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Abstract

Recent large language models (LLMs) have
demonstrated remarkable generalization abili-
ties in mathematics and logical reasoning tasks.
Prior research indicates that LLMs pre-trained
with programming language data exhibit high
mathematical and reasoning abilities; how-
ever, this causal relationship has not been rig-
orously tested. Our research aims to verify
which programming languages and features
during pre-training affect logical inference per-
formance. Specifically, we pre-trained decoder-
based language models from scratch using
datasets from ten programming languages (e.g.,
Python, C, Java) and three natural language
datasets (Wikipedia, Fineweb, C4) under iden-
tical conditions. Thereafter, we evaluated the
trained models in a few-shot in-context learn-
ing setting on logical reasoning tasks: FLD
and bAbi, which do not require commonsense
or world knowledge. The results demonstrate
that nearly all models trained with program-
ming languages consistently outperform those
trained with natural languages, indicating that
programming languages contain factors that
elicit logic inference performance. In addition,
we found that models trained with program-
ming languages exhibit a better ability to fol-
low instructions compared to those trained with
natural languages. Further analysis reveals that
the depth of Abstract Syntax Trees representing
parsed results of programs also affects logical
reasoning performance. These findings will
offer insights into the essential elements of pre-
training for acquiring the foundational abilities
of LLMs.1

1 Introduction

Recently, large language models (LLMs) have
demonstrated remarkable generalization abilities in
downstream tasks. These tasks include not only
fundamental natural language processing tasks,

1Code is available at https://github.com/
fumiyauchiyama/code_pretraining

such as machine translation and text classifica-
tion (Brown et al., 2020), as well as advanced
tasks, such as mathematics and logical reason-
ing (Achiam et al., 2023).

The generalization ability of LLMs origi-
nates from pre-training on large text corpora,
such as RedPajama (Computer, 2023) and
Fineweb (Penedo et al., 2024). The corpora of-
ten contain content from various domains, such as
Common Crawl, GitHub, ArXiv, Wikipedia, and
StackExchange. However, the relationship between
each domain of training data and the abilities of
LLMs is not fully understood.

Prior research has shown that LLMs pre-trained
with programming language data acquire high
mathematical and reasoning abilities (Roziere et al.,
2023; Madaan et al., 2022; Liang et al., 2023; Li
et al., 2023); however, this causal relationship has
not been rigorously tested. Specifically, fair com-
parisons are often not conducted between models
trained on programming language data and those
trained on natural language data due to differences
in the number of training tokens and model sizes, or
because the information is unknown as for closed
models. In addition, some prior works have fine-
tuned models using a mixture of programming lan-
guages, but they have not conducted detailed anal-
yses regarding the effect of each programming lan-
guage on the performance of downstream tasks (Li
et al., 2023; Roziere et al., 2023).

We conducted experiments to analyze whether
models trained solely on a single programming
language generalize better to pure logical rea-
soning tasks compared to models trained on nat-
ural language. Specifically, we trained GPT2-
124M, GPT2-774M, GPT2-1.5B, and LLaMA-
774M (Radford et al., 2019; Zhang et al., 2024)
from scratch using datasets from ten programming
languages (e.g., Python, C, Java) and three natural
language datasets (Wikipedia, Fineweb, C4) un-
der the same conditions. We then evaluated each
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trained model in a few-shot in-context learning
(ICL) setting on two logical reasoning tasks: For-
mal Logic Deduction (FLD) (Morishita et al., 2023)
and bAbi (Weston et al., 2015), which do not re-
quire commonsense or world knowledge.

Experimental results demonstrate that nearly all
models trained on programming languages consis-
tently outperform those trained on natural language
in both FLD and bAbi. These results indicate that
it is not a particular programming language that
affects logical inference performance; rather pro-
gramming languages as a whole contain factors
that elicit logical inference capabilities.

We qualitatively analyzed the output of each
trained model and found that models trained with
programming data exhibit a better ability to fol-
low instructions compared to those trained with
natural languages. In other words, the ability to
respond in the correct format, along with logical
reasoning ability, is necessary, and training with
programming data provides models with both abili-
ties. Additional experiments have confirmed that
these abilities were preserved to some degree even
when the commented-out parts were removed from
the code.

Further analysis reveals that the complexity of
code syntax, specifically the number of hierarchies,
such as loops and conditional statements (e.g., "if"),
also affects logical reasoning performance. More-
over, we evaluated the trained models on the GLUE
benchmark (Wang et al., 2018), and found signif-
icant differences in performance (accuracy / F1)
across languages in semantic equivalence judgment
tasks.

2 Related Work

2.1 LLMs and Programming Language

Two main approaches exist for solving code tasks
using language models. One approach involves
fine-tuning a model pre-trained on natural language
datasets with code datasets, which is widely ap-
plied to some open models (Roziere et al., 2023).
For closed-source models, code-davinci-002 out-
performs text-davinci-002 on serialized common-
sense reasoning and mathematical tasks (Madaan
et al., 2022; Liang et al., 2023).

The other approach involves training models
from scratch solely on code datasets, often us-
ing a mixture of multiple programming languages.
This method is commonly used in code completion
and code generation fields. For example, Santa-

Coder (Allal et al., 2023) is pre-trained on three
mixed programming languages on The Stack (Ko-
cetkov et al., 2023) and demonstrated superior per-
formance not only on code completion tasks but
also on the HELM benchmark (Liang et al., 2023)
compared to GPT-NeoX (Black et al., 2022).

In this study, we trained models from scratch
with a single programming language under iden-
tical conditions to assess performance differences
by language. In addition, we focused on measur-
ing logical inference ability, which does not need
world knowledge or common sense.

2.2 LLMs and Logical Inference

Weston et al. (2015) shows that language models
can solve bAbi tasks, which consist of simple log-
ical reasoning challenges. Morishita et al. (2023)
demonstrates that a fine-tuned T5 model can ef-
fectively address Formal Logic Deduction (FLD)
tasks, involving multi-step logical reasoning. Al-
though these studies show that LLMs have some
logical reasoning abilities, it remains unclear which
features of the corpus contribute to the emergence
of advanced complex reasoning.

Our study sheds light on the effects of program-
ming languages on training LLMs. Our findings
show that the LLMs pre-trained with a single pro-
gramming language outperform those trained with
natural language on logical reasoning tasks. These
results suggest a new criterion for corpus quality in
the efficient training of LLMs.

3 Experimental Setup

3.1 Models and Datasets

The default model for our experiments is GPT2-
small (124M). To accomodate long context few-
shot in-context evaluation, we extended the model’s
context length from 1,024 to 2,048 tokens. We em-
ployed the official GPT2 tokenizer distributed by
Hugging Face 2 and three natural language datasets:
Wikipedia (Foundation, 2022), FineWeb (Penedo
et al., 2024), C4 (Raffel et al., 2020), and ten com-
mon programming languages: Haskell, OCaml,
Erlang, Python, C, C++, HTML, JavaScript, Type-
Script, Java from the Stack (Kocetkov et al., 2023).

3.2 Evaluation Metrics

We evaluated pre-trained models on the FLD (Mor-
ishita et al., 2023) and bAbi (Weston et al., 2015)

2https://huggingface.co/openai-community/gpt2
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Dataset FLD FLD* bAbi
Wiki 0.14±0.00 0.12±0.00 0.01±0.00
Fineweb 0.00±0.00 0.00±0.00 0.00±0.00
C4 0.00±0.00 0.00±0.00 0.00±0.00
Haskell 0.35±0.01 0.34±0.01 0.03±0.00
OCaml 0.32±0.01 0.31±0.01 0.05±0.00
Erlang 0.29±0.01 0.28±0.01 0.04±0.00
Python 0.34±0.01 0.33±0.01 0.07±0.00
C 0.34±0.01 0.33±0.01 0.06±0.00
C++ 0.34±0.01 0.32±0.01 0.04±0.00
HTML 0.33±0.01 0.33±0.01 0.05±0.00
JS 0.33±0.01 0.32±0.01 0.03±0.00
TS 0.30±0.01 0.29±0.01 0.03±0.00
Java 0.05±0.00 0.06±0.00 0.04±0.00

Table 1: Few-shot logical inference accuracy of the
models pre-trained on each dataset. Abbreviations used:
Wiki for Wikipedia, JS for JavaScript, and TS for Type-
Script. Values are presented as mean ± standard error

datasets with 3-shot ICL using lm-evaluation-
harness (Abaskohi et al., 2023). The bAbI dataset
is for simpler, more natural questions with spe-
cific word answers, while the FLD dataset involves
multi-step reasoning and the specific type of an-
swers, like ‘PROVED’, ‘DISPROVED’, and ‘UN-
KNOWN’. Considering the premise and hypothe-
sis, FLD is required to output a proof and the final
answer if a hypothesis is correct based on premises.
However, our experiments let the models directly
output the final answer without any proof because
we assumed that generating natural language proof
without fine-tuning is hard for small models trained
on code and the lm-evaluation-harness does not
support evaluating the correctness of FLD proofs.
We measured the accuracy of the final answers for
both FLD and FLD* (a more complex version).

3.3 Training Settings

To train the language model, approximately 200M
tokens were sampled from each dataset and packed
each sample into fixed-length datasets, using
<|endoftext|> tokens as delimiters. We pre-trained
the models for three epochs with a batch size of
24, employing a CosineLRScheduler that warms
up the learning rate linearly to 1e-4 during the first
10% of the total iterations. The optimizer used was
AdamW with β1 = 0.9, β2 = 0.999, ϵ = 1e − 8,
weight decay of 0.01, and gradient clipping set to
1.0. We trained the models three epochs. Other
configurations are available in Appendix A.

Figure 1: Sample outputs of the models trained on
Python and Fineweb. Considering 3-shot examples, the
model trained on Python produces a proper class name
following the instruction, whereas the model trained on
FineWeb produces unstructured outputs.

4 Results

4.1 Logical Inference Ability by Different
Programming Languages

Table 1 shows the accuracy of the pre-trained mod-
els with each programming language and natu-
ral language measured by FLD and bAbi datasets.
Considering FLD and FLD*, although the best re-
sults of all models remained almost at a chance
rate, the results show that the models trained in
programming languages outperform the models
trained in natural languages. For bAbi, code
datasets influenced better performance than nat-
ural language datasets. Among the programming
languages, Python and C showed slightly better
performance across all tasks. However, regardless
of the paradigm or typing explicitness of each lan-
guage, most of the code-trained models showed
better performance than natural language based
models. The result indicates that logical inference
ability and formatted outputs do not originate from
a specific language but from the nature of program-
ming itself.

Figure 1 shows sample outputs from the models
trained on Python and FineWeb. The model trained
on Python outputs in the correct format follow-
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Language FLD FLD* bAbi
Python(Shallow) 0.35±0.01 0.33±0.01 0.05±0.00
Python(Middle) 0.33±0.01 0.33±0.01 0.07±0.00
Python(Deep) 0.25±0.01 0.25±0.01 0.06±0.00

Table 2: Relationship between the complexity of pro-
gramming languages and logical inference performance.

ing few-shot examples, while the model trained on
Fineweb outputs redundant or non-existent choice.
This result is consistent with related work showing
that LLMs for code have superiority over natural
language based models on serialized commonsense
reasoning tasks (Madaan et al., 2022).

4.2 Complexity of Syntax in Code Data

Programming languages have more complex syntax
trees than natural language syntax trees and might
be beneficial for reasoning in complex tasks. The
deeper the depth of Abstract Syntax Tree (AST)
— that is, the number of hierarchies consisting of
elements, such as loops and conditional statements
(e.g., “if”) — the more complex the program is.
We chose Python as the target language and sepa-
rated the datasets into three subsets by AST depth:
Shallow (up to 7), Middle (from 8 to 11), and Deep
(from 12 to 20). Each dataset is made from sam-
ples that Python ast module succeeded in parsing.
Codes that did not succeed in parsing were ex-
cluded. We trained the model on each dataset and
evaluated the logical inference ability using FLD
and bAbi datasets.

Table 2 shows the accuracy of the model trained
on FLD and bAbi datasets. For bAbi, Python
datasets with middle complexity show the best ac-
curacy. For FLD, datasets of shallow complexity
show the best performance, and the accuracy de-
creases as the depth of AST increases. Further
investigation reveals that the model trained on the
Deep dataset frequently outputs long blanks, i.e.,
the model outputs do not follow the instructions. It
is possible that long and complex code sentences
in the training data are often indented by blanks
or tabs as necessary to ensure human readability.
This redundancy in the code training data may re-
sult in the trained model outputting long blanks. In
addition, we assume that there might be suitable
syntax complexity to learn linguistic phenomena
during pre-training. Kallini et al. (2024) insists that
grammar complexity of training data determines
the generalization difficulty of language models for
the grammar.

Language FLD FLD* bAbi
Raw 0.34±0.01 0.34±0.01 0.05±0.00
CF 0.23±0.01 0.21±0.01 0.04±0.00
CF+S 0.00±0.00 0.00±0.00 0.00±0.00
CF+R 0.00±0.00 0.00±0.00 0.01±0.00

Table 3: Accuracy on benchmark tasks of models trained
on modified code datasets. CF: Comment-Free, S:
Scrambled, R: Randomized

4.3 Ablation Study by Code Modification

To further inspect what features in code raise the
performance of the models on logical inference
tasks, we developed three modified Python datasets:
Comment-Free, Comment-Free + Scrambled, and
Comment-Free + Randomized. "Comment-Free"
is an operation that eliminates comments starting
from # and constant strings that are not used for
any operation like docstring. We expected this
modification to disable few-shot ICL with natural
language instruction on FLD and bAbi. "Scram-
bled" shuffles identifiers (e.g. names of variables)
on each position, and destroys the meaning of the
code. "Randomized" replaces each identifier with
a random string to cut off the knowledge of natural
language. Note that syntactic correctness is main-
tained during all modifications. See appendix D for
the details.

We trained models with each data on the same
settings in section 4.1 and gained Table 3 results.
The result shows that comment elimination main-
tains FLD accuracy to some extent, and cutting off
learning natural languages (Comment-Free + Ran-
domized) induces few-shot ICL failure. Destroying
dependencies (Comment-Free + Scrambled) also
breaks logical reasoning ability on every task. This
result suggests that a language model is not a sim-
ple machine to imitate grammar, but also learns
semantics from dependencies of code that can be
applied to unseen logical inference tasks.

4.4 Effect of Programming Language on
General NLP Tasks

We also evaluated the effect of programming lan-
guages on other tasks to explore their potential as
pre-training datasets. We evaluated the pre-trained
models described in Section 4.1 on the GLUE
benchmark (Wang et al., 2018), which focuses
on natural language understanding.

Figure 2 shows the GLUE scores of the pre-
trained models for each dataset. Entailment recog-
nition tasks, such as MNLI, QNLI, and RTE, show
that the models trained on both types of languages
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Figure 2: GLUE scores for each natural and programming language dataset. Horizontal axis represents task names
and corresponding metrics (F1, Accuracy and Matthews Correlation Coefficient). Vertical axis represents task
scores for each metric. Full results are available in Appendix F

perform similarly. However, significant differences
emerge in the performance of paraphrasing tasks,
such as MRPC and QQP. Since FineWeb contains
some code snippets, models trained on them may
leverage specific features to enhance their under-
standing of semantics beyond mere syntactic differ-
ences. This is evidenced by lower F1 scores in para-
phrase identification tasks like MRPC and QQP
when using datasets such as Wikipedia. In contrast,
datasets like C4 and FineWeb, along with certain
programming languages like Haskell, achieve sig-
nificantly higher scores. The presence of program-
ming languages, even in small quantities, likely
contributes positively to the models’ ability to com-
prehend sentence meaning.

4.5 Evaluation on Larger Models

We trained GPT2 and LLaMA, each with 774M
parameters, on both Python and Fineweb. The
configurations are GPT2-Large (774M) and Tiny-
Llama v1.1 (1.1B) (Zhang et al., 2024), with the
MLP representation resized to 3000. For LLaMA
experiments, we used the official Tiny-Llama v1.1
tokenizer distributed by Hugging Face 3. For GPT2,
we trained larger models based on GPT2-XL (1.5B)
configuration. Specifically, 600M tokens were con-
sumed for training GPT2-1.5B, while the other two
models (GPT2-774M and LLaMA-774M) were
trained on the same 200M tokens as in Section 4.1.

We evaluated the models on the same tasks as de-
scribed in Section 4.1. Table 4 shows the accuracy
of each programming language and natural lan-
guage on FLD and bAbi. The results show that the
models trained on Python outperform those trained
on natural languages on FLD on both architec-
tures. For bAbi, both models trained on Python and

3
https://huggingface.co/TinyLlama/TinyLlama_v1.1

Language FLD FLD* bAbi
GPT2(P,774M) 0.32±0.01 0.32±0.01 0.07±0.00
GPT2(F,774M) 0.00±0.00 0.00±0.00 0.06±0.00

LLaMA(P,774M) 0.28±0.01 0.25±0.01 0.00±0.00
LLaMA(F,774M) 0.00±0.00 0.00±0.00 0.00±0.00

GPT2(P,1.5B) 0.32±0.01 0.31±0.01 0.05±0.00
GPT2(F,1.5B) 0.00±0.00 0.00±0.00 0.04±0.00

Table 4: Model size scale-up study. Few-shot logical
inference performance of GPT2 and LLaMA with 774M
and 1.5B parameters, pre-trained on each language. Ab-
breviations: P for Python, F for FineWeb.

Fineweb show closer performance. Some scores
degraded from models with 124M parameters. This
is because we did not search for the best hyperpa-
rameters for model construction, and they may not
have been trained under the most efficient train-
ing settings. However, the results demonstrate that
code-based pre-training has superiority on logical
inference ability across different model sizes and
structures.

5 Conclusion

Our study rigorously verified that nearly all models
trained on individual programming languages con-
sistently achieve the better logical inference perfor-
mance than those trained solely on natural language
datasets in few-shot ICL settings. Further analysis
reveals that an appropriate level of syntax complex-
ity influences logical reasoning performance. Addi-
tionally, models trained on programming languages
exhibit a greater ability to follow instructions com-
pared to those trained on natural language datasets.
Moreover, dependencies expressed in code signifi-
cantly contribute to logical reasoning in few-shot
ICL settings. We hope these findings will offer
insights into the essential elements of pre-training
for acquiring the foundational abilities of LLMs.
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6 Limitation

Owing to the limitation of the computational re-
sources, we could not train the models larger than
1.5B parameters. Especially for FLD tasks, logi-
cal inference ability is limited even in models with
10 billion parameters (Morishita et al., 2024). Fu-
ture work includes investigations into the effect of
code-based pre-training with larger models to ver-
ify that logical reasoning abilities are more explic-
itly improved. Each dataset is primarily organized
in either natural language or a single programming
language, although we did not conduct thorough
filtering to ensure complete exclusivity.

In Section 4.2, we fixed grammar complexity
by selecting a single language and examined the
syntax complexity in code data. However, our ex-
periments did not consider semantic complexity
or other complexities that might be measureable
in both programming and natural languages. Fur-
thermore, it remains unclear whether syntax com-
plexity in pre-training data alone influences logical
inference performance. Comparing various com-
plexities between natural and programming lan-
guage regarding logical reasoning abilities is an
important avenue for future research.

In section 4.4, we assessed the general language
understanding of the trained models. The natural
language inference tasks in GLUE require com-
monsense knowledge, which may be difficult to
acquire through code-only training. Future ex-
periments could explore whether fine-tuning mod-
els pre-trained on code with GLUE datasets en-
hances natural language reasoning capabilities. Ad-
ditionally, integrating both code and natural lan-
guage datasets during the pre-training process may
provide a synergistic approach to leverage the
strengths of both types of data.

Moreover, a further experiment in Appendix E
demonstrates the advantage on FLD tasks between
natural language and programming language is
reversed when fine-tuning on FLD corpus. We
empathize that the advantage of logical reasoning
tasks is observed in in-context learning settings and
should investigate the difference between the two
learning settings for logical reasoning tasks.
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A Training Details

We limited training models to three epochs because
several studies indicate that training language mod-
els for many epochs can worsen performance on
downstream tasks and does not significantly reduce
validation loss (Xue et al., 2024; Muennighoff et al.,
2024). We trained each model using a single seed
for each task, resulting in a total of 26 models.
Except for the experiments in Section 4.5, train-
ing took less than a day with a single NVIDIA
RTX A5000 or A6000. For the experiments in Sec-
tion 4.5, we trained each model on a single server
equipped with 8 H100 GPUs for a maximum of
three days.

B Dataset information of Section 4.2

We determined the span of AST depth for mak-
ing each Python subset by referencing the distri-
bution of AST depth in the whole dataset. Figure
3 shows the histogram of 47,710 samples that are
successfully parsed by Python ast module in the
Stack Python 50,000 samples. Most samples have
AST with depth under 20, and samples with 8-12
AST depth occupy a large portion. Therefore, we
set each span of AST depth as [0,7], [8,11] and
[12,20].

C Logical Inference on different
vocabulary

The original FLD dataset converts formulated
prompts and proofs into natural languages because
it is designed for deductioning in natural languages.
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Figure 3: The Frequency distribution of AST depth of
47,710 samples in The Stack Python dataset. Note that
there are 14 samples whose AST depth are more than
50.

Although a name of a variable has some degree of
freedom, a program consists of limited expression
and vocabularies. Therefore, the model trained on
programming languages can have a better logical
inference ability when utilizing simplified vocabu-
lary rather than complex vocabulary.

To investigate the difference between tokens that
appeared in the prompt, we evaluated the logical
inference ability of the model trained during sec-
tion 4.1 with the formulated prompt. The following
example shows a default prompt and formulated
prompt of FLD. Note that line breaks are added for
visibility.

Default Prompt: Based on the provided
facts (context), either prove or disprove
the hypothesis or state that it is unknown.
hypothesis = the Eurasian does not oc-
cur if the hospitableness happens. ;
context = sent1: the avoidance occurs
and the Eurasian happens if the sculling
does not occur. sent2: that the palpa-
toriness and the hospitableness occurs
prevents that the Eurasian occurs. ;
proof =

Formulated Prompt: Based on the pro-
vided facts (context), either prove or dis-
prove the hypothesis or state that it is un-
known.
hypothesis = B ⇒ ¬C;
context = sent1 : ¬E ⇒ (EI&C)
sent2: (A&B) ⇒ ¬C;
proof =

We chose a formulated hypothesis and context and

Language FLD FLD*
Fineweb 0.00±0.00 0.00±0.00
Python 0.33±0.01 0.33±0.01

Table 5: Logical inference performance on the formu-
lated prompt.

inputted to models as a prompt. Table 5 shows the
evaluation result of models trained in Section 4.1
on the formulated prompt. The model trained on
the Python dataset shows consistent performance
even when the vocabulary has been changed.

D Code Modification in section 4.3

To eliminate comments, we parsed each code sam-
ple by Python ast module. A code is transformed
into AST. Subsequently, we eliminated nodes of
constant strings written as statements and not used
them for any assignment from AST. Because com-
ments starting from # is dropped when parsing code
into AST, we can obtain a comment-free code by
unparsing the modified AST. Scrambling and Ran-
domizing identifiers are conducted with the same
pipeline. After parsing into AST, "Scrambled" re-
places names of variables, functions, classes, argu-
ments, attributes, and imports with names sampled
from a uniform distribution of all identifiers ap-
pearing in a code. "Randomized" replaces them
with 8-character random strings while maintaining
dependencies. Finally, we can provide a code with
destroyed meanings or word knowledge of natu-
ral language by unparsing. The following listings
shows a sample of each process.

# UCF Senior Design 2017-18
# Group 38

from PIL import Image
import cv2
import imagehash
import math
import numpy as np

DIFF_THRES = 20
LIMIT = 2
RESIZE = 1000

def calc_hash(img):
"""
Calculate the wavelet hash of the image

img: (ndarray) image file
"""
# resize image if height > 1000
img = resize(img)
return imagehash.whash(Image.fromarray(img))

def compare(hash1, hash2):
"""
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Calculate the difference between two images
hash1: (array) first wavelet hash
hash2: (array) second wavelet hash

"""
return hash1 - hash2

def limit(img, std_hash, count):
"""
Determine whether image should be removed

from image dictionary in main.py
img: (ndarray) image file
std_hash: (array) wavelet hash of

comparison standard
count: (int) global count of images

similar to comparison standard
"""
# calculate hash for given image
cmp_hash = calc_hash(img)

# compare to standard
diff = compare(std_hash, cmp_hash)

# image is similar to standard
if diff <= DIFF_THRES:

# if there are 3 similar images already,
remove image

if count >= LIMIT:
return 'remove'

# non-similar image found
else:

# update comparison standard
return 'update_std'

# else continue reading images with same
standard

return 'continue'

def resize(img):
"""
Resize an image

img: (ndarray) RGB color image
"""
# get dimensions of image
width = np.shape(img)[1]
height = np.shape(img)[0]

# if height of image is greater than 1000,
resize it to 1000

if width > RESIZE:
# keep resize proportional
scale = RESIZE / width
resized_img = cv2.resize(

img, (RESIZE, math.floor(height /
scale)), cv2.INTER_AREA)

# return resized image
return resized_img

# if height of image is less than 1000,
return image unresized

return img

def set_standard(images, filename):
"""
Set new comparison standard and update

information
images: (dictionary) dictionary

containing all the image data
filename: (String) name of the image file

"""
return filename, calc_hash(images[filename]),

0

Listing 1: Raw Example

from PIL import Image
import cv2
import imagehash
import math
import numpy as np
DIFF_THRES = 20
LIMIT = 2
RESIZE = 1000

def calc_hash(img):
img = resize(img)
return imagehash.whash(Image.fromarray(img))

def compare(hash1, hash2):
return hash1 - hash2

def limit(img, std_hash, count):
cmp_hash = calc_hash(img)
diff = compare(std_hash, cmp_hash)
if diff <= DIFF_THRES:

if count >= LIMIT:
return 'remove'

else:
return 'update_std'

return 'continue'

def resize(img):
width = np.shape(img)[1]
height = np.shape(img)[0]
if width > RESIZE:

scale = RESIZE / width
resized_img = cv2.resize(img, (RESIZE,

math.floor(height / scale)), cv2.
INTER_AREA)

return resized_img
return img

def set_standard(images, filename):
return (filename, calc_hash(images[filename])

, 0)

Listing 2: Comment-Free Example

from PIL import DIFF_THRES
import img
import images
import height
import resized_img as LIMIT
RESIZE = 20
hash1 = 2
resize = 1000

def calc_hash(count):
std_hash = std_hash(resized_img)
return cv2.imagehash(diff.calc_hash(

resized_img))

def width(img, resized_img):
return limit - std_hash

def width(set_standard, Image, resize):
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width = height(hash1)
height = filename(diff, RESIZE)
if images <= compare:

if scale >= height:
return 'remove'

else:
return 'update_std'

return 'continue'

def calc_hash(resize):
hash2 = count.math(DIFF_THRES)[1]
height = RESIZE.cv2(LIMIT)[0]
if Image > hash1:

resized_img = count / resized_img
img = limit.resized_img(set_standard, (

calc_hash, calc_hash.compare(cv2 /
imagehash)), width.calc_hash)

return Image
return hash1

def DIFF_THRES(Image, img):
return (limit, resize(img[DIFF_THRES]), 0)

Listing 3: Comment-Free + Scrambled Example

from WOLFjkmq import aCux4Y4Q
import Q1pG5gl3
import Gx1YslqS
import T3HRhbs3
import LJTWG4w8 as GCBgPcV2
Ges4set_ = 20
tm74wylu = 2
zln4AZrv = 1000

def lZ50hv90(wPSRoTdu):
wPSRoTdu = wewPZ1Mm(wPSRoTdu)
return Gx1YslqS.fjqin3Y_(aCux4Y4Q._am0qTs7(

wPSRoTdu))

def CX7r6rrH(MSI8x6sB, M6wvOBrw):
return MSI8x6sB - M6wvOBrw

def OwRQZArW(wPSRoTdu, aJUeLgwi, dQ0rdVnl):
qfSknjgG = lZ50hv90(wPSRoTdu)
SXIn4PMr = CX7r6rrH(aJUeLgwi, qfSknjgG)
if SXIn4PMr <= Ges4set_:

if dQ0rdVnl >= tm74wylu:
return 'remove'

else:
return 'update_std'

return 'continue'

def wewPZ1Mm(wPSRoTdu):
ldiBeObH = GCBgPcV2.P9O5IlYb(wPSRoTdu)[1]
XsvyluRz = GCBgPcV2.P9O5IlYb(wPSRoTdu)[0]
if ldiBeObH > zln4AZrv:

_017HwMd = zln4AZrv / ldiBeObH
zShzC25m = Q1pG5gl3.wewPZ1Mm(wPSRoTdu, (

zln4AZrv, T3HRhbs3.F2fRx57k(XsvyluRz
/ _017HwMd)), Q1pG5gl3.pI7RGMeM)

return zShzC25m
return wPSRoTdu

def TgNnQBZK(Qd_fVhjP, tqVDS33U):
return (tqVDS33U, lZ50hv90(Qd_fVhjP[tqVDS33U

]), 0)

Listing 4: Comment-Free + Randomized Example

Language D-0 D-1 D-2 D-3 D-None D-All
Python 0.50 0.53 0.33 0.39 0.17 0.34
Fineweb 0.42 0.77 0.64 0.54 0.17 0.50

Table 6: Answer accuracy on FLD evaluation of fine-
tuned models. D-* means the subset of FLD separated
by the depth of the proof tree. Note that each subset has
a different size of samples, and D-None is a subset com-
posed of unprovable problems then there are no proofs.
D-All is the accuracy of the whole FLD evaluation.

E Fine-tuning on FLD corpus

We have demonstrated the reasoning skills of LLMs
in a few-shot in-context learning setting. However,
fine-tuning is another method to achieve domain
specialization. Because the answer accuracy of
FLD in in-context learning is almost the same as
the chance rate, we fine-tuned models trained in
section 4.5. We utilized the official fine-tuning code
provided by Morishita et al., 2024. During the train-
ing models generate proofs and the final answers
as supervised learning while the other experiments
let models output the final answers directly. In par-
ticular, 10,000 samples are used as a training data,
and 500 samples are used for evaluation data.

Table 6 shows the answer accuracy on FLD
evaluation of models fine-tuned on FLD corpus.
The model pre-trained on Fineweb outperforms the
other model pre-trained on Python. This result is
contrary to that in in-context learning settings, and
implies that different datasets are suited for im-
proving in-context learning ability for unseen tasks
versus domain specialization ability for logical rea-
soning.

F Detailed Result of GLUE Evaluation in
Section 4.4

Figure 4 shows the full GLUE score of pre-trained
models with each of programming language and
natural language datasets.

G License
G.1 Model

• GPT2: MIT [link]
• TinyLlama: Apache 2.0 [link]

G.2 Dataset
• Wikipepia: cc-by-sa-3.0 [link]
• Fineweb: odc-by [link]
• C4: odc-by [link]
• The Stack: various (differed by datapoints) [link]
• FLD: Apache 2.0 [link]
• bAbi: BSD License [link]
• GLUE: MIT(CoLA), OANC/CC BY-SA 3.0/CC BY

3.0(MNLI), CC BY-SA 4.0 (QNLI), MIT(QQP, SST2),
Unknown(MRPC, RTE, WNLI) [link]
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Figure 4: Values of GLUE score by each natural language and programming language. Horizontal axis represents
the task name and its metrics (F1, Accuracy and Matthews Correlation Coefficient). Vertical axis represents the
score of the task by each metrics.
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