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Abstract

The effectiveness of large language models
(LLMs) is not only measured by their ability
to generate accurate outputs but also by their
calibration—how well their confidence scores
reflect the probability of their outputs being
correct. While unsupervised pre-training has
been shown to yield LLMs with well-calibrated
conditional probabilities, recent studies have
shown that after fine-tuning with reinforcement
learning from human feedback (RLHF), the
calibration of these models degrades signifi-
cantly. In this work, we introduce Adaptive
Temperature Scaling (ATS), a post-hoc calibra-
tion method that predicts a temperature scal-
ing parameter for each token prediction. The
predicted temperature values adapt based on
token-level features and are fit over a standard
supervised fine-tuning (SFT) dataset. The adap-
tive nature of ATS addresses the varying de-
grees of calibration shift that can occur after
RLHF fine-tuning. ATS improves calibration
by over 10-50% across three downstream natu-
ral language evaluation benchmarks compared
to prior calibration methods and does not im-
pede performance improvements from RLHF.

1 Introduction

Large language models (LLMs) have become a cor-
nerstone of modern artificial intelligence, offering
impressive capabilities in natural language process-
ing tasks. However, the reliability of LLMs is in-
tertwined with their ability to generate confidence
scores that accurately reflect the likelihood of their
outputs being correct. This calibration, aligning a
model’s confidence with its accuracy, is essential,
especially when LLMs are deployed in real-world
scenarios where decisions based on incorrect out-
puts can have significant consequences.

While unsupervised pre-training methods have
shown success in producing well-calibrated LLMs,

*Equal contribution.

a challenge arises when these models undergo fine-
tuning through reinforcement learning from human
feedback (RLHF). While RLHF fine-tuning is ef-
fective in enhancing model performance on spe-
cific tasks and aligning outputs with human pref-
erences, recent studies indicate a notable degrada-
tion in the calibration of LLMs post-RLHF fine-
tuning (Achiam et al., 2023; Tian et al., 2023; Ka-
davath et al., 2022). This degradation compromises
the model’s ability to provide reliable confidence
scores, an issue that becomes critical when these
models are applied to tasks requiring high lev-
els of trust and accuracy. An important question
arises: how can we maintain the performance gains
achieved through RLHF fine-tuning while ensuring
that the model’s confidence scores remain reliable?

To address this challenge, our work introduces
Adaptive Temperature Scaling (ATS), a post-hoc
calibration technique that predicts a temperature
scaling parameter for each token prediction based
on a language model’s hidden features. Basic
temperature scaling is a widely-used calibration
method that applies a single temperature parame-
ter across all outputs of a model. This technique,
while effective in some contexts, assumes uniform
calibration needs across all inputs, which is of-
ten not the case for complex models like LLMs.
ATS, in contrast, predicts a unique temperature
scaling parameter for each set of token predictions.
This input-specific approach allows ATS to refine
the calibration process, addressing the varying de-
grees of calibration shift that can occur after RLHF
fine-tuning. For instance, certain inputs or top-
ics might be more susceptible to miscalibration
post-RLHF, and ATS can adaptively adjust the scal-
ing for these instances more aggressively than for
others where the model’s confidence remains rela-
tively well-aligned with its accuracy. Importantly,
our approach reduces the need for task-specific cal-
ibration, which may be difficult to achieve in many
cases, given the wide variety of downstream tasks
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that LLMs may be used for.
We conduct experiments on MMLU, TriviaQA,

and TruthfulQA to evaluate the effectiveness of
ATS in improving the calibration of LLMs follow-
ing RLHF fine-tuning. Our findings demonstrate
that ATS improves the calibration of post-RLHF
LLMs by 10-50% on average, while having no ef-
fect on model performance.

2 Related Work

Recent literature has extensively discussed the chal-
lenges of maintaining calibration in LLMs, partic-
ularly highlighting the degradation in calibration
post-RLHF (Lin et al., 2022; Park and Caragea,
2022; Kadavath et al., 2022; Xiao et al., 2022; Kuhn
et al., 2023). The concept of verbalized confidence
has been explored as a way to counteract this degra-
dation (Xiong et al., 2023; Tian et al., 2023), and
dialogue models have been shown to express un-
certainty in a well-calibrated manner (Mielke et al.,
2022; Zhou et al., 2023). Compared to works on
improving sentence level calibration given token-
level probabilities (Kuhn et al., 2023; Tian et al.,
2023), our work aims to directly improve the cali-
bration of token-level probabilities.

The calibration of neural networks has been a
topic of significant interest, with foundational con-
cepts such as proper scoring rules (Gneiting et al.,
2007) laying the groundwork. Model mismatch and
distribution shift often degrade calibration, com-
monly quantified with common metrics including
Expected Calibration Error (ECE) (Naeini et al.,
2015) and Brier score (Brier, 1950). Modern neu-
ral networks have been found to exhibit overconfi-
dence (Guo et al., 2017; Thulasidasan et al., 2019;
Wen et al., 2020), especially in the context of im-
age classification (Geirhos et al., 2018; Taori et al.,
2020; Wen et al., 2020; Hendrycks et al., 2021).

Various methods have been proposed for cal-
ibrating neural networks, including temperature
scaling (Guo et al., 2017), Platt scaling (Platt
et al., 1999; Niculescu-Mizil and Caruana, 2005),
label smoothing (Müller et al., 2019), scaling bin-
ning (Kumar et al., 2019; Zhang et al., 2023), and
more sophisticated approaches (Hendrycks et al.,
2018; Katz-Samuels et al., 2022; Choi et al., 2023;
Jiang et al., 2023). While these methods offer strate-
gies for improving model calibration, our approach
uniquely adapts the temperature scaling parame-
ter for each token prediction based on its hidden
features, tailoring the method to the problem of

language modeling.

3 Background and Problem Setting

We consider access to a conversation SFT dataset of
D = {(x, y)} with vocabulary V where x ∈ V lx ,
denotes the instruction, each with sequence length
lx, and y ∈ V ly is the corresponding response
with sequence length ly. We wish to calibrate lan-
guage model π(y|x). While we do not make any
assumptions about the training process of π, we
find our calibration method is most useful for lan-
guage models following an RLHF process where
token-level calibration is often significantly de-
graded compared to base language models which
are generally well calibrated (Achiam et al., 2023).

For a given sample (x, y), we generate a set
of unnormalized logits ẑ = π(x) ∈ Rlx+ly×|V |

where each ẑi defines the unnormalized logits for
the i + 1-th token and |V | is the vocabulary size.
Prior methods (Guo et al., 2017; Platt et al., 1999)
propose various scaling methods for calibrating
models by transforming logits. In matrix scaling,
a calibration head is used to produce calibrated
logits q̂ = Wẑ+ b where W, b are learnable param-
eters. In the case of language modeling where |V |
is large, learning a full transform matrix becomes
computationally infeasible, so we compare to vec-
tor scaling, where W is constrained to a diagonal
matrix. Temperature scaling is the case when W
is constrained further to a scalar matrix and b to
the zero-vector. To learn these parameters, these
methods minimize the cross-entropy over the SFT
dataset calculated over response tokens.

4 Adaptive Temperature Scaling

Architecture. Temperature scaling, while effec-
tive in classification settings, struggles to adapt
logits well in language modeling as the confidence
scores that are most important (such as those that
contain actual answers or facts) account for only a
small portion of natural language sequences. There-
fore, optimizing a single temperature parameter
often results in post-RLHF language models still
being overconfident post scaling. Additionally, lan-
guage model miscalibration largely varies based on
the type of token being predicted following RLHF.
Matrix and vector scaling can in theory perform
adaptive confidence prediction by using logits as
features; however, they are prone to overfitting, as
we find in Section 5.

To balance regularization with modeling capac-
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ity in our calibration head, we instead propose to
use a head architecture that predicts a singular tem-
perature for every token prediction. For an input
pair (x, y), we first produce input-dependent fea-
tures ĥ ∈ Rlx+ly ,h using the language model π.

We then learn a calibration head to produce a
temperature vector cθ(ĥ) = τ ∈ Rlx+ly . We expo-
nentiate τ to ensure positive values then transform
logits to yield calibrated logits q̂ = ẑ ◦ eτ . In
practice, we find that directly using the logits ẑ as
features can be inefficient (with a large vocabulary
size) and also less effective compared to hidden
states. Therefore, we use the last hidden state of
the language model π as the features for predicting
τ . With this architecture formulation, we retain the
ability to predict confidences adaptively depend-
ing on the context, while also never changing the
ranking for the possible next token given specific
context, as each set of token logits are scaled by
only a single value.

Loss function. To improve the process of cali-
bration, we take inspiration from selective classi-
fication works (Choi et al., 2023) and use a loss
function which adapts targets depending on the cor-
rectness of the original language model. For a logit,
label pair q̂ ∈ Rv, y ∈ V , and weighting hyperpa-
rameter α ∈ [0, 1] we optimize the following loss
function ℓ:

ℓ(q̂, y) =

{
−(1− α) log (σSM (q̂)y) argmax q̂ = y

− α
|V |

∑|V |
i=1 log(σSM (q̂))i argmax q̂ ̸= y

(1)
This loss function uses a uniform distribution as the
target when the model is incorrect and a standard
one-hot cross-entropy when the model is correct.

5 Experiments

In this section, we aim to evaluate our proposed
method on multiple benchmarks to demonstrate
its effectiveness in improving calibration of LLMs
fine-tuned with RLHF. We compare our method
to no calibration as well as existing temperature
scaling methods. Additionally, we ablate the main
components of our method including the loss func-
tion, loss weighting, and head architecture.

Evaluation Setting. We evaluate using two
7B parameter post-RLHF models LLama-2-Chat-
7b (Touvron et al., 2023) and Qwen-Chat-7b. As
the calibration dataset, we use the Alpaca GPT-
4 (Peng et al., 2023) instruction tuning dataset,
which contains a diverse set of instructions with

high quality answers. We then evaluate model cali-
bration on three downstream tasks.

We perform multiple choice evaluation on the
MMLU (Hendrycks et al., 2020) by aggregating
statistics across the entire dataset. Specifically we
concatenate the confidences and correctness labels
from all subjects, then calculate the calibration met-
rics. We also evaluate on two free response datasets,
TriviaQA (Joshi et al., 2017) and TruthfulQA (Lin
et al., 2021).

Metrics. In multiple choice inference, we have
a set of tokens ids O which represent the valid
options for a multiple choice answer, so the con-
fidence scores are p = σSM (q̂lx,j∈O) where σSM
denotes the softmax function. To calculate confi-
dences over a long sequence of response tokens
for an input x, we sample a generation ŷ of length
lŷ from the original language model then concate-
nate to the instruction to form ẑ and q̂ following
calibration. Then, we calculate an average over
transition probabilities on the response tokens. We
use the Expected Calibration Error (ECE) (Guo
et al., 2017) and Brier score (Brier, 1950) to evalu-
ate calibration. We also report accuracy but each
method does not significantly affect accuracy.

Baselines. We compare our method to the post-
RLHF model without calibration, temperature scal-
ing, vector scaling, and scaling binning (Kumar
et al., 2019; Zhang et al., 2023). We do not evalu-
ate matrix scaling as the full matrix becomes com-
putationally infeasible for large vocabulary sizes,
as the projection matrix requires the square of the
vocabulary size parameters.

5.1 Results
We report the results of our method compared to

the baselines in Table 1. Overall, we find that our
method improves calibration by 10-50% across the
three benchmarks in terms of ECE and Brier Score
compared to the next best method for both LLama-
2-7b-Chat and Qwen-7b-Chat. More specifically,
for Llama-7b-Chat, applying ATS achieved the low-
est ECE and BS across all downstream benchmarks,
showing how adjusting the temperature scaling pa-
rameter for each token prediction can significantly
improve calibration. Qwen-7b-Chat also saw a sig-
nificant improvement in calibration, although in the
case of TriviaQA, ATS actually makes Qwen-7b-
Chat slightly underconfident compared to vector
scaling. Importantly, the calibration dataset used
for training ATS, Alpaca GPT-4, is unrelated to
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Model Calibration
MMLU TriviaQA TruthfulQA

Acc ECE BS Acc ECE BS Acc ECE BS
Llama-2-7b-Chat (Touvron et al., 2023) None 0.474 0.298 0.313 0.592 0.221 0.239 0.322 0.507 0.480

Temperature 0.474 0.270 0.295 0.592 0.187 0.224 0.322 0.492 0.463
Vector Scaling 0.474 0.324 0.333 0.592 0.211 0.234 0.322 0.499 0.471
Scaling Binning 0.474 0.296 0.312 0.592 0.222 0.239 0.322 0.544 0.504
ATS (Ours) 0.474 0.125 0.227 0.592 0.069 0.217 0.322 0.197 0.264

Qwen-7b-Chat (Bai et al., 2023) None 0.571 0.141 0.215 0.495 0.272 0.311 0.230 0.372 0.304
Temperature 0.571 0.093 0.215 0.495 0.269 0.308 0.230 0.313 0.262
Vector Scaling 0.571 0.144 0.218 0.495 0.252 0.308 0.230 0.369 0.302
Scaling Binning 0.571 0.132 0.324 0.495 0.320 0.431 0.230 0.385 0.308
ATS (Ours) 0.571 0.050 0.190 0.495 0.254 0.303 0.230 0.165 0.188

Llama-2-13b-Chat (Touvron et al., 2023) None 0.532 0.228 0.262 0.679 0.150 0.200 0.368 0.484 0.461
Temperature 0.532 0.175 0.235 0.679 0.065 0.185 0.368 0.443 0.418
Vector Scaling 0.532 0.246 0.283 0.679 0.120 0.191 0.368 0.378 0.371
Scaling Binning 0.532 0.227 0.260 0.679 0.150 0.199 0.368 0.494 0.466
ATS (Ours) 0.532 0.092 0.211 0.679 0.061 0.200 0.368 0.192 0.267

Table 1: Model Calibration Comparison. We find that ATS yields significant improvements over other calibration
methods for both LLama-2-7b-Chat and Qwen-7b-Chat.

loss ECE BS
no smoothing 0.226 0.269
full smoothing 0.149 0.236
selective 0.125 0.227

Table 2: Smoothing type. Selec-
tive smoothing outperforms cross-
entropy (no smoothing) and label
smoothing (full smoothing).

α ECE BS
0.1 0.197 0.254
0.2 0.172 0.243
0.3 0.151 0.236
0.4 0.134 0.231
0.5 0.125 0.227
0.6 0.113 0.224

Table 3: Loss weighting. A high
smooth loss weight is necessary to
correct for language model over-
confidence.

head ECE BS
linear 0.140 0.233
mlp 0.132 0.230
transformer 0.125 0.227

Table 4: Head architecture. We
find that using a Transformer
head in the same configuration as
LLaMa-2-7b-Chat performs best.

the downstream tasks evaluated on, which suggests
that the method does not overfit to the calibration
data but rather captures underlying predictive un-
certainty principles applicable across various tasks.

5.2 Ablation Studies
To analyze our method, we ablate the main com-

ponents: loss objective, loss weight, and head archi-
tecture, measuring calibration metrics on MMLU.

Loss objective. We compare different loss objec-
tives, standard cross-entropy, cross-entropy with
label smoothing, and selective smoothing (ours) in
Table 2. For label smoothing we performed a sweep
and found a smoothing value of 0.3 to be optimal.
We find that selective smoothing outperforms both
the typical cross-entropy loss and label smooth-
ing. One possible explanation for cross-entropy
and standard label smoothing being less effective
is that learning adaptive temperature values with a
cross-entropy loss can actually cause the model to
increase confidence when the model is incorrect. In
comparison, by using a uniform distribution target
for incorrect predictions, this will never happen.

Loss weight. We perform a sweep of smooth loss
weight in Table 3. While increasing the loss weight

to 0.6 (compared to 0.5) benefits MMLU calibra-
tion, in practice we found this higher loss weight
began to perform worse for TriviaQA, and we did
not sweep higher values as the model begins to
become underconfident.

Head architecture. In Table 4, we ablate the
choice of head architecture. We find that a causal
transformer layer identical to those used in the
LLama-2-7b-chat model performs best. Given that
the inference cost of a single additional layer is
relatively negligible, using a full transformer layer
is generally best for calibration performance as it
can aggregate hidden state values from prior tokens
for the specific task of predicting calibration.

6 Conclusion

In this paper, we introduce Adaptive Temperature
Scaling, a calibration technique for post-RLHF
LLMs, offering a significant improvement in model
calibration without compromising performance.
By predicting a temperature based on token-level
features, ATS addresses the diverse calibration
needs of LLMs. Our results across multiple bench-
marks confirm our approach can calibrate LLMs on
a wide array of tasks using existing SFT datasets.

18131



7 Limitations

While ATS offers a significant improvement in
model calibration without compromising post-
RLHF performance by adapting the temperature
scaling parameter based on token-level features of
each input, limitations remain. In particular, we do
not test how ATS interacts with different sentence-
level confidence methods such as semantic uncer-
tainty. These limitations underscore the need for
ongoing research to refine calibration techniques
and incorporate a more nuanced understanding of
uncertainty to develop methods that allow models
to express confidence in a manner that aligns with
natural language.
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A Confidence Visualizations

In Figure 1, we compare confidence calibration
on TruthfulQA dataset samples. We compare the
Llama-2-7b-chat model without any calibration to
after calibration with our method. Our method
is able to cause the language model to become
significantly less confident on tokens containing
inaccuracies.

B Hyperparameters

config value
optimizer AdamW
optimizer betas β1, β2=0.9, 0.999

weight decay 0.0
learning rate 5e− 5

learning rate schedule cosine decay
epochs 2
batch size 8

Table 5: Calibration training hyperparameters.

In Table 5 we list the main hyperparameters used
for training calibration methods over Alpaca GPT-
4.

C Discussion on Computational Costs

ATS involves fine-tuning language models, and it
takes approximately 6 L40 GPU hours (6 hours
on a single L40 GPU) to fine-tune Llama-7b for
2 epochs over Alpaca GPT-4 English. In terms
of additional inference cost, the forward pass is
1.04 seconds for the base model and 1.12 seconds
when applying our method. We find that the total
additional computational cost of our method is rel-
atively small, and the additional forward pass cost
can likely be further reduced with better optimized
code as the cost is only a single additional trans-
former layer or 1/32th the cost of a full Llama-7b
model.

D Reliability Diagrams

To better understand how our method changes
the calibration of models, we show reliability dia-
grams for Llama-2-7b-Chat (Figure 2), Qwen-7b-
Chat(Figure 3), and Llama-2-13b-Chat(Figure 4).
For each diagram we use 15 confidence bins, the
same used in ECE evaluation. Additionally, we
modify the transparency of bars based on the per-
centage of samples with confidence scores falling
in each corresponding bin (more transparent indi-
cating fewer samples). Additionally, confidence
bins with no samples will not appear on the plot. A

blue line showing perfect calibration is also drawn
across each diagram for reference. The bar plots
are plotted with the center of each bar correspond-
ing to the confidence and accuracy value.
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With Calibration

Without Calibration

Figure 1: Calibration Visualization. We visualize confidence calibration samples, comparing token-wise con-
fidences before and after calibration. The less confident a token is, the more red we highlight the background.
Additionally, we average the confidences of tokens to form full words in order to create a more interpretable
visualization.
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(a) Uncalibrated Llama-2-7b-Chat MMLU reliability dia-
gram

(b) Calibrated Llama-2-7b-Chat MMLU reliability dia-
gram

(c) Uncalibrated Llama-2-7b-Chat TriviaQA reliability
diagram

(d) Calibrated Llama-2-7b-Chat TriviaQA reliability dia-
gram

(e) Uncalibrated Llama-2-7b-Chat TruthfulQA reliability
diagram

(f) Calibrated Llama-2-7b-Chat TruthfulQA reliability
diagram

Figure 2: Llama-2-7b-Chat reliability diagrams.
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(a) Uncalibrated Qwen-7b-Chat MMLU reliability dia-
gram (b) Calibrated Qwen-7b-Chat MMLU reliability diagram

(c) Uncalibrated Qwen-7b-Chat TriviaQA reliability dia-
gram

(d) Calibrated Qwen-7b-Chat TriviaQA reliability dia-
gram

(e) Uncalibrated Qwen-7b-Chat TruthfulQA reliability
diagram

(f) Calibrated Qwen-7b-Chat TruthfulQA reliability dia-
gram

Figure 3: Qwen-7b-Chat reliability diagrams.
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(a) Uncalibrated Llama-2-13b-Chat MMLU reliability
diagram

(b) Calibrated Llama-2-13b-Chat MMLU reliability dia-
gram

(c) Uncalibrated Llama-2-13b-Chat TriviaQA reliability
diagram

(d) Calibrated Llama-2-13b-Chat TriviaQA reliability di-
agram

(e) Uncalibrated Llama-2-13b-Chat TruthfulQA reliabil-
ity diagram

(f) Calibrated Llama-2-13b-Chat TruthfulQA reliability
diagram

Figure 4: Llama-2-13b-Chat reliability diagrams.
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