possible values are predetermined. Within
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Figure 1: An example of ontology expansion enabling
conversational agents to adapt to unseen events.

this predefined framework, CU is often treated as
a closed-world classification task for intents and
sequence labeling task for slot values (Larson and
Leach, 2022). However, in real-world settings, con-
versational agents encounter rapidly evolving user
needs and diverse expressions, leading to the emer-
gence of new ontological items (Liang and Liao,
2023; An et al., 2024). This dynamic environment
presents a significant challenge, as traditional CU
models fail easily in situations beyond the prede-
fined ontology.

To address this challenge, OnExp has been pro-
posed to facilitate open-world ontology learning
(Lin et al., 2020; Zhang et al., 2021c,b, 2022; Wu
et al., 2022a). It dynamically updates and ex-
tends the conversational ontology by recognizing
both pre-established and novel ontological items
from user utterances. Effective OnExp approaches
can significantly enhance the downstream decision-
making and policy implementation of conversa-
tional agents, improving user satisfaction and ser-
vice efficiency (Dao et al., 2023, 2024).

Recent years have witnessed substantial progress
in developing innovative OnExp methodologies.
However, the rapid advancements have left a gap
in comprehensive reviews that summarize these ef-
forts and discuss emerging trends. This paper aims
to fill this gap by providing a thorough survey of
OnExp research. We introduce the preliminaries of
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Dataset Domain #Samples
#Ontologies Supported Tasks

#Intents #Slots NID NSVD

BANKING77 (Casanueva et al., 2020) Bank 13,083 77 - ✓ ✗

CLINC150 (Larson et al., 2019) Multi-domain 22,500 150 - ✓ ✗

StackOverflow (Xu et al., 2015) Question 20,000 20 - ✓ ✗

CamRest (Wen et al., 2017) Restaurant 2,744 2 4 ✗ ✓

Cambridge SLU (Henderson et al., 2012) Restaurant 10,569 5 5 ✗ ✓

WOZ-attr (Eric et al., 2020) Attraction 7,524 3 8 ✗ ✓

WOZ-hotel (Eric et al., 2020) Hotel 14,435 3 9 ✗ ✓

ATIS (Hemphill et al., 1990) Flight 4,978 17 79 ✓ ✓

SNIPS (Coucke et al., 2018) Multi-domain 13,784 7 72 ✓ ✓

SGD (Rastogi et al., 2020) Multi-domain 329,964 46 214 ✓ ✓

Table 1: Summary of popular datasets for OnExp. #Samples, #Intents, and #Slots represent the total number of
utterances, intents, and slots, respectively.

OnExp, detailing task formulations, data resources,
and evaluation protocols. Our novel taxonomy
categorizes OnExp studies into three types: (1)
New Intent Discovery (NID), (2) New Slot-Value
Discovery (NSVD), and (3) Joint OnExp, offering
comprehensive coverage of the field. Finally, we
discuss promising research directions and associ-
ated challenges, motivating further exploration.

In summary, our contributions are as follows:(1)
We present the first comprehensive survey on ontol-
ogy expansion; (2) We categorize OnExp research
into three branches: NID, NSVD, and Joint OnExp,
providing a unified understanding of the literature;
(3) We discuss emerging frontiers and challenges
in OnExp, highlighting future research directions.
Additionally, we maintain a GitHub repository1

that organizes useful resources.

2 Preliminaries

2.1 Task Formulation
Ontology expansion in conversational understand-
ing involves dynamically broadening the prede-
fined ontology by recognizing both known and
novel ontological items from user utterances.
These items are structured as a collection of intents,
slots, and corresponding slot values.

Formally, let Ok and Ou represent the sets of
predefined and unknown ontological items, with
Ou ∩ Ok = ∅. The OnExp tasks consider a
dataset Dall that is divided into two parts: a la-
beled dataset Dl and an unlabeled dataset Du.
Dl = {(xi, oi)|oi ∈ Ok}|D

l|
i=1 consists of utterances

paired with labels that belong to Ok. Conversely,
1https://github.com/liangjinggui/

Ontology-Expansion

Du = {xi|oi ∈ Ou ∪ Ok}|D
u|

i=1 includes utterances
for which the labels are not available during the
model learning, covering both Ok and Ou.

Given an utterance xi ∈ Dall, the overall ob-
jective of OnExp tasks is to optimize a mapping
function fOnExp

θ , parameterized by θ, to recognize
its corresponding ontological items as follows:

fOnExp
θ (xi) → (oIi , o

S
i , o

V
i , r), (1)

where (oIi , o
S
i , o

V
i ) ∈ Ok ∪ Ou denote the intent,

slot, and value associated with xi. The term r
refers to the relations among various ontological
items, such as the intent Check Vaccination Status
being associated with the slot Vaccine Brands, but
not with the slot Area. As the focus of OnExp is on
identifying and expanding fundamental concepts
emerging from dynamic conversations, the rela-
tions among these items are typically overlooked
in the existing literature.

As discussed in Section 1, OnExp encompasses
various tasks. In the NID setting, the mapping func-
tion fOnExp

θ predicts only oI , discarding (oS , oV ).
In the NSVD setting, the focus shifts to uncover-
ing (oS , oV ), omitting intents oI . In Joint OnExp,
(oI , oS , oV ) are all retained, with the aim of lever-
aging shared knowledge across these tasks for more
effective ontology learning.

2.2 Data Resources
High-quality annotated datasets are essential for
developing OnExp methods. We summarize the
commonly used data resources, with an overview of
each dataset’s domain, scale, annotated ontological
items, and supported tasks in Table 1.

For NID, the most widely used datasets are
BANKING77 (Casanueva et al., 2020), CLINC150
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(Larson et al., 2019), and StackOverflow (Xu et al.,
2015). For NSVD, prominent datasets include
CamRest (Wen et al., 2017), Cambridge SLU (Hen-
derson et al., 2012), WOZ-attr (Eric et al., 2020),
WOZ-hotel (Eric et al., 2020), ATIS (Hemphill
et al., 1990), SNIPS (Coucke et al., 2018), and
SGD (Rastogi et al., 2020). Further details on these
datasets are provided in Appendix A.1.

2.3 Evaluation Protocols

NID Metrics. The NID evaluation metrics in-
clude: (1) Accuracy (ACC), based on the Hungar-
ian algorithm; (2) Adjusted Rand Index (ARI); and
(3) Normalized Mutual Information (NMI).

NSVD Metrics. The performance of NSVD sys-
tems is evaluated using the following key metrics:
(1) Precision, (2) Recall, and (3) F1-score. The
F1-score, which is calculated based on slot value
spans, is also referred to as Span-F1.

Other Metrics. Notably, these evaluation metrics
are not confined to the corresponding settings de-
scribed previously. Additionally, the OnExp mod-
els can also be evaluated by Known Acc, Novel
Acc, and H-score (An et al., 2024). Thorough
discussions and specific definitions of the above
evaluation metrics are detailed in Appendix A.2.

3 Taxonomy of OnExp Research

This section presents the new taxonomy for On-
Exp as shown in Figure 2, comprising New Intent
Discovery (§3.1), New Slot-Value Discovery (§3.2),
and Joint OnExp (§3.3).

3.1 New Intent Discovery

We first explore the NID task in this section, which
aims to simultaneously identify known and newly
emerged user intents. Notably, NID operates at
the utterance level, excelling in isolating distinct
user intents but struggling with overlapping or am-
biguous ones. To achieve effective NID, a variety
of methodologies have been devised, as illustrated
in Figure 2. We classify these NID studies into
three categories based on the use of available la-
beled data: Unsupervised NID, Zero-shot NID, and
Semi-supervised NID.

3.1.1 Unsupervised NID
Unsupervised NID aims to discover user intents
without any labeled data, facing significant chal-
lenges in deriving effective intent patterns to group

similar utterances. This section categorizes exist-
ing unsupervised NID efforts into three types based
on their model designs: Rule-based, Statistical, and
Neural Network-based (NN-based) Methods.

Rule-based Methods. Early efforts, such as
those by Rose and Levinson (2004), collabo-
rated with domain experts to develop a conceptual
schema for user goals, adapting to new goal cate-
gories. Jansen et al. (2008) used a decision tree for
intent analysis. However, maintaining these rule-
based models proved challenging as the complexity
of rules intensified across different domains.

Statistical Methods. Given the limitations in-
herent in rule-based systems, statistical methods
emerged as a more robust and effective alternative.
Typical clustering algorithms like K-Means (Mac-
Queen et al., 1967) and Agglomerative Clustering
(Gowda and Krishna, 1978) laid the groundwork.
Later, Aiello et al. (2011) aggregated fine-grained
intent-related missions to learn new search intents,
while Cheung and Li (2012) used external knowl-
edge bases for sequence clustering. Methods like
Ren et al. (2014) utilized heterogeneous graphs
for cross-source intent learning, and Hakkani-Tür
et al. (2013) introduced Bayesian models leverag-
ing clicked URLs as implicit supervision in clus-
tering new intents, while Hakkani-Tür et al. (2015)
explored the lexical semantic structure of user ut-
terances with semantic parsers. Despite their ro-
bustness, these methods often struggled with high-
dimensional data and complex semantics.

NN-based Methods. To address the limitations
of statistical methods, deep neural models have
been explored for more effective new intent learn-
ing, thanks to their superior learning capabilities
and flexible parameters. Xie et al. (2016) pro-
posed Deep Embedded Clustering (DEC), which
iteratively refines intent clusters using an auxil-
iary target distribution. Yang et al. (2017) devel-
oped a Deep Clustering Network (DCN) that com-
bines nonlinear dimensionality reduction with K-
Means clustering to optimize utterance represen-
tations. Deep Adaptive Clustering (DAC) (Chang
et al., 2017) reimagined intent discovery as a pair-
wise classification problem, employing a binary-
constrained model to learn relationships between
utterance pairs. DeepCluster (Caron et al., 2018) al-
ternated between clustering utterances and refining
their representations via cluster assignments. Fur-
ther advancements include Supporting Clustering
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OnExp

New Intent
Discovery (§3.1)

Unsupervised
NID

Rule-Based
SearchGoal (Rose and Levinson, 2004); AQC (Jansen et al.,
2008)

Statistical

K-Means (MacQueen et al., 1967); AG (Gowda and Krishna,
1978); GATE (Aiello et al., 2011); SeqCluster (Cheung and
Li, 2012); HSoC (Ren et al., 2014); CIM (Hakkani-Tür
et al., 2013); AMR (Hakkani-Tür et al., 2015)

NN-based
DEC (Xie et al., 2016); DCN (Yang et al., 2017); DAC
(Chang et al., 2017); DeepCluster (Caron et al., 2018);
SCCL (Zhang et al., 2021a); IDAs (De Raedt et al., 2023)

Zero-shot
NID

RNN-based
IntentCapsNet (Xia et al., 2018); ReCapsNet (Liu et al.,
2019); SEG (Yan et al., 2020); RIDE (Siddique et al., 2021);
CTIR (Si et al., 2021)

Transformer-based
LABAN (Wu et al., 2021); Template-IR (Lamanov et al.,
2022); Meta-ZSIC (Liu et al., 2022a); PIE (Sung et al.,
2023); Low-resource IC (Parikh et al., 2023)

Semi-supervised
NID

SLMs-based

PCK-Means (Basu et al., 2004); KCL (Hsu et al., 2018);
MCL (Hsu et al., 2019); CDAC+ (Lin et al., 2020); DTC
(Han et al., 2019); DeepAligned (Zhang et al., 2021c); US-
NID (Zhang et al., 2023a) ProbNID (Zhou et al., 2023);
SCL (Shen et al., 2021); DSSCC-E2E (Kumar et al., 2022);
DKT (Mou et al., 2022b); KCOD (Mou et al., 2022a); MTP-
CLNN (Zhang et al., 2022); DWFG (Shi et al., 2023); GCD
(Vaze et al., 2022); DPL (Mou et al., 2023); DPN (An et al.,
2023b); TAN (An et al., 2024); RAP (Zhang et al., 2024);
CsePL (Liang and Liao, 2023); FCDC (An et al., 2022)

LLMs-based
LLM for OOD-Dec (Wang et al., 2024); LLM for GID
(Song et al., 2023)

Hybrid
ClusterLLM (Zhang et al., 2023b); Few-shot Clustering
(Viswanathan et al., 2023); ALUP (Liang et al., 2024b);
Loop (An et al., 2023a)

New Slot-Value
Discovery (§3.2)

Unsupervised
NSVD

DistFrame-Sem (Chen et al., 2014); Inter-Slot (Chen et al., 2015); Merge-Select
(Hudeček et al., 2021); USSI (Yu et al., 2022); UPL-CL (Nguyen et al., 2023)

Partially Supervised
NSVD

No New Slots

QCL-SF (Tür et al., 2011); Graph-SF (Yu and Ji, 2016);
Com-SF (Xu et al., 2017); CombWC (Liang et al., 2017);
TFWIN (Wang et al., 2019); S2S-Attn-PtrNet (Zhao and
Feng, 2018); HiCE (Hu et al., 2019); KBBERT (He et al.,
2020b); Span-ConveRT (Coope et al., 2020)

New Slot
Type Known

NeuAdapter (Chen and Moschitti, 2019); LROS-Trans (He
et al., 2020a); L-TapNet (Hou et al., 2020); ARN (Oguz and
Vu, 2021); HiCL (Zhang and Zhang, 2023); PCLC (Wang
et al., 2021b); GZPL (Li et al., 2023c)

New Slot
Description Known

CT (Bapna et al., 2017); RZT (Shah et al., 2019); ZAT (Lee
and Jha, 2019); Coach (Liu et al., 2020); CZSL-Adv (He
et al., 2020c); QASF (Du et al., 2021); RCSF (Liu et al.,
2022b); SP-prompting (Luo and Liu, 2023)

New Slots Unkown SIC (Wu et al., 2022a); Bi-criteria (Wu et al., 2024)

Joint OnExp
(§3.3) SLMs-based RCAP (Zeng et al., 2021) (Under-explored)

Figure 2: The taxonomy for Ontology Expansion.

with Contrastive Learning (SCCL) (Zhang et al.,
2021a), which utilized emerging contrastive learn-
ing techniques to enhance intent clustering. In the
era of Large Language Models (LLMs), (De Raedt
et al., 2023; Liang et al., 2024a) further leveraged
LLMs to enhance intent clustering.

3.1.2 Zero-shot NID.

Zero-shot NID aims to discover new user intents
using only labeled training data from known in-
tents. The main challenge lies in effectively trans-
ferring the prior knowledge of known intents to fa-
cilitate the recognition of new intents. This setting

is divided into RNN-based and Transformer-based
methods based on their backbone architecture.

RNN-based Methods. RNNs were the domi-
nant model for encoding sentences in the early
days. Hence, Xia et al. (2018) proposed an RNN-
based capsule network with routing-by-agreement
to adapt the model to new intents. To address the
polysemy problem, Liu et al. (2019) introduced
a dimensional attention mechanism and learned
generalizable transformation matrices for new in-
tents. Beyond merely extracting features from ut-
terances, Siddique et al. (2021) incorporated com-
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monsense knowledge to learn robust relationship
meta-features. Despite these advancements, Si
et al. (2021) identified a critical issue: new intent
representations cannot be learned during training.
Hence, they proposed the Class-Transductive Intent
Representations framework, which progressively
optimizes new intent features using intent names.

Transformer-based Methods. In practice, the
sequential nature of RNNs incurs high computa-
tional costs and struggles with long-range depen-
dencies. To address these issues, Transformers
have emerged as an effective solution for zero-shot
NID. Wu et al. (2021) developed a label-aware
BERT attention network that constructs an intent
label semantic space to map utterances to intent
labels. Following this, Lamanov et al. (2022) mod-
eled this task as a sentence pair modeling problem,
utilizing pre-trained language models to fuse in-
tent labels and utterances for binary classification.
Liu et al. (2022a) introduced a mixture attention
mechanism and collaborated it with a novel meta-
learning paradigm to enhance new intent identifica-
tion. To better adapt pre-trained encoders to intent
discovery, Sung et al. (2023) proposed generating
pseudo-intent names from utterances and applied
intent-aware contrastive learning to develop the
Pre-trained Intent-aware Encoder (PIE). Recently,
Parikh et al. (2023) explored zero-shot NID using
Large Language Models (LLMs), investigating the
various strategies such as in-context prompting to
aid in identifying novel intents.

3.1.3 Semi-supervised NID.
Semi-supervised NID combines limited labeled
data with extensive unlabeled data to discern new
intents. This approach faces challenges in deriv-
ing supervision signals for unlabeled utterances
and avoiding overfitting to known intents. Unlike
Zero-shot NID, which is provided with new intent
names or classes, semi-supervised NID does not
know the new intents or their quantity. This section
categorizes methods into Small Language Models
(SLMs)-based, LLMs-based, and Hybrid methods.

SLMs-based Methods. SLMs like BERT, pre-
trained on large-scale corpora, exhibit strong text
understanding abilities and have been effectively
fine-tuned for various tasks (Devlin et al., 2019;
Lewis et al., 2020). Utilizing SLMs as feature
extractors, Basu et al. (2004) introduced Pair-
wise Constrained K-Means (PCK-Means) with ac-
tive constraint selection for new intent clustering.

Building on this, Hsu et al. (2018) used SLMs
for static constraints with KL divergence-based
Contrastive Loss (KCL), while Hsu et al. (2019)
proposed Meta Classification Likelihood (MCL)
for dynamic pairwise similarity updates. Lin et al.
(2020) presented Constrained Deep Adaptive Clus-
tering (CDAC+) for iterative model refinement.

Despite these advances, pairwise supervision sig-
nals often fall short in fully utilizing labeled data.
To address this, Han et al. (2019) proposed Deep
Transfer Clustering (DTC), improving clustering
quality through consistency regulation and intent
cluster number estimation. Zhang et al. (2021c)
developed DeepAligned to resolve label inconsis-
tencies, later improved by USNID for faster con-
vergence (Zhang et al., 2023a). Zhou et al. (2023)
alleviated prior knowledge forgetting with Prob-
NID, a probabilistic framework optimizing intent
assignments via Expectation Maximization. Zhang
et al. (2022) utilized multi-task pre-training and
K-nearest neighbor contrastive learning for com-
pact clusters (MTPCLNN). Additionally, Shi et al.
(2023) proposed the Diffusion Weighted Graph
Framework (DWGF), capturing both semantic and
structural relationships within utterances for more
reliable supervisory signals. Beyond learning con-
trastive relations, An et al. (2023b) formulated a bi-
partite matching problem, proposing the Decoupled
Prototypical Network (DPN) to separate known
from new intents, facilitating explicit knowledge
transfer. Zhang et al. (2024) introduced Robust and
Adaptive Prototypical learning (RAP) to enhance
intra-cluster compactness and inter-cluster disper-
sion. Recently, Liang and Liao (2023) leveraged
prompt learning with two-level contrastive learning
and soft prompting for new intent discovery.

While successful, SLM-based methods require
extensive fine-tuning on large datasets, which is
time-consuming. Moreover, SLMs struggle to fully
capture the nuanced semantics of diverse and dy-
namic human languages in conversational contexts.

LLMs-based Methods. Recently, LLMs (Ope-
nAI, 2023; Touvron et al., 2023) have shown im-
pressive efficacy across a broad range of NLP tasks,
such as summarization (Liu et al., 2023) and query
rewriting (Anand et al., 2023; Guo et al., 2024).
Given the above SLMs’ limitations, there is a grow-
ing trend toward using LLMs for intent discovery
in few/zero-shot settings. Wang et al. (2024) evalu-
ated LLMs’ ability to detect unknown intents, using
ChatGPT to classify intents beyond the predefined
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set. Moreover, Song et al. (2023) broadened the use
of LLMs in intent discovery, directing ChatGPT
to group utterances and identify known and novel
intents.

Hybrid Methods. Although LLMs-based meth-
ods excel in zero-shot settings, they typically un-
derperform compared to fully fine-tuned models.
To address this, Hybrid methods that combine the
strengths of SLMs and LLMs have been developed
to enhance intent discovery. In this effort, Zhang
et al. (2023b) proposed ClusterLLM, which uses
triplet feedback from LLMs to refine SLMs-learned
representations and applies pairwise hierarchical
clustering to improve cluster granularity. Further,
Viswanathan et al. (2023) investigated three strate-
gies—keyphrase expansion, pairwise constraints,
and cluster correction—to leverage LLMs for better
intent clustering. To effectively utilize LLMs and
reduce costs, Liang et al. (2024b) integrated LLMs
into active learning, using uncertainty propagation
to selectively label utterances and extending this
feedback without spreading inaccuracies. Similarly,
An et al. (2023a) introduced local inconsistent sam-
pling with scalable queries to correct inaccurately
allocated utterances using LLMs.

3.2 New Slot-Value Discovery

The NSVD task seeks to identify new slots and the
corresponding values that emerge from dynamic
conversations. Unlike the previous NID task that fo-
cuses on utterance-level recognition, NSVD specifi-
cally narrows its scope within individual utterances,
excelling in detailed information extraction but lim-
ited by the quality and specificity of input data.
Innovations in this task can be classified into unsu-
pervised NSVD and partially supervised NSVD.

3.2.1 Unsupervised NSVD
Unsupervised NSVD discovers new slots and val-
ues without any labeled data, facing challenges
such as dialogue noise and requiring high human in-
tervention for ranking or selection processes. Early
works like Chen et al. (2013) combined a frame-
semantic parser with a spectral clustering-based
slot ranking model to induce semantic slots. (Chen
et al., 2014) further refined this method by integrat-
ing semantic frame parsing with word embeddings.
Moreover, Chen et al. (2015) enhanced slot discov-
ery by constructing lexical knowledge graphs and
employing random walks to delineate slots. De-
spite the benefits of linguistic tools for discovering

new slots, such methods struggled with dialogue
noise and the ranking processes require significant
human intervention. Addressing these challenges,
Hudeček et al. (2021) revised the ranking method
to iteratively refine the obtained slots through slot
taggers. To reduce reliance on generic parsers, Yu
et al. (2022) further proposed a unified slot schema
induction method that incorporates data-driven can-
didate value extraction and coarse-to-fine slot clus-
tering. Recently, Nguyen et al. (2023) utilized pre-
trained language model probing combined with
contrastive learning refinement to induce value seg-
ments for slot induction.

3.2.2 Partially Supervised NSVD
Partially supervised NSVD leverages some form
of labeled data and is divided into four types based
on the supervision nature: No New Slots, New Slot
Type Known, New Slot Description Known, and
New Slot Unknown.

No New Slots. This setting operates with all slot
types predefined and certain known values for each
slot labeled. It primarily explores leveraging ex-
isting slots to identify new values within these
predefined slots, facing challenges in efficiently
mining new value entities and leveraging external
knowledge. This is common in scenarios where
new restaurant names or new vaccine brand names
emerge. Specifically, Tür et al. (2011) mined new
slot entities from user queries in query click logs
with target URLs, while Yu and Ji (2016) used
dependency trees to identify slot-specific triggers.
Xu et al. (2017) introduced a slot filler refinement
method that constructs entity communities to filter
out incorrect new fillers. Liang et al. (2017) com-
bined word/character-level embeddings via high-
way networks to detect new values. Further, Wang
et al. (2019) explored the temporal slot-filling prob-
lem and proposed a pattern-based framework that
assesses pattern reliability and detects conflicts
to find temporal values. To tackle the unknown
value issue more effectively, Hu et al. (2019) for-
mulated a K-shot regression problem, using a hi-
erarchical context encoder and meta-learning to
better infer new value embeddings. To explore the
potential of external knowledge in aiding the dis-
covery of new values, He et al. (2020b) employed
background knowledge bases with a knowledge
integration method to facilitate tagging slot values.

New Slot Type Known. Unlike merely identify-
ing new values for predefined slots, practical ap-
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Methods
BANKING77 CLINC150 StackOverflow

ACC ARI NMI ACC ARI NMI ACC ARI NMI

SLMs-based Methods

PCK-Means (Basu et al., 2004) 32.66 16.24 48.22 54.61 35.40 68.70 24.16 5.35 17.26
BERT-KCL (Hsu et al., 2018) 60.15 46.72 75.21 68.86 58.79 86.82 13.94 7.81 8.84
BERT-MCL (Hsu et al., 2019) 61.14 47.43 75.68 69.66 59.92 87.72 72.07 57.43 66.81

CDAC+ (Lin et al., 2020) 53.83 40.97 72.25 69.89 54.33 86.65 73.48 52.59 69.84
BERT-DTC (Han et al., 2019) 56.51 44.70 76.55 74.15 65.02 90.54 71.47 53.66 63.17

DeepAligned (Zhang et al., 2021c) 64.90 53.64 79.56 86.49 79.75 93.89 - - -
MTPCLNN (Zhang et al., 2022) 73.98 63.10 84.22 88.25 84.77 94.88 83.18 69.50 77.03

ProbNID (Zhou et al., 2023) 74.03 62.92 84.02 88.99 83.00 95.01 80.50 65.70 77.32
DPN (An et al., 2023b) 74.45 63.26 84.31 89.22 84.30 95.14 84.59 70.27 79.89

RAP (Zhang et al., 2024) 76.27 65.79 85.16 91.24 86.28 95.93 86.60 71.73 82.36
USNID (Zhang et al., 2023a) 78.36 69.54 87.41 90.36 86.77 96.42 85.66 74.90 80.13

DFWG (Shi et al., 2023) 79.38 68.16 86.41 94.49 90.05 96.89 87.60 75.30 81.73
CsePL (Liang and Liao, 2023) 81.93 71.36 87.70 93.46 88.88 96.58 87.80 75.99 82.81

LLMs-based Methods

LLM for GID (Song et al., 2023) 64.22 - - 84.33 - - - - -

Hybrid Methods

Few-shot Clustering (Viswanathan et al., 2023) 65.30 - 82.40 79.40 - 92.60 - - -
ClusterLLM (Zhang et al., 2023b) 71.20 - 85.15 83.80 - 94.00 - - -

ALUP (Liang et al., 2024b) 82.85 73.10 88.35 94.93 89.22 97.43 87.70 76.03 83.14

Table 2: The main semi-supervised NID results on three benchmarks.

plications may require models to extract values for
well-defined slots not seen during training. The
main challenge is adapting models to new slots.
To address this, Chen and Moschitti (2019) ex-
plored transfer learning for labeling new values
and developed a neural adapter to adapt previously
trained models to these new slots. Further, He
et al. (2020a) improved transfer learning efficiency
by learning the label-relational output structure to
capture slot label correlations, while Wang et al.
(2021b) introduced prototypical contrastive learn-
ing with label confusion to refine slot prototypes
dynamically. Beyond using coarse slot label in-
formation, (Zhang and Zhang, 2023) introduced
Hierarchical Contrastive Learning (HiCL), where
coarse and fine-grained slot labels serve as super-
vised signals to assist in extracting cross-domain
slot fillers. Recently, Li et al. (2023c) explored ad-
vanced prompting techniques for identifying new
values, using slot types and inverse prompting to
enhance model performance.

New Slot Description Known. In contrast to ac-
cessing well-defined new slot types, this setting
deals with extracting new values using only coarse-
grained descriptions of new slots. Concretely,
Bapna et al. (2017) proposed Concept Tagger (CT)
for cross-domain slot-filling with slot descriptions,

while Shah et al. (2019) used slot descriptions to
improve slot representations. In addition, Liu et al.
(2020) proposed a coarse-to-fine (Coach) method
that initially learns value patterns coarsely, then
fills them into fine slot types based on the similarity
with the representation of each slot type descrip-
tion. Inspired by this, He et al. (2020c) enhanced
Coach with contrastive loss and adversarial attacks
to improve robustness. Contrary to previous meth-
ods, Du et al. (2021) and Liu et al. (2022b) tackle
the slot-filling problem as a reading comprehension
task, extracting new values by answering questions
derived from slot descriptions. Recently, Luo and
Liu (2023) combined learnable prompt tokens and
discrete tokens of slot descriptions to identify new
values.

New Slot Unknown. Unlike the above studies,
this setting focuses on extracting new slot values
while also inducing potential new slots, without
knowing the prior information of new slots. In
this context, Wu et al. (2022a) used existing lin-
guistic annotation tools to extract slot values and
proposed an incremental clustering scheme that
synergizes labeled and unlabeled data for slot struc-
ture discovery. To reduce labeling efforts with ro-
bust performance, Wu et al. (2024) introduced a
Bi-criteria active learning scheme that selects data
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Methods CamRest Cambridge SLU WOZ-hotel WOZ-attr ATIS

CDAC+ (Lin et al., 2020) 20.4 17.8 17.4 55.2 58.2
BERT-DTC (Han et al., 2019) 13.1 13.8 17.0 54.5 54.3

DeepAligned (Zhang et al., 2021c) 66.3 63.3 37.8 64.4 62.9
SIC (Wu et al., 2022a) 70.6 77.0 58.8 76.1 63.8

Bi-criteria (Wu et al., 2024) - - 68.94 78.25 87.96

Table 3: The Span-F1 scores of New Slot Unknown methods on five benchmarks.

based on uncertainty and diversity when discerning
new slots.

3.3 Joint OnExp
While significant successes have been achieved,
previous methods tackle new intent and slot-value
discovery as separate tasks, despite their inherent
interconnection. Joint OnExp addresses this by si-
multaneously identifying new intents, slots, and
values, offering a comprehensive understanding
but posing challenges in managing knowledge shar-
ing without compromising performance. Pioneers
in this field, Zeng et al. (2021) devised a coarse-
to-fine three-step method—role-labeling, concept-
mining, and pattern-mining—to infer intents, slots,
and values. Despite its promising results, Joint
OnExp is still under-explored, offering substantial
space for further innovation.

4 Leaderboard and Takeaway

Leaderboard: The leaderboard for representa-
tive NID and NSVD methods on widely recognized
datasets is presented in Table 2 and Table 3. More
details are presented in Appendix B.

Takeaway for NID: Based on the review of NID
efforts, we present the following observations:

• Pre-trained Language Models Enhance OnExp.
It has been observed that NID methods utilizing
pre-trained models, such as CsePL and ALUP,
consistently outperform traditional methods like
PCK-Means by significant margins (∼ 50% in
ACC). This demonstrates that pre-trained mod-
els, including LLMs, contribute substantial foun-
dational knowledge and supplementary supervi-
sion signals. They enhance NID performance by
offering a deeper contextual understanding and
quicker adaptation to new user intents.

• Prior Knowledge Leads to Improvement. We
observe that NID methods with supervision gen-
erally surpass unsupervised ones, as incorporat-
ing prior knowledge—through labeled data or

external information—significantly boosts the
model’s ability to identify new intents. For ex-
ample, semi-supervised CsePL shows over 5%
improvements in all evaluation metrics compared
to the SOTA unsupervised IDAS. This highlights
the critical role of integrating prior knowledge.

Takeaway for NSVD: According to the recent
advances in NSVD, we have the following insights:

• External Knowledge Enhances Results. Utiliz-
ing external knowledge bases in NSVD processes
significantly enhances new slot value identifica-
tion. These resources provide a rich contextual
backdrop that aids models in accurately recog-
nizing and categorizing new slot values, even in
complex or ambiguous contexts.

• Effective Knowledge Transfer Influences NSVD.
Implementing effective knowledge transfer mech-
anisms that connect known slots and values with
new slots and values enhances the ability of
NSVD models. It leverages existing slot knowl-
edge to inform and guide the identification and
integration of new slots and values, reducing the
learning curve and improving the system’s adapt-
ability to dynamic conversational contexts.

5 Conclusion and Future Directions

This paper presents the first comprehensive sur-
vey of recent advances in OnExp. We begin
by formulating the task, detailing representative
data resources and evaluation protocols used. We
then examine prevalent OnExp methods, including
NID, NSVD, and Joint OnExp. Despite signifi-
cant progress achieved, several challenges remain,
inspiring promising frontiers for future research.

Early OnExp. Existing studies primarily concen-
trate on developing models to expand predefined
ontologies using extensive utterances. Yet, real-
world conversational agents necessitate the ability
to rapidly recognize and adapt to evolving user
needs and dialogue contexts (Li et al., 2023a,b),
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thus highlighting the critical importance of early-
stage OnExp. Early OnExp faces the unique chal-
lenge of identifying new ontological items with
minimal utterances when a known ontology has
been established using extensive data. In such a
scenario, nascent ontological items risk being sub-
merged by more prevalent ones. Although Liang
and Liao (2023) showcased the effectiveness of
CsePL in early intent discovery, more specific meth-
ods that fully address the unique challenges of this
area remain largely under-explored. This highlights
its significant potential as a promising field for fu-
ture research.

Multi-modal OnExp. Current OnExp tasks gen-
erally learned new ontological items from purely
text-modal utterances. However, practical interac-
tions with conversational agents typically occur in
multi-modal settings (Liao et al., 2018; Zhang et al.,
2019; Wu et al., 2022b), suggesting that such multi-
modal data can enhance new ontology learning. For
example, incorporating visual data in e-commerce
or audio cues in customer support could provide
deeper contextual insights than text-only systems
(Zhu et al., 2020). Despite its potential, multi-
modal OnExp is still in its early stages, with limited
research on effectively synergizing different modal-
ities to expand ontologies. This emerging area
promises to significantly improve the capabilities
of conversational agents across different applica-
tions, necessitating more comprehensive research
into advanced modality integration techniques and
benchmarks of multi-modal data in OnExp.

Holistic OnExp. Prior OnExp research has
mainly confined their ontology analyses to the CU
module of conversational agents, assessing their
performance via metrics such as recognition accu-
racy. This narrow focus, however, overlooks the
broader impact of OnExp results on the other piv-
otal components of conversational agents, e.g., dia-
logue management and response generation. Addi-
tionally, the rationality of newly expanded ontolo-
gies has seldom been thoroughly examined, rais-
ing questions about whether OnExp outcomes can
genuinely enhance dialogue policy learning or the
quality of generated responses. To fill these gaps,
there is a compelling need for more integrated ap-
proaches in OnExp. These methods should extend
beyond merely identifying new ontological items,
to a thorough evaluation of their holistic impact on
the entire conversational agents, ensuring that ad-
vancements in OnExp positively contribute to the

evolution of conversational AI and improve both
system performance and user interaction quality.

Limitations

This survey provides a comprehensive overview of
the latest studies in OnExp. Despite our diligent
efforts, some limitations may still persist:

Categorization. The survey makes the first at-
tempt to organize the recent OnExp works into
three distinct dimensions. This organization re-
flects our subjective interpretation and understand-
ing. External insights on this categorization might
enrich the perspectives presented.

Descriptions. The descriptions of the introduced
OnExp approaches in this survey are kept highly
succinct to allow broad coverage within the con-
straints of page limits. We intend for this survey
to act as a starting point, directing readers to the
original works for more detailed information.

Experimental Results. The leaderboard in this
survey predominantly emphasizes broad compar-
isons of different OnExp approaches, such as the
overarching system performance, instead of de-
tailed analyses. Going forward, we aim to expand
on these comparisons with more in-depth analyses
of the experimental outcomes, thereby offering a
more comprehensive understanding of the strengths
and weaknesses of various OnExp models.
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A Appendix

A.1 Data Resources

New Intent Discovery Datasets. We show three
widely used datasets for NID. Specifically, BANG-
ING77 (Casanueva et al., 2020) is a fine-grained
intent discovery dataset sourced from banking
domain dialogues. It contains over 13K user
utterances distributed across 77 unique intents.
CLINC150 (Larson et al., 2019), on the other hand,
is a multi-domain dataset featuring 150 distinct in-
tents and 22,500 utterances across 10 different do-
mains. StackOverflow (Xu et al., 2015), a dataset
curated from Kaggle.com, includes 20,000 techni-
cal questions categorized into 20 distinct areas.

New Slot-Value Discovery Datasets. For the
NSVD task, we introduce seven prominent datasets
spanning various domains. The CamRest dataset,
provided by Wen et al. (2017), delves into the
restaurant domain, boasting over 2,700 utterances
across 4 slots, offering valuable insights into task-
oriented dialogues. Similarly, the Cambridge SLU
dataset by Henderson et al. (2012) also explores
the restaurant sector, featuring more than 10,500
utterances across 5 slots. Additionally, the Mul-
tiWOZ dataset spans multiple domains, with its
subsets, WOZ-attr (Eric et al., 2020) and WOZ-
hotel (Eric et al., 2020), exploring the attraction
and hotel domains with over 7,500 and 14,000 utter-
ances, respectively. Despite encompassing intents,
the limited intent quantity in these datasets restricts
their suitability for the NID task. Conversely, the
ATIS dataset (Hemphill et al., 1990) expands into
the flight domain with nearly 5,000 utterances and
120 slots. The SNIPS dataset (Coucke et al., 2018)
provides a valuable resource for spoken language
understanding across seven domains, boasting 72
slots and around 2,000 utterances per domain. The
SGD (Rastogi et al., 2020) contains dialogues from
16 domains with a total of 46 intents and 214 slots.
Notably, ATIS, SNIPS, and SGD are replete with
a variety of intents, thus making them apt for com-
prehensive studies in both NID and NSVD tasks.

A.2 Evaluation Protocols

NID Metrics. The NID task involves accurately
assigning utterances into their corresponding intent
groups from potentially many possibilities. Accord-
ingly, the performance of NID models is typically
assessed using three standard metrics: ACC, ARI,
and NMI (Zhang et al., 2021c, 2022), which evalu-

ate how effectively the model identifies and groups
intents, ensuring that the clustering reflects true
user intentions rather than random associations. As
previously mentioned, ACC assesses NID perfor-
mance by calculating the proportion of correctly
predicted outputs to total predictions, aligned with
ground-truth labels. Notably, the ACC in this con-
text is derived following an alignment process us-
ing the Hungarian algorithm. The definition of
ACC is as follows:

ACC =

∑N
i=1 1yi=map(ŷi)

N
, (2)

where {ŷi, yi} denote the predicted and true labels,
respectively. map(·) is the Hungarian algorithm-
based mapping function.

Different from ACC, ARI measures the concor-
dance of the predicted and actual clusters through
an assessment of pairwise accuracy within clusters,
which is computed as:

ARI =
∑
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(3)
where ni,j denotes the number of sample pairs both
in ith predicted and jth ground-truth cluster. ui =∑

j ni,j , and vj =
∑

i ni,j represent the sum of
sample pairs in the same predicted and true clusters,
respectively. N is the number of all samples.

Regarding the NMI, it aims to gauge the level
of agreement between the predicted and ground-
truth clusters by quantifying the normalized mutual
information between them. It can be calculated as
follows:

NMI(ŷ,y) =
2 · I(ŷ,y)

H(ŷ) +H(y)
, (4)

where {ŷ,y} denote the predicted labels and the
ground-truth labels respectively. I(·) signifies mu-
tual information. H(·) is the entropy function.

NSVD Metrics. For the NSVD task, the chal-
lenge lies in accurately identifying relevant slots
and values within utterances and precisely delin-
eating their boundaries. Metrics such as Precision,
Recall, and Span-F1 are essential for assessing the
performance of NSVD models. These metrics en-
sure the accuracy and completeness of information
extraction, focusing on specific elements within
utterances. Considering a set of actual slot val-
ues M1,M2, . . . ,Mn, where n is the number of
slots, and a corresponding set of predicted values
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Methods
BANKING77 CLINC150 StackOverflow

ACC ARI NMI ACC ARI NMI ACC ARI NMI

Statistical Methods

K-Means (MacQueen et al., 1967) 29.55 12.18 54.57 45.06 26.86 70.89 13.55 1.46 8.24
AG (Gowda and Krishna, 1978) 31.58 13.31 57.07 44.03 27.70 73.07 14.66 2.12 10.62

NN-based Methods

DEC (Xie et al., 2016) 41.29 27.21 67.78 46.89 27.46 74.83 13.09 3.76 10.88
DCN (Yang et al., 2017) 41.99 26.81 67.54 49.29 31.15 75.66 34.26 15.45 31.09
DAC (Chang et al., 2017) 27.41 14.24 47.35 55.94 40.49 78.40 16.30 2.76 14.71

DeepCluster (Caron et al., 2018) 20.69 8.95 41.77 35.70 19.11 65.58 - - -
SCCL (Zhang et al., 2021a) 40.54 26.98 63.89 50.44 38.14 79.35 68.15 34.81 69.11

USNID (Zhang et al., 2023a) 54.83 43.33 75.30 75.87 68.54 91.00 69.28 52.25 72.00
IDAS (De Raedt et al., 2023) 67.43 57.56 82.84 85.48 79.02 93.82 83.82 72.20 81.26

Table 4: The main unsupervised NID results on three benchmarks.

Methods CamRest Cambridge SLU WOZ-hotel WOZ-attr ATIS

DistFrame-Sem(Chen et al., 2014) 53.5 59.0 38.2 37.5 61.6
Merge-Select(Hudeček et al., 2021) 55.2 66.4 38.8 38.3 64.8

Table 5: The main results of unsupervised NSVD methods on five benchmarks. Here we provide the Span-F1 score.

ε1, ε2, . . . , εn, precision Pi and recall Ri are calcu-
lated for each slot type i as follows:

Pi =
|Mi ∩ εi|

|εi|
, (5)

Ri =
|Mi ∩ εi|
|Mi|

. (6)

The overall weighted precision P and recall R
are computed as follows:

P =

∑n
i=1 |εi|Pi∑n
j=1 |εj |

, (7)

R =

∑n
i=1 |Mi|Ri∑n
j=1 |Mj |

. (8)

The F1 score is then computed as the harmonic
mean of the overall weighted precision and recall,
thus accounting for both the precision and recall in
a balanced manner:

F1 =
2PR

P +R
. (9)

In the context of slot value spans, this metric is
specifically referred to as Span-F1.

Other Metrics. While NID and NSVD metrics
offer valuable insights into OnExp model perfor-
mance, their uniform application across all test
data can obscure distinctions between utterances
containing known versus novel ontological items.
To address this, metrics such as Known ACC,
Novel ACC, and the H-score are indispensable, as
they effectively differentiate model performance on
known and novel items, providing a more granular
assessment of model capabilities (An et al., 2024).
Specifically, Known ACC and Novel ACC are spe-
cialized forms of ACC, computed separately for
known and novel ontological items. The H-score is
calculated as the harmonic mean of Known ACC
and Novel ACC as follows:

H-score = 2
1/Know ACC+1/Novel ACC . (10)

B Leaderboard

NID Leaderboard. Table 4 presents the unsu-
pervised NID results on three benchmarks. No-
tably, although USNID is categorized into the semi-
supervised NID methods, it can adapt to an unsu-
pervised setting. Hence, we have included USNID
results in the unsupervised context for a compre-
hensive evaluation.

NSVD Leaderboard. Table 5 and Table 6 present
the main performance of unsupervised NSVD

18126



Sequence tagging-based models MRC-based models Prompting-based models

Domain CT RZT Coach CZSL PCLC RCSF GZPL

AddToPlaylist 38.82 42.77 50.90 53.89 59.24 68.70 61.64
BookRestaurant 27.54 30.68 34.01 34.06 41.36 63.49 62.93
GetWeather 46.45 50.28 50.47 52.04 54.21 65.36 64.97
PlayMusic 32.86 33.12 32.01 34.59 34.95 53.51 66.42
RateBook 14.54 16.43 22.06 31.53 29.31 36.51 47.53
SearchCreativeWork 39.79 44.45 46.65 50.61 53.51 69.22 72.88
SearchScreeningEvent 13.83 12.25 25.63 30.05 27.17 33.54 51.42

Average F1 30.55 32.85 37.39 40.99 42.82 55.76 61.07

Table 6: The main results of Partially Supervised NSVD methods the SNIPS dataset.

methods and partially supervised NSVD methods.
We adopted results reported in the published

literature (Zhang et al., 2021c, 2023a; Zhou et al.,
2023; Zhang et al., 2024; Liang and Liao, 2023;
Wu et al., 2022a, 2024).

18127


