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Abstract
Knowledge distillation (KD) is known as a
promising solution to compress large language
models (LLMs) via transferring their knowl-
edge to smaller models. During this process,
white-box KD methods usually minimize the
distance between the output distributions of
the two models so that more knowledge can
be transferred. However, in the current white-
box KD framework, the output distributions
are from the respective output spaces of the
two models, using their own prediction heads.
We argue that the space discrepancy will lead to
low similarity between the teacher model and
the student model on both representation and
distribution levels. Furthermore, this discrep-
ancy also hinders the KD process between mod-
els with different vocabularies, which is com-
mon for current LLMs. To address these issues,
we propose a dual-space knowledge distilla-
tion (DSKD) framework that unifies the output
spaces of the two models for KD. On the basis
of DSKD, we further develop a cross-model
attention mechanism, which can automatically
align the representations of the two models with
different vocabularies. Thus, our framework is
not only compatible with various distance func-
tions for KD (e.g., KL divergence) like the cur-
rent framework, but also supports KD between
any two LLMs regardless of their vocabular-
ies. Experiments on task-agnostic instruction-
following benchmarks show that DSKD signif-
icantly outperforms the current white-box KD
framework with various distance functions, and
also surpasses existing KD methods for LLMs
with different vocabularies1.

1 Introduction

Existing large language models (LLMs) have ex-
hibited strong generalization abilities on various
tasks due to their huge model capacities (Chowd-
hery et al., 2023; Touvron et al., 2023; OpenAI,

* Yufeng Chen is the corresponding author.
1Our code is publicly available at https://github.com/

songmzhang/DSKD.

2023). With faith in the scaling law (Kaplan et al.,
2020), the amount of parameters in current LLMs
is expanded steadily to achieve higher intelligence.
However, the increasing parameters also bring high
deployment costs in real scenarios. For this prob-
lem, knowledge distillation (KD; Hinton et al.,
2015) is one of the promising solutions to compress
large models with acceptable performance sacrifice.
During the process of KD, the large model typically
serves as the teacher and provides supervision sig-
nals for a small model (known as the student), and
thus the knowledge and the abilities of the teacher
can be transferred to the lightweight student.

Currently, KD algorithms for LLMs are usu-
ally under two frameworks, i.e., black-box KD and
white-box KD. Black-box KD uses the teacher’s
decoding sequences as the training data of the stu-
dent and directly optimizes the cross-entropy loss
on the one-hot target. (Kim and Rush, 2016; Fu
et al., 2023; Li et al., 2023). By contrast, white-box
KD methods usually minimize the distance (e.g.,
KL divergence) between the output distributions
of the teacher and the student, which theoretically
transfer more information and usually perform bet-
ter than black-box KD (Wen et al., 2023; Gu et al.,
2023; Ko et al., 2024). Although the framework
of white-box KD has shown its superiority, the
distributions of the student and the teacher in this
framework are from different output spaces since
they are produced by different prediction heads.
At the beginning of this work, we first reveal two
inherent limitations in this framework due to the
discrepancy of output spaces:

• Low Teacher-Student Similarity: The cur-
rent framework usually yields low similarity
between the teacher and the student on both
representation and distribution levels (§2.2.1);

• Requirements on the Same Vocabulary: A
key condition for current white-box KD is
that the two models should share the same
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vocabulary, which, however, is hardly satisfied
for various LLMs in this era (§2.2.2).

Towards these limitations, we then propose a
new framework for white-box KD, named dual-
space knowledge distillation (DSKD), which is as
simple as the current white-box KD framework but
addresses the issues due to the space discrepancy.
Specifically, DSKD unifies the output spaces of
the two models by projecting the output hidden
states2 of the teacher/student to the representation
spaces of the student/teacher, where we can use
the shared prediction heads to produce the two
distributions in the same output spaces. In partic-
ular, for models with different vocabularies, we
further develop a cross-model attention (CMA)
mechanism to automatically align the tokens in two
differently tokenized sequences. Like the current
framework, DSKD is also compatible with existing
distance functions for distributions, including KL
divergence, JS divergence, and so on. Meanwhile,
with CMA, we can transform distributions of the
two LLMs into the same shape, which makes our
framework more general and can be applied to any
two LLMs regardless of their vocabularies.

We evaluate our framework on instruction-
following benchmarks under both settings that the
two LLMs have the same/different vocabularies.
Experimental results showcase that for LLMs with
the same vocabulary, our DSKD framework sig-
nificantly outperforms the current white-box KD
framework on various distance functions. More-
over, DSKD with CMA surpasses all existing KD
methods for LLMs with different vocabularies.

To sum up, the contributions are as follows:

• We empirically reveal that the current white-
box KD framework limits the similarity be-
tween the student and the teacher due to their
different output spaces.

• As a solution, we propose a new framework
for white-box KD, named dual-space knowl-
edge distillation (DSKD), which unifies the
output spaces of the distributions from the
teacher and the student for more effective KD.

• Based on DSKD, we further develop a cross-
model attention mechanism to support KD
between LLMs with different vocabularies.

2In this paper, “output hidden states” means the hidden
states output by the last layer of the model.

• Experiments show that our DSKD framework
significantly outperforms the current white-
box KD framework on various distance func-
tions and surpasses existing KD methods for
LLMs with different vocabularies.

2 Background and Preliminary Study

2.1 Current Framework for White-Box KD

Given a sequence x, current LLMs generally learn
the casual language modeling objective at each
token position i via the cross-entropy loss:

Lce = −
|x|∑

i

log qθ(x
∗
i |x<i), (1)

where qθ(x
∗
i |x<i) denotes the probability of the

student model on the target token x∗i conditioning
on the context x<i. On this basis, the current white-
box KD framework first feeds this sequence into
the teacher model to obtain its token-level proba-
bility distributions p(xi|x<i). Then, the following
loss is minimized to push the student distribution
qθ(xi|x<i) to the teacher distribution p(xi|x<i):

Lkd =
∑

i

D(p(xi|x<i; τ)||qθ(xi|x<i; τ)), (2)

where D(·||·) is the distance function that measures
the distance between the two distributions (e.g., KL
divergence) and τ is the temperature coefficient to
control the sharpness of the distributions.

On the choice of the distance function D(·||·)
in Eqn. (2), there have been several explorations
(e.g., reverse KL divergence) in recent literature
that aim to improve the performance of KD for
LLMs (Wen et al., 2023; Agarwal et al., 2024; Ko
et al., 2024; Wu et al., 2024). However, in the
following section, we will uncover that no matter
which distance function is employed, the current
white-box KD framework has two inherent limita-
tions since the two distributions p(xi|x<i; τ) and
qθ(xi|x<i; τ) are from different output spaces.

2.2 Limitations of the Current Framework

2.2.1 Low Teacher-Student Similarity
In the current white-box KD framework, the two
output distributions in Eqn. (2) are calculated from
different output spaces of two models using their
respective prediction heads. Then, the student dis-
tribution will be optimized toward the teacher dis-
tribution by minimizing their distance. However,
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we suspect this practice will limit the final similar-
ity between the student and the teacher from two
aspects: a) representation: as the distributions
are the results of the output hidden states through
the prediction heads, if the prediction heads of the
two models are different, even if the distributions
are close, their hidden states will not be similar;
b) distribution: If the output hidden states of the
student and the teacher are not similar, the practical
distance between their distributions is difficult to
reach its theoretical minimum during optimization.

We verify the above conjectures by a simulation
experiment. In this experiment, we randomly ini-
tialize two sets of 2-D vectors (one is trainable and
the other is frozen) with different mean values and
variances to represent the output hidden states of
the student and the teacher, respectively (as plot-
ted in Figure 1(a)). Besides, we set two prediction
heads to produce probability distributions of the
student and the teacher from these vectors. Then,
we select KL divergence as the distance function
D(·||·) and simulate the KD process with Lkd in
Eqn. (2) for 1000 iterations. After the iterations,
we plot the two sets of vectors again and record the
loss curve during the whole process in Figure 1.

Firstly, we simulate the process of the current
white-box KD framework, which uses distributions
from different output spaces produced by differ-
ent prediction heads. The result in Figure 1(b)
shows that the student’s hidden states optimized
by the current KD framework exhibit distinct struc-
ture discrepancy from the teacher’s hidden states,
reflecting low similarity between them. As a com-
parison, we then unify the output spaces of the two
distributions by sharing the same prediction head
for the student and the teacher and conduct the
same KD process as above. As shown in Figure
1(c), under this setting, the student’s hidden states
become more similar and closer to the teacher’s hid-
den states. The significant difference between these
two settings indicates that the current KD frame-
work may lead to sub-optimal similarity between
the student and the teacher on the representation
level. By contrast, a better alternative is to unify
the output spaces for the distributions of the student
and the teacher.

Then, we repeat the simulations of the above two
settings 100 times and plot their averaged curves
of Lkd in Figure 1(d). As we suspected, when
using different prediction heads, the value of KL
divergence still leaves a large margin to its theoret-
ical minimum (i.e., 0) after convergence. On the

(a) Before KD (b) After KD (different heads)

(c) After KD (shared head) (d) Loss curves of KD

Figure 1: Simulation results with KL divergence as
the distance function D(·||·). (a), (b) and (c) plot the
student’s hidden states and the teacher’s hidden states
before and after the two KD processes. (d) shows the
convergence curves of Lkd in the two KD processes.

contrary, when using a shared prediction head, the
value of KL divergence will converge faster and
finally be closer to this minimum. It sufficiently
illustrates that the current KD framework also lim-
its the similarity between the two models on the
distribution level. Besides KL divergence, we
also conduct these simulations with other distance
functions (e.g., reverse KL divergence, JS diver-
gence, etc.). The results are shown in Appendix
A.1, which also support the above conclusions. Ad-
ditionally, we provide the pseudo code of the simu-
lation experiment in Appendix A.2 to present more
details.

2.2.2 Dependency on the Same Vocabulary
As stated in §2.1, the current KD framework
minimizes the distance between the two distri-
butions at each token position. However, when
the teacher and the student have different vocabu-
laries, the same text may be tokenized into dif-
ferent sequences like x = [x1, x2, ..., xn] and
y = [y1, y2, ..., ym]. Under this circumstance, the
teacher distribution p(yi|y<i) is probably incorrect
for qθ(xi|x<i). Additionally, as the output spaces
are more different when the prediction heads con-
tain different vocabularies, the produced distribu-
tions are even with different dimensions, which
is obviously prohibited by Eqn. (2). Therefore,
the current white-box KD framework fails to work
between LLMs with different vocabularies.
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3 Methodology

This section introduces our solutions to the above
limitations of the current white-box KD framework.
Firstly, we will introduce our new KD framework
in §3.1. Then we present a cross-model attention
mechanism in §3.2 to extend our framework to
support LLMs with different vocabularies.

3.1 Dual-Space Knowledge Distillation
Framework

Inspired by the observations in §2.2.1, we de-
sign our dual-space knowledge distillation (DSKD)
framework. The core idea is to unify the output
spaces of the two distributions in Eqn. (2). To
achieve this, we project the output hidden states
of the teacher/student model into the representa-
tion space of the student/teacher model, so that
the distributions can be output by the same predic-
tion head and thus lie in the unified output space.
Next, we will detail how to conduct the projection
and unify KD in student and teacher space.

KD in Student Space. In the student space, we
first use a linear projector Pt→s to transform the
hidden states of the teacher model into the repre-
sentation space of the student model. Here, we
denote the output hidden states of the whole se-
quence from the teacher model as ht

1:n. Then the
projection process can be formulated as follows:

ht→s
1:n = Pt→s(ht

1:n; θ
t→s
P ) ∈ Rn×d, (3)

where θt→s
P is the trainable parameter of the projec-

tor Pt→s and d is the hidden size of the student
model. With the projected hidden states ht→s,
we can obtain the transformed teacher distribu-
tion pt→s

1:n that shares the same output space with
the student using the student’s prediction head
Ws ∈ Rd×|V |:

pt→s
1:n = softmax(ht→s

1:n Ws) ∈ Rn×|V |
+ , (4)

where |V | is the vocabulary size of the two models.
As the projector is randomly initialized at the start
of the training, we train the transformed distribu-
tion pt→s

1:n to predict the ground-truth target tokens
in the student’s sequence with cross-entropy loss3:

Lt→s
ce = −

∑

i

log(pt→s(x∗i |x<i)). (5)

3Note that we stop the gradient of Ws in Eqn. (4) to avoid
negative effects to the student model

Meanwhile, we use this distribution pt→s as the
new teacher distribution and calculate the same
loss for KD as Eqn. (2):

Lstu
kd =

∑

i

D(pt→s(xi|x<i; τ)||qθ(xi|x<i; τ)),

(6)
where D(·||·) is as same as the one in Eqn. (2).
Note that we stop the gradient of pt→s(xi|x<i; τ)
in Eqn. (6) so that Lstu

kd will not collapse.

KD in Teacher Space. Similar to the process in
the student space, we also project the hidden states
of the student model into the teacher’s dimension
using another projector Ps→t:

hs→t
1:n = Ps→t(hs

1:n; θ
s→t
P ) ∈ Rn×D, (7)

where D is the hidden size of the teacher model.
Then, we use the prediction head of the teacher
model Wt ∈ RD×|V | to obtain the distributions of
the student model in the teacher’s space:

qθ
s→t
1:n = softmax(hs→t

1:n Wt) ∈ Rn×|V |
+ , (8)

As the teacher distributions in its own space are
usually well-trained, we can directly calculate the
KD loss in the teacher space:

Ltea
kd =

∑

i

KL(p(xi|x<i; τ)||qs→t
θ (xi|x<i; τ)),

(9)
where a difference from Eqn. (6) is that we directly
fix KL divergence as D(·||·) since we found it more
appropriate for KD in the teacher space.

The whole loss of DSKD sums the KD losses in
both spaces and the cross-entropy loss in Eqn. (5):

Ldskd = Lstu
kd + Ltea

kd + Lt→s
ce . (10)

3.2 Cross-Model Attention Mechanism
In the above section, we have introduced our DSKD
framework for LLMs with the same vocabulary.
For LLMs with different vocabularies, since DSKD
always produces distributions with the same dimen-
sions for the student and the teacher via sharing
the same prediction heads, the remaining require-
ment for KD is just to align the tokens in the two
sequences tokenized by different tokenizers4.

To this end, we develop a cross-model attention
(CMA) mechanism to learn the alignment between
tokens in the two sequences automatically. Specifi-
cally, we first concatenate the student’s embeddings

4Here we borrow the notations in §2.2.2 and assume that
there are m tokens in the teacher’s sequence.
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of input tokens es1:n and target tokens es2:n+1 in the
sequence on the last dimension and project them as
the query vectors with a query projector Pq:

Q = Pq([es1:n; e
s
2:n+1]; θ

q
P) ∈ Rn×2D.

Similarly, we use the teacher’s embeddings and
output hidden states to obtain the key and value
vectors:

K = N([et1:m; et2:m+1]) ∈ Rm×2D,

V = Pv(N(et2:m+1) + N(ht
1:m); θvP) ∈ Rm×d,

where we normalize the embeddings and the hidden
states of the teacher with their standard deviations
like N(x) = x/std(x) for faster convergence.

Then, we calculate the attention matrix with the
query and the key:

at→s = softmax(
QK⊤
√
2D

) ∈ Rn×m. (11)

The attention matrix reflects the alignment rela-
tionship from the teacher tokens to the student to-
kens. Based on this matrix, we can obtain the final
projected and aligned hidden states of the teacher
model from the weighted sum of the value vectors:

h̃t→s
1:n = at→sV ∈ Rn×d. (12)

Then, we can substitute h̃t→s into Eqn. (4) and
train h̃t→s to correctly predict the target tokens
of the student model with Eqn. (5). Meanwhile,
the teacher distributions produced from h̃t→s are
also in the student space and can support the KD
process in Eqn. (6)5.

Besides, we also transpose the matrix to align
the student tokens to the teacher tokens:

as→t = softmax(
KQ⊤
√
2D

) ∈ Rm×n. (13)

We can project and align the student’s hidden states
to the teacher’s using this alignment matrix:

h̃s→t
1:m = as→tPs→t(hs

1:n; θ
s→t
P ) ∈ Rm×D. (14)

Then, we can substitute h̃s→t
1:m into Eqn. (8) and

conduct KD in the teacher space with Eqn. (9).

5For models with different vocabularies, the distribution
in Eqn. (4) usually has lower accuracy, so we mask the KD
loss in Eqn. (6) when the teacher distribution is incorrect.

4 Experiments

4.1 Experimental Setup
Data. We evaluate our DSKD framework on sev-
eral instruction-following datasets following Gu
et al. (2023). Specifically, we choose databricks-
dolly-15k dataset processed by Gu et al. (2023)
to conduct the KD process, which contains about
11k samples for training, 1k for validation, and 500
for testing. Besides, we also select Self-Instruct
(SelfInst), Vicuna-Evaluation (VicunaEval), Su-
per Natural Instructions (S-NI), and Unnatural In-
structions (UnNI) as the additional test sets for
more comprehensive evaluation.

Models. For student LLMs, we select both GPT2-
120M (Radford et al., 2019) and TinyLLaMA-1.1B
(Zhang et al., 2024). For GPT2-120M, we employ
GPT2-1.5B and Qwen1.5-1.8B (Bai et al., 2023)
respectively as the teacher LLMs that have the
same/different vocabularies with the student LLMs.
For TinyLLaMA-1.1B, we choose LLaMA2-7B
(Touvron et al., 2023) and Mistral-7B (Jiang et al.,
2023) as the teacher LLMs that have the same/dif-
ferent vocabularies with the student LLMs.

Training and Evaluation. For KD on GPT2, we
employ full-finetuning for the teachers and the stu-
dents. For KD on TinyLLaMA, we finetune the
students and the teachers with LoRA. In particu-
lar, we set the temperature τ to 2.0 according the
performance on the validation set. Besides, all the
projectors in our method are linear layers, which
only increase few parameters in training (e.g., ≈2M
for DSKD on GPT2). For the evaluation, we sam-
pling the responses from the models under 5 ran-
dom seeds. The final performance is measured
by Rouge-L (Lin, 2004) between the generated re-
sponses and the human-labeled ones. More details
are provided in Appendix B.

4.2 Baselines
We compare our framework with existing methods
under two settings:

KD with the same vocabulary. In this setting,
we compare DSKD with the current white-box KD
framework on the following distance functions:

• KL. The standard KL divergence used in KD
proposed by Hinton et al. (2015).

• RKL. The reverse KL divergence that swaps
the two distributions in KL divergence.
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Methods Dolly SelfInst VicunaEval S-NI UnNI Avg.
SFT 22.94±0.28 10.11±0.36 15.17±0.63 16.21±0.19 18.68±0.09 16.62

GPT2-1.5B → GPT2-120M (Same Vocabulary)
Teacher 27.19±0.23 14.64±0.64 16.30±0.37 27.55±0.30 31.42±0.11 23.42
SeqKD 23.68±0.25 10.03±0.23 14.41±0.46 16.36±0.18 18.48±0.11 16.59
KL 24.54±0.48 10.43±0.24 15.66±0.42 17.24±0.27 20.28±0.18 17.63

w/ DSKD (ours) 24.70±0.24 10.65±0.30 15.67±0.30 19.51±0.21 22.94±0.07 18.69 (+1.06↑)

RKL 24.38±0.55 10.73±0.61 15.71±0.39 17.31±0.11 20.96±0.12 17.82
w/ DSKD (ours) 24.61±0.59 11.01±0.45 14.98±0.48 19.32±0.28 22.27±0.13 18.44 (+0.62↑)

JS 23.86±0.14 10.20±0.40 15.50±0.23 16.20±0.23 19.17±0.06 16.98
w/ DSKD (ours) 24.61±0.27 11.41±0.35 15.40±0.28 18.94±0.20 21.48±0.17 18.37 (+1.39↑)

SKL (Ko et al., 2024) 24.03±0.23 10.66±0.51 14.70±0.37 17.99±0.15 21.18±0.16 17.71
w/ DSKD (ours) 25.24±0.28 10.50±0.13 15.76±0.43 18.34±0.44 20.87±0.11 18.14 (+0.43↑)

SRKL (Ko et al., 2024) 24.48±0.19 10.35±0.38 14.88±0.24 16.53±0.23 19.68±0.05 17.19
w/ DSKD (ours) 25.23±0.25 11.19±0.22 15.91±0.45 17.92±0.16 21.20±0.12 18.29 (+1.10↑)

AKL (Wu et al., 2024) 24.75±0.60 10.46±0.24 15.37±0.41 17.48±0.17 20.11±0.05 17.63
w/ DSKD (ours) 25.13±0.14 10.63±0.43 16.18±0.35 18.58±0.48 21.45±0.16 18.39 (+0.76↑)

Qwen1.5-1.8B → GPT2-120M (Different Vocabularies)
Teacher 27.42±0.33 19.42±0.11 19.31±0.21 34.87±0.30 36.00±0.10 27.40
SeqKD 23.40±0.21 9.36±0.38 15.37±0.35 15.16±0.17 17.34±0.11 16.13
MinED (Wan et al., 2024) 24.41±0.61 10.60±0.39 15.86±0.42 16.76±0.28 19.68±0.12 17.46
ULD (Boizard et al., 2024) 23.77±0.41 9.67±0.50 14.99±0.55 17.60±0.21 19.49±0.12 17.11
DSKD-CMA-SRKL (ours) 25.23±0.17 10.99±0.26 15.56±0.41 17.76±0.23 20.54±0.07 18.02

Table 1: Rouge-L scores (%) on several benchmarks with GPT2-120M as the student. We list the mean values and
the standard deviations among 5 random seeds. The average scores (Avg.) on all benchmarks are also listed. “w/
DSKD” denotes our DSKD using the corresponding distance function as D(·||·) in Eqn. (6). And “DSKD-CMA-
SRKL” denotes our DSKD framework equipped with cross-model attention with SRKL as D(·||·) in Eqn. (6).

• JS. Jenson-Shannon (JS) divergence, a sym-
metric variant of KL divergence.

• SKL. The skewed KL proposed by Ko et al.
(2024), which skews the student distribution
qθ in KL as λp+ (1− λ)qθ.

• SRKL. The skewed RKL proposed by Ko
et al. (2024), which skews the teacher distri-
bution p in RKL as λqθ + (1− λ)p.

• AKL. The adaptive fusion of KL and RKL
proposed by Wu et al. (2024).

KD with different vocabularies. We also com-
pare DSKD with cross-model attention to the KD
methods for different vocabularies:

• MinCE. The method proposed by Wan et al.
(2024), aligns the logits between different
models via dynamic programming that mini-
mizes the edit distances of token strings.

• ULD. The method proposed by Boizard et al.
(2024), replaces the usual KL divergence with
a closed-form solution of Wasserstein distance
to overcome the limitation on the same tok-
enizers between the teacher and the student.

Besides, we also compare our framework with
the black-box KD method, i.e., sequence-level KD
(SeqKD; Kim and Rush, 2016), under both set-
tings. Nevertheless, we did not compare our frame-
work with on-policy KD methods such as ImitKD
(Lin et al., 2020), GKD (Agarwal et al., 2024),
MiniLLM (Gu et al., 2023) and DistiLLM (Ko
et al., 2024) since we only focus on the more gen-
eral off-policy scenarios.

4.3 Results

KD with the same vocabulary. The results of
KD for models with the same vocabulary are pre-
sented at the top parts of Table 1 and Table 2.
Firstly, it is shown that all white-box KD meth-
ods exhibit better performance than the black-
box KD method SeqKD, which demonstrates that
token-level distributions can transfer more knowl-
edge than single target tokens. Furthermore, our
DSKD framework significantly outperforms the
current white-box KD framework for both GPT2
and TinyLLaMA on various distance functions. On
the one hand, it showcases the effectiveness of our
DSKD framework that conducts KD in unified out-
put spaces. On the other hand, the improvements
on all distance functions also demonstrate that our
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Methods Dolly SelfInst VicunaEval S-NI UnNI Avg.
SFT 23.20±0.13 14.88±0.54 16.42±0.35 27.79±0.27 26.12±0.11 21.68

LLaMA2-7B → TinyLLaMA-1.1B (Same Vocabulary)
Teacher 28.32±0.46 20.95±0.69 18.76±0.35 32.05±0.28 32.41±0.12 26.50
SeqKD 23.21±0.22 16.46±0.72 16.58±0.38 26.33±0.26 27.69±0.10 22.05
KL 25.46±0.63 17.21±0.25 16.43±0.53 29.27±0.29 29.28±0.09 23.53

w/ DSKD (ours) 26.31±0.26 18.27±0.56 18.04±0.37 31.43±0.26 31.20±0.09 25.05 (+1.52↑)

RKL 24.49±0.41 17.14±0.61 16.87±0.26 29.50±0.28 29.36±0.08 23.47
w/ DSKD (ours) 26.93±0.34 18.14±0.54 18.81±0.39 31.79±0.31 32.49±0.11 25.63 (+2.17↑)

JS 24.03±0.31 15.75±0.51 16.64±0.30 28.08±0.10 28.68±0.08 22.62
w/ DSKD (ours) 24.79±0.42 17.10±0.47 16.78±0.20 29.06±0.18 29.47±0.22 23.44 (+0.82↑)

SKL (Ko et al., 2024) 24.14±0.53 15.98±0.72 16.89±0.22 29.30±0.18 28.71±0.12 23.01
w/ DSKD (ours) 25.88±0.22 17.59±0.56 17.17±0.34 29.52±0.33 30.69±0.16 24.17 (+1.16↑)

SRKL (Ko et al., 2024) 24.28±0.58 16.91±0.67 16.88±0.20 29.55±0.19 28.64±0.21 23.25
w/ DSKD (ours) 25.44±0.22 17.34±0.69 17.19±0.34 30.29±0.29 31.23±0.13 24.30 (+1.05↑)

AKL (Wu et al., 2024) 24.80±0.70 16.79±1.09 16.80±0.44 29.29±0.35 28.81±0.09 23.30
w/ DSKD (ours) 26.33±0.45 20.17±0.46 17.43±0.48 34.93±0.39 34.40±0.20 26.65 (+3.35↑)

Mistral-7B → TinyLLaMA-1.1B (Different Vocabularies)
Teacher 31.56±0.19 25.10±0.36 20.50±0.32 36.07±0.24 36.27±0.15 29.90
SeqKD 23.56±0.39 15.87±0.54 15.99±0.55 25.50±0.37 26.64±0.09 21.51
MinED (Wan et al., 2024) 20.96±0.51 14.49±0.35 15.98±0.45 27.21±0.13 26.47±0.11 21.77
ULD (Boizard et al., 2024) 22.80±0.28 15.93±0.74 16.43±0.60 26.94±0.28 24.83±0.13 20.64
DSKD-CMA-AKL (ours) 26.45±0.56 19.57±0.69 17.95±0.55 35.99±0.19 35.00±0.16 26.99

Table 2: Rouge-L scores (%) on several benchmarks with TinyLLaMA-1.1B as the student. We list the mean
values and the standard deviations among 5 random seeds. “w/ DSKD” denotes our DSKD using the corresponding
distance function as D(·||·) in Eqn. (6). And “DSKD-CMA-AKL” denotes our DSKD framework equipped with
cross-model attention with AKL as D(·||·) in Eqn. (6).

framework is highly compatible with current dis-
tance functions in KD.

Objective Diff. Space Student Space DSKD
GPT2-1.5B → GPT2-120M

KL 17.63 18.00 18.69
RKL 17.82 18.03 18.44
JS 16.98 17.17 18.37
SKL 17.71 17.99 18.14
SRKL 17.19 17.47 18.29
AKL 17.63 17.77 18.39

LLaMA2-7B → TinyLLaMA-1.1B
KL 23.53 24.99 25.05
RKL 23.47 25.50 25.63
JS 22.62 22.64 23.44
SKL 23.01 23.55 24.17
SRKL 23.25 23.64 24.30
AKL 23.30 26.23 26.65

Table 3: The averaged Rouge-L (%) among all test sets.
The detailed scores on each test set are in Appendix C.

KD with different vocabularies. At the bottom
parts of Table 1 and Table 2, we also show the re-
sults of KD methods for models with different vo-

cabularies6. As mentioned in §2.2.2, the key chal-
lenge in this setting is to deal with the mismatch dis-
tributions due to different vocabulary sizes and tok-
enization. Facing this challenge, existing KD meth-
ods only pre-define coarse alignment and thus yield
limited performance, lagging behind KD methods
for models with the same vocabulary. In contrast,
our CMA mechanism learns the alignment automat-
ically, with which our DSKD performs better than
existing methods. Particularly, as the teacher mod-
els under this setting are stronger, DSKD-CMA can
sometimes achieve better performance than DSKD
with the same vocabulary (e.g., DSKD-CMA-AKL
in Table 2). It suggests the potential of our method
to train better students with stronger teachers, even
if they have different vocabularies.

5 Analysis

5.1 KD in Different Spaces vs. Unified Space

In this section, we further evaluate whether unify-
ing the space for KD leads to better performance.
Specifically, we only keep the KD process in the

6In this setting, we only list the results of our method with
the best performing distance functions due to space limitation.
The full results are listed in Table 5 and Table 6.
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Figure 2: Win rates (%) on the response quality between
TinyLLaMA trained by DSKD and the current white-
box KD framework.

student space in our DSKD, i.e., only calculate the
losses in Eqn. (5) and Eqn. (6), since it optimizes
the same student distribution qθ as the current KD
framework does in Eqn. (2). The only difference is
that the teacher distribution pt→s in Eqn. (6) shares
the same output space with the student distribution.
The results are shown in Table 3. For all distance
functions, KD in the student space (Student Space)
consistently surpasses KD in different spaces (Diff.
Space). These results sufficiently reflect the supe-
riority of unifying the output spaces of the distribu-
tions for KD. Furthermore, when combined with
KD in the teacher space, KD in dual spaces, i.e.,
DSKD, achieves further improvement, indicating
that KD in the student space and the teacher space
can complement each other.

5.2 Evaluation via GPT-4

We also use GPT-4 to evaluate and compare our
DSKD and the current white-box KD framework.
Specifically, we randomly pick 100 instructions
in the test set of Dolly and generate responses
with TinyLLaMA trained by DSKD and the current
framework. Then we use GPT-4 to judge which re-
sponses are better and plot the win rates in Figure 2.
It is shown that our DSKD can beat the current KD
framework in most cases for both KL divergence
and reverse KL divergence. More details and the
complete results for other distance functions can
be referred to in Appendix D.

5.3 Representation Similarity between the
Teacher and the Student

In the simulation experiment, we find that the
current KD framework will lead to limited rep-
resentation similarities between the student and the
teacher (as shown in Figure 1(b)). Thus, we eval-
uate whether this phenomenon also holds in the
real KD scenario. Since the dimensions are usu-
ally different for the teacher and student models,

(a) Cosine as Structure (b) Inner Product as Structure

Figure 3: Distance between the representation structures
of the teacher and the student.

we measure the similarity of representation struc-
tures of the two models instead of their hidden
states. Specifically, we use cosine similarity and
normalized inner product between output hidden
states to represent the representation structure of
a model (see Eqn. (16) and (17) in Appendix E
for the definitions). Then we calculate the L1 dis-
tance between the representation structures to re-
flect their similarity, where lower distance denotes
higher similarity between representation structures
(see Eqn. (18) and (19) in Appendix E for the
detailed calculations). The average distances be-
tween the structure of the teacher and the student
on 1000 training samples are plotted in Figure 3.
It shows that on both types of representation struc-
tures, the current KD framework (Vanilla KD) only
reduces minor distances between the teacher and
the student compared to fine-tuning without KD
(SFT). However, our DSKD achieves significantly
lower distances between the teacher and the stu-
dent, which indicates that DSKD can enhance the
similarity between the student and the teacher.

6 Related Work

White-Box KD for Language Models. The
white-box KD framework for language models
stems from the standard KD method proposed
by Hinton et al. (2015). As pre-trained language
models (PLMs) become prevalent for various NLP
tasks, numerous KD methods within this frame-
work were proposed to compress the excessive
model sizes of PLMs (Sun et al., 2019; Sanh et al.,
2019; Sun et al., 2020; Jiao et al., 2020). Be-
sides minimizing the distance between distribu-
tions, there are also feature-based KD methods
that distill the knowledge in intermediate hidden
states and attention maps of the teacher model (Jiao
et al., 2020; Wang et al., 2020, 2021b). Addition-
ally, white-box KD is also widely used in text gen-
eration tasks, such as neural machine translation

18171



(Tan et al., 2019; Wang et al., 2021a; Zhang et al.,
2023) and text summarization (Chen et al., 2020;
Liu et al., 2021). Since LLMs are predominate
for various tasks, several KD techniques have also
been proposed for LLMs (Gu et al., 2023; Ko et al.,
2024; Wu et al., 2024; Xu et al., 2024). Unlike the
previous work that follows the current white-box
KD framework, we challenge this framework by
revealing its inherent limitations and proposing a
simple yet more effective and general KD frame-
work as the solution.

KD with the Shared Prediction Head. In the
previous literature on KD, SimKD (Chen et al.,
2022) also proposed to share the teacher’s predic-
tion head for KD, which was similar to the process
of KD in the teacher space in our DSKD. However,
the aim of SimKD is to equip the prediction head
of the teacher model to the student model, and thus
the student model will be larger after KD and suf-
fer from higher inference costs. In contrast, our
DSKD only leverages this process to transfer the
representation information from the teacher and
has no influence on the original model size of the
student.

7 Conclusion

In this work, we first reveal two limitations in the
current white-box KD framework for LLMs, i.e.,
leading to low similarity between the student and
the teacher and the requirements of the same vo-
cabulary between two LLMs. To address them,
we propose a novel white-box KD framework,
named dual-space knowledge distillation (DSKD),
which unifies the output spaces of the student and
the teacher for KD. On this basis, we further de-
velop a cross-model attention mechanism to solve
the vocabulary mismatch between different LLMs,
so that our DSKD framework supports KD be-
tween any two LLMs, regardless of their vocab-
ularies. Experimental results on several instruction-
following benchmarks showcase that our frame-
work significantly outperforms the current white-
box KD framework on various distance functions.
Meanwhile, for LLMs with different vocabularies,
DSKD also surpasses all existing KD methods.

Limitations

Although our DSKD supports KD between LLMs
with different vocabularies via the cross-model
attention mechanism, the final performance of

DSKD-CMA in most cases still lags slightly be-
hind the performance of DSKD when LLMs have
the same vocabularies (see Table 5 and Table 6).
We attribute this gap to the alignment error between
the tokens in two differently tokenized sequences.
Nevertheless, we still believe that our cross-model
attention is a simple yet relatively effective method
to solve the KD for LLMs with different vocabu-
laries and may inspire more effective methods in
future work.

Acknowledgements

The research work described in this paper has
been supported by the National Nature Science
Foundation of China (No. 62476023, 61976016,
62376019, 61976015), and the authors would like
to thank the anonymous reviewers for their valuable
comments and suggestions to improve this paper.

References
Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Pi-

otr Stanczyk, Sabela Ramos Garea, Matthieu Geist,
and Olivier Bachem. 2024. On-policy distillation
of language models: Learning from self-generated
mistakes. In The Twelfth International Conference
on Learning Representations.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Nicolas Boizard, Kevin El-Haddad, Céline Hudelot, and
Pierre Colombo. 2024. Towards cross-tokenizer dis-
tillation: the universal logit distillation loss for llms.
arXiv preprint arXiv:2402.12030.

Defang Chen, Jian-Ping Mei, Hailin Zhang, Can Wang,
Yan Feng, and Chun Chen. 2022. Knowledge distilla-
tion with the reused teacher classifier. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11933–11942.

Yen-Chun Chen, Zhe Gan, Yu Cheng, Jingzhou Liu, and
Jingjing Liu. 2020. Distilling knowledge learned in
BERT for text generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7893–7905, Online. Association
for Computational Linguistics.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality, march 2023. URL
https://lmsys. org/blog/2023-03-30-vicuna, 3(5).

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul

18172

https://doi.org/10.18653/v1/2020.acl-main.705
https://doi.org/10.18653/v1/2020.acl-main.705


Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and
Tushar Khot. 2023. Specializing smaller language
models towards multi-step reasoning. In Inter-
national Conference on Machine Learning, pages
10421–10430. PMLR.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2023.
Minillm: Knowledge distillation of large language
models. In The Twelfth International Conference on
Learning Representations.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2023. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 14409–14428.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4163–4174.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. arXiv preprint
arXiv:1606.07947.

Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-
Young Yun. 2024. Distillm: Towards streamlined
distillation for large language models. arXiv preprint
arXiv:2402.03898.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang
Ren, Kai-Wei Chang, and Yejin Choi. 2023. Sym-
bolic chain-of-thought distillation: Small models can
also “think” step-by-step. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2665–
2679, Toronto, Canada. Association for Computa-
tional Linguistics.

Alexander Lin, Jeremy Wohlwend, Howard Chen, and
Tao Lei. 2020. Autoregressive knowledge distil-
lation through imitation learning. arXiv preprint
arXiv:2009.07253.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Yang Liu, Sheng Shen, and Mirella Lapata. 2021. Noisy
self-knowledge distillation for text summarization.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 692–703, Online. Association for Computa-
tional Linguistics.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323–4332.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert: a
compact task-agnostic bert for resource-limited de-
vices. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2158–2170.

Xu Tan, Yi Ren, Di He, Tao Qin, Zhou Zhao, and Tie-
Yan Liu. 2019. Multilingual neural machine trans-
lation with knowledge distillation. arXiv preprint
arXiv:1902.10461.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan,
Wei Bi, and Shuming Shi. 2024. Knowledge fu-
sion of large language models. arXiv preprint
arXiv:2401.10491.

Fusheng Wang, Jianhao Yan, Fandong Meng, and Jie
Zhou. 2021a. Selective knowledge distillation for
neural machine translation. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 6456–6466, Online. As-
sociation for Computational Linguistics.

18173

https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2021.naacl-main.56
https://doi.org/10.18653/v1/2021.naacl-main.56
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2021.acl-long.504
https://doi.org/10.18653/v1/2021.acl-long.504


Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2021b. Minilmv2: Multi-head self-
attention relation distillation for compressing pre-
trained transformers. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 2140–2151.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural In-
formation Processing Systems, 33:5776–5788.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In The 61st
Annual Meeting Of The Association For Computa-
tional Linguistics.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al. 2022.
Benchmarking generalization via in-context instruc-
tions on 1,600+ language tasks. arXiv preprint
arXiv:2204.07705, 2.

Yuqiao Wen, Zichao Li, Wenyu Du, and Lili Mou. 2023.
f-divergence minimization for sequence-level knowl-
edge distillation. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 10817–
10834.

Taiqiang Wu, Chaofan Tao, Jiahao Wang, Zhe Zhao, and
Ngai Wong. 2024. Rethinking kullback-leibler diver-
gence in knowledge distillation for large language
models. arXiv preprint arXiv:2404.02657.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. 2024. A survey on knowledge dis-
tillation of large language models. arXiv preprint
arXiv:2402.13116.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385.

Songming Zhang, Yunlong Liang, Shuaibo Wang,
Yufeng Chen, Wenjuan Han, Jian Liu, and Jinan Xu.
2023. Towards understanding and improving knowl-
edge distillation for neural machine translation. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 8062–8079, Toronto, Canada.
Association for Computational Linguistics.

18174

https://doi.org/10.18653/v1/2023.acl-long.448
https://doi.org/10.18653/v1/2023.acl-long.448


A Appendix

A.1 Simulation Results for Other Distance Functions

We complement the remaining results of simulation experiments for the following objectives: reverse KL
divergence, JS divergence, skewed KL divergence, skewed RKL divergence, and adaptive KL divergence.
The results are plotted in Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8. It is shown that no matter
which distance function is used, the student after KD will have low representation similarity with the
teacher and leave large margin to the minimum distance between the two distributions when using different
prediction heads. Thus, all these results lead to the consistent conclusion in §2.2.1, and also suggest that
current KD framework may have inherent flaws on enhancing the similarity between the student model
and the teacher model. As a solution, unifying the output spaces by sharing the prediction head for teacher
and student may achieve more effective KD process.

(a) Before KD (b) After KD (different heads) (c) After KD (shared head) (d) Loss curves of KD

Figure 4: Simulation results with reverse KL divergence as the KD objective. (a), (b) and (c) plot the student’s
hidden states and the teacher’s hidden states before and after the two KD processes. (d) shows the convergence
curves of the KD objective in the two KD processes.

(a) Before KD (b) After KD (different heads) (c) After KD (shared head) (d) Loss curves of KD

Figure 5: Simulation results with JS divergence as the KD objective. (a), (b) and (c) plot the student’s hidden states
and the teacher’s hidden states before and after the two KD processes. (d) shows the convergence curves of the KD
objective in the two KD processes.

(a) Before KD (b) After KD (different heads) (c) After KD (shared head) (d) Loss curves of KD

Figure 6: Simulation results with skewed KL divergence as the KD objective. (a), (b) and (c) plot the student’s
hidden states and the teacher’s hidden states before and after the two KD processes. (d) shows the convergence
curves of the KD objective in the two KD processes.
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(a) Before KD (b) After KD (different heads) (c) After KD (shared head) (d) Loss curves of KD

Figure 7: Simulation results with skewed reverse KL divergence as the KD objective. (a), (b) and (c) plot the
student’s hidden states and the teacher’s hidden states before and after the two KD processes. (d) shows the
convergence curves of the KD objective in the two KD processes.

(a) Before KD (b) After KD (different heads) (c) After KD (shared head) (d) Loss curves of KD

Figure 8: Simulation results with adaptive KL divergence as the KD objective. (a), (b) and (c) plot the student’s
hidden states and the teacher’s hidden states before and after the two KD processes. (d) shows the convergence
curves of the KD objective in the two KD processes.

A.2 Pseudo Code for Simulation Experiments

We also provide the pseudo code for re-implementing the key parts of our simulation experiments:

class Teacher(nn.Module):
def __init__(self):

super(Teacher, self).__init__()
# the initial teacher hiddens are sampled from Gaussian Distribution N(0, 2)
self.hidden = torch.randn(100, 2) * 2
# the head contains 10000 classes
self.head = torch.randn(10000, 2)

class Student(nn.Module):
def __init__(self):

super(Student, self).__init__()
# the initial student hiddens are sampled from Gaussian Distribution N(3, 1)
self.hidden = nn.Parameter(torch.randn(100, 2) + 3)
# the head contains 10000 classes
self.head = nn.Parameter(torch.randn(10000, 2))

def kd_with_different_head(student, teacher):
student_logits = student.hidden.matmul(student.head.transpose(-1, -2))
# calculating logits with the respective heads
teacher_logits = teacher.hidden.matmul(teacher.head.transpose(-1, -2))
kd_loss = distance_func(student_logits, teacher_logits)
return kd_loss

def kd_with_shared_head(student, teacher):
student_logits = student.hidden.matmul(student.head.transpose(-1, -2))
# calculating logits with the same head (student's head)
teacher_logits = teacher.hidden.matmul(student.head.transpose(-1, -2))
kd_loss = distance_func(student_logits, teacher_logits)
return kd_loss

As shown in the code, we manually separate the hidden states of the student and teacher in ini-
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tialization, so that the difference before and after KD will be more clear. Besides, to unify the
output spaces of the two models, we share the prediction head of the student with the teacher in
“kd_with_shared_head”. In this way, the output distributions of the student being optimized are as
same as the ones in “kd_with_different_head” and thus the results will be more comparable with the
ones in “kd_with_different_head”. The student models are optimized by the SGD optimizer with
appropriate learning rates in [1.0, 40.0] for different distance functions.

B Experimental Details

B.1 Data

All the test sets in our experiments are processed by (Gu et al., 2023). For all these test sets, Dolly contains
500 samples, Self-Instruction (Wang et al., 2023) contains 242 samples, Vicuna-Evaluation (Chiang et al.,
2023) contains 80 samples, Super-Natural Instructions (Wang et al., 2022) contains 1694 samples with
response lengths in [11,+∞], and Unnatural Instructions (Honovich et al., 2023) contains 10000 samples
with response lengths in [11,+∞].

B.2 Training

For GPT2-1.5B, we directly use the checkpoint released by Gu et al. (2023). For other models, the
detailed training configurations are listed in Table 4. Note that we do not use the pre-training corpus while
distillation as (Gu et al., 2023) did for simplicity. Each training requires several hours on 4×RTX 3090 or
8×RTX A4000.

Settings KD for GPT2 KD for TinyLLaMA
GPT2 Qwen1.5 TinyLLaMA LLaMA2 Mistral

Epoch 20 10 10 10 10
Learning Rate 5e-4 2e-5 1e-3 1e-3 1e-3

Projector Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3
Batch Size 32 32 32 32 32

LR Scheduler Cosine Cosine Cosine Cosine Cosine
Fine-Tuning Method Full Full LoRA LoRA LoRA

Lora Rank N/A N/A 256 256 256
Lora Alpha N/A N/A 8 8 8

Lora Dropout N/A N/A 0.1 0.1 0.1

Table 4: Detailed training configurations of KD for GPT2 and TinyLLaMA.

Besides, we combine the original cross-entropy loss on the target tokens in Eqn. (1) and the KD loss
in Eqn. (2) and Eqn. (10) as the overall training loss for all the white-box KD methods in our main
experiments:

L = 0.5 ∗ Lce + 0.5 ∗ L(ds)kd. (15)

B.3 Evaluation

For the evaluation, we use random sampling to decode the responses from all models. For decoding, we
set both the decoding temperature and top_p to 1.0. Then, we generate the responses with random seeds
in [10, 20, 30, 40, 50] and report the averaged Rouge-L scores of each seed following Gu et al. (2023).

B.4 Effect of Temperature for KD

As an important hyper-parameter in KD, the temperature coefficient τ significantly affects the final
performance of KD. As stated by the previous literature, a larger temperature (>1.0) will smooth the
teacher’s distribution and transfer more class relationship information to the student model. Thus, we
search for the best temperatures among [1.0, 1.5, 2.0, 3.0, 4.0] for two representative objectives (i.e., KL
divergence and reverse KL divergence) on the validation set and report the results in Figure 9. The results
show that both objectives perform best when the temperature is 2.0. Thus, we keep the temperature to 2.0
for all objectives in our experiments.
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Figure 9: Rouge-L scores (%) on the validation set for different temperature coefficients in KL divergence and
reverse KL divergence.

C Full Results

We provide the full results of our main experiments in Table 5 and Table 6. For KD between LLMs with
the same vocabulary, we complement the detailed results of all distance functions in both the student and
the teacher space. For KD between LLMs with different vocabularies, we also present the full results of
our DSKD with CMA for all the distance functions.

As shown in Table 5 and Table 6, KD in the student space yields better performance than vanilla KD
(in the different spaces) on all distance functions. However, KD in the teacher space only leads to limited
improvement for some distance functions. The reason is that the student distribution qs→t

θ optimized by
KD in the teacher space is different from the original student distribution qθ, and thus the KD process has
no direct influence on qθ. Nevertheless, we found that KL divergence has relatively good performance for
KD in the teacher space. Therefore, we directly choose KL divergence as the distance function for KD in
the teacher space in our DSKD.

D Details and Full Results for GPT-4 Evaluation

We use the API of gpt4-turbo-0409 to evaluate the quality of the responses. As we conduct pairwise
comparison between the responses from two models, to alleviate the order bias in the evaluation process
of GPT-4, we randomly shuffle the two responses as the Response A/B in the system prompts.

Figure 10: Prompt for GPT-4 Evaluation.

The full results for GPT-4 Evaluation on all distance functions are shown in Figure 11. For all distance
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functions, the students trained by our DSKD always win more than the student trained by the current
white-box KD framework, indicating the consistent superiority of our DSKD framework on existing
distance functions.

Figure 11: GPT-4 Evaluation Results for all the distance functions.

E Details of the Distance between Representation Structure

Since the student models and the teacher models generally have different dimensions on representations,
it is difficult to directly measure the representation similarity between the student and the teacher. Thus,
we calculate the similarity on the structure of sentences in their own representation spaces of the student
and the teacher. Specifically, given a sentence with n tokens, we calculate structure matrices with both the
cosine similarity and normalized inner-product values between the output hidden states of this sentence:

Mcosine(i, j) =
hi

⊤hj
|hi||hj |

∈ Rn×n, (16)

Mprod(i, j) =
hi

⊤hj∑
k hi

⊤hk
∈ Rn×n, (17)

where Mcosine and Mprod are structure matrices calculated by cosine and normalized inner-product
between output hidden states, respectively. Then we calculate the L1 distance between the matrices of the
student and the teacher:

Dcosine =
n∑

i

n∑

j

|Mt
cosine(i, j)−Ms

cosine(i, j)|, (18)

Dprod =
n∑

i

n∑

j

|Mt
prod(i, j)−Ms

prod(i, j)|. (19)

The smaller distance values means the representations of the student and the teacher are more similar. In
Figure 3, we calculate and average the two distances Dcosine and Dprod on 1000 samples in the training
set for GPT2 models that trained without KD (SFT), trained by the current white-box KD framework
(Vanilla KD) and trained by our DSKD framework (DSKD).
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Methods Dolly SelfInst VicunaEval S-NI UnNI Avg.
SFT 22.94±0.28 10.11±0.36 15.17±0.63 16.21±0.19 18.68±0.09 16.62

GPT2-1.5B → GPT2-120M (Same Vocabulary)
Teacher 27.19±0.23 14.64±0.64 16.30±0.37 27.55±0.30 31.46±0.12 23.43
SeqKD 23.68±0.25 10.03±0.23 14.41±0.46 16.36±0.18 18.48±0.11 16.59
KL 24.54±0.48 10.43±0.24 15.66±0.42 17.24±0.27 20.28±0.18 17.63

KL in Student Space 23.83±0.30 10.46±0.36 15.79±0.51 18.82±0.31 21.08±0.07 18.00
KL in Teacher Space 24.07±0.67 10.34±0.38 14.94±0.24 18.83±0.25 21.02±0.11 17.84
KL in Student Space + KL in Teacher Space 24.70±0.24 10.65±0.30 15.67±0.30 19.51±0.21 22.94±0.07 18.69

RKL 24.38±0.55 10.73±0.61 15.71±0.39 17.31±0.11 20.96±0.12 17.82
RKL in Student Space 25.12±0.25 10.60±0.27 15.25±0.26 17.96±0.24 21.19±0.09 18.03
RKL in Teacher Space 23.54±0.33 10.48±0.55 15.21±0.52 16.59±0.18 19.49±0.16 17.06
RKL in Student Space + KL in Teacher Space 24.61±0.59 11.01±0.45 14.98±0.48 19.32±0.28 22.27±0.13 18.44

JS 23.86±0.14 10.20±0.40 15.50±0.23 16.20±0.23 19.17±0.06 16.98
JS in Student Space 24.46±0.34 10.02±0.24 15.59±0.46 16.53±0.19 19.25±0.14 17.17
JS in Teacher Space 23.28±0.52 9.76±0.37 15.08±0.26 15.89±0.20 18.34±0.12 16.47
JS in Student Space + KL in Teacher Space 24.61±0.27 11.41±0.35 15.40±0.28 18.94±0.20 21.48±0.17 18.37

SKL (Ko et al., 2024) 24.03±0.23 10.66±0.51 14.70±0.37 17.99±0.15 21.18±0.16 17.71
SKL in Student Space 24.06±0.38 11.03±0.18 15.11±0.44 18.67±0.27 21.13±0.05 18.00
SKL in Teacher Space 23.44±0.25 10.06±0.43 14.86±0.51 16.52±0.21 19.60±0.15 16.90
SKL in Student Space + KL in Teacher Space 25.24±0.28 10.50±0.13 15.76±0.43 18.34±0.44 20.87±0.11 18.14

SRKL (Ko et al., 2024) 24.48±0.19 10.35±0.38 14.88±0.24 16.53±0.23 19.68±0.05 17.19
SRKL in Student Space 24.84±0.08 10.50±0.59 15.16±0.30 16.80±0.26 20.04±0.05 17.47
SRKL in Teacher Space 23.10±0.39 10.00±0.42 14.83±0.39 16.07±0.34 18.45±0.17 16.49
SRKL in Student Space + KL in Teacher Space 25.23±0.25 11.19±0.22 15.91±0.45 17.92±0.16 21.20±0.12 18.29

AKL (Wu et al., 2024) 24.75±0.60 10.46±0.24 15.37±0.41 17.48±0.17 20.11±0.05 17.63
AKL in Student Space 25.08±0.36 10.70±0.15 14.56±0.74 17.80±0.20 20.72±0.11 17.77
AKL in Teacher Space 23.82±0.60 10.10±0.59 15.40±0.16 17.04±0.16 20.13±0.09 17.30
AKL in Student Space + KL in Teacher Space 25.13±0.14 10.63±0.43 16.18±0.35 18.58±0.48 21.45±0.16 18.39

Qwen1.5-1.8B → GPT2-120M (Different Vocabulary)
Teacher 27.19±0.23 14.64±0.64 16.30±0.37 27.55±0.30 31.42±0.11 23.42
SeqKD 23.40±0.21 9.36±0.38 15.37±0.35 15.16±0.17 17.34±0.11 16.13
MinED (Wan et al., 2024) 24.41±0.61 10.60±0.39 15.86±0.42 16.76±0.28 19.68±0.12 17.46
ULD (Boizard et al., 2024) 23.77±0.41 9.67±0.50 14.99±0.55 17.60±0.21 19.49±0.12 17.11
DSKD-CMA-KL (ours) 24.73±0.47 11.15±0.34 15.31±0.38 17.20±0.24 20.57±0.08 17.79
DSKD-CMA-RKL (ours) 23.99±0.29 10.89±0.46 15.15±0.28 17.82±0.11 21.05±0.13 17.78
DSKD-CMA-JS (ours) 23.95±0.29 10.44±0.60 15.38±0.23 16.69±0.14 20.27±0.10 17.35
DSKD-CMA-SKL (ours) 24.67±0.13 10.82±0.46 15.30±0.51 17.95±0.28 20.65±0.13 17.88
DSKD-CMA-SRKL (ours) 25.23±0.17 10.99±0.26 15.56±0.41 17.76±0.23 20.54±0.07 18.02
DSKD-CMA-AKL (ours) 24.72±0.33 10.67±0.29 15.84±0.67 16.59±0.25 19.78±0.10 17.52

Table 5: Detailed Rouge-L scores (%) of all our models on several benchmarks with GPT2-120M as the student.
We present the mean values and the standard deviations among 5 random seeds. The average scores (Avg.) on all
benchmarks are also listed. “XX in Student Space + KL in Teacher Space” represents our DSKD with XX as the
distance function in Eqn. (6).
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Methods Dolly SelfInst VicunaEval S-NI UnNI Avg.
SFT 23.20±0.13 14.88±0.54 16.42±0.35 27.79±0.27 26.12±0.11 21.68

LLaMA2-7B → TinyLLaMA-1.1B (Same Vocabulary)
Teacher 28.32±0.46 20.95±0.69 18.76±0.35 32.05±0.28 32.41±0.12 26.50
SeqKD 23.21±0.22 16.46±0.72 16.58±0.38 26.33±0.26 27.69±0.10 22.05
KL 25.46±0.63 17.21±0.25 16.43±0.53 29.27±0.29 29.28±0.09 23.53

KL in Student Space 26.20±0.30 18.69±0.72 17.71±0.43 32.40±0.21 29.94±0.09 24.99
KL in Teacher Space 22.86±0.77 15.80±0.53 15.90±0.22 27.58±0.29 28.03±0.20 22.04
KL in Student Space + KL in Teacher Space 26.31±0.26 18.27±0.56 18.04±0.37 31.43±0.26 31.20±0.09 25.05

RKL 24.49±0.41 17.14±0.61 16.87±0.26 29.50±0.28 29.36±0.08 23.47
RKL in Student Space 26.74±0.36 19.16±0.29 18.85±0.41 31.76±0.42 31.01±0.06 25.50
RKL in Teacher Space 22.60±0.43 16.04±1.15 15.81±0.40 28.88±0.23 28.86±0.10 22.44
RKL in Student Space + KL in Teacher Space 26.93±0.34 18.14±0.54 18.81±0.39 31.79±0.31 32.49±0.11 25.63

JS 24.03±0.31 15.75±0.51 16.64±0.30 28.08±0.10 28.68±0.08 22.62
JS in Student Space 23.86±0.26 17.16±0.85 16.98±0.39 27.61±0.27 27.65±0.08 22.64
JS in Teacher Space 22.74±0.34 15.28±0.74 16.33±0.26 26.54±0.28 26.07±0.14 21.39
JS in Student Space + KL in Teacher Space 24.79±0.42 17.10±0.47 16.78±0.20 29.06±0.18 29.47±0.22 23.44

SKL (Ko et al., 2024) 24.14±0.53 15.98±0.72 16.89±0.22 29.30±0.18 28.71±0.12 23.01
SKL in Student Space 25.15±0.24 17.16±0.84 17.27±0.18 29.19±0.19 28.98±0.20 23.55
SKL in Teacher Space 22.72±0.75 15.88±0.64 15.89±0.41 28.37±0.23 26.84±0.15 21.94
SKL in Student Space + KL in Teacher Space 25.88±0.22 17.59±0.56 17.17±0.34 29.52±0.33 30.69±0.16 24.17

SRKL (Ko et al., 2024) 24.28±0.58 16.91±0.67 16.88±0.20 29.55±0.19 28.64±0.21 23.25
SRKL in Student Space 25.92±0.39 16.76±0.71 17.13±0.46 29.69±0.17 28.67±0.04 23.64
SRKL in Teacher Space 22.88±0.57 16.40±0.46 16.24±0.40 27.23±0.37 27.16±0.04 21.98
SRKL in Student Space + KL in Teacher Space 25.44±0.22 17.34±0.69 17.19±0.34 30.29±0.29 31.23±0.13 24.30

AKL (Wu et al., 2024) 24.80±0.70 16.79±1.09 16.80±0.44 29.29±0.35 28.81±0.09 23.30
AKL in Student Space 26.07±0.51 19.57±0.83 17.57±0.46 34.50±0.33 33.45±0.15 26.23
AKL in Teacher Space 22.81±0.56 16.33±0.73 16.00±0.14 27.05±0.15 28.09±0.19 22.05
AKL in Student Space + KL in Teacher Space 26.33±0.45 20.17±0.46 17.43±0.48 34.93±0.39 34.40±0.20 26.65

Mistral-7B → TinyLLaMA-1.1B (Different Vocabularies)
Teacher 31.56±0.19 25.10±0.36 20.50±0.32 36.07±0.24 36.27±0.15 29.90
SeqKD 23.56±0.39 15.87±0.54 15.99±0.55 25.50±0.37 26.64±0.09 21.51
MinED (Wan et al., 2024) 20.96±0.51 14.49±0.35 15.98±0.45 27.21±0.13 26.47±0.11 21.77
ULD (Boizard et al., 2024) 22.80±0.28 15.93±0.74 16.43±0.60 26.94±0.28 24.83±0.13 20.64
DSKD-CMA-KL (ours) 26.52±0.45 17.90±0.69 18.20±0.59 30.66±0.39 31.03±0.11 24.86
DSKD-CMA-RKL (ours) 25.41±0.18 18.31±0.45 16.83±0.46 34.79±0.16 34.05±0.12 25.88
DSKD-CMA-JS (ours) 24.09±0.71 16.77±0.75 16.96±0.27 30.01±0.15 30.00±0.10 23.56
DSKD-CMA-SKL (ours) 25.28±0.24 17.33±0.62 17.57±0.43 30.27±0.30 31.14±0.35 24.32
DSKD-CMA-SRKL (ours) 24.87±0.50 17.63±0.53 17.16±0.24 29.77±0.19 30.78±0.14 24.04
DSKD-CMA-AKL (ours) 26.45±0.56 19.57±0.69 17.95±0.55 35.99±0.19 35.00±0.16 26.99

Table 6: Rouge-L scores (%) of all models on several benchmarks with TinyLLaMA-1.1B as the student. We
present the mean values and the standard deviations among 5 random seeds. The average scores (Avg.) on all
benchmarks are also listed. “XX in Student Space + KL in Teacher Space” represents our DSKD with XX as the
distance function in Eqn. (6).
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