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Abstract

Available training data for named entity recog-
nition (NER) often contains a significant per-
centage of incorrect labels for entity types and
entity boundaries. Such label noise poses chal-
lenges for supervised learning and may signif-
icantly deteriorate model quality. To address
this, prior work proposed various noise-robust
learning approaches capable of learning from
data with partially incorrect labels. These ap-
proaches are typically evaluated using simu-
lated noise where the labels in a clean dataset
are automatically corrupted. However, as we
show in this paper, this leads to unrealistic
noise that is far easier to handle than real noise
caused by human error or semi-automatic an-
notation. To enable the study of the impact
of various types of real noise, we introduce
NOISEBENCH, an NER benchmark consisting
of clean training data corrupted with 6 types
of real noise, including expert errors, crowd-
sourcing errors, automatic annotation errors
and LLM errors. We present an analysis that
shows that real noise is significantly more chal-
lenging than simulated noise, and show that
current state-of-the-art models for noise-robust
learning fall far short of their achievable upper
bound. We release NOISEBENCH for both En-
glish and German to the research community1.

1 Introduction

Named entity recognition (NER) is the task of de-
tecting and classifying named entities in text, such
as the names of organizations or locations. Current
state-of-the-art approaches for NER still require su-
pervision in the form of labeled training data (Zara-
tiana et al., 2023), i.e. sentences in which named
entities are marked and assigned their correct type.
However, prior work found that available datasets
for NER and other supervised tasks are affected by
label noise, meaning that a certain percentage of

1https://github.com/elenamer/NoiseBench

entity labels are incorrect. For instance, the com-
mon NER dataset CoNLL-03 (Tjong Kim Sang and
De Meulder, 2003) was estimated in various studies
to have noise shares of between 5 and 7% (Wang
et al., 2019; Reiss et al., 2020; Rücker and Ak-
bik, 2023). Other NER datasets have also been
found to contain a share of incorrect labels, with
OntoNotes4 estimated around 8% and WNUT-17
around 18% (Wang et al., 2019; Huang et al., 2021).

Label noise introduces inconsistencies during
training, which may significantly deteriorate model
quality (Zhang et al., 2021a). To address this issue,
prior work proposed approaches for noise-robust
learning aimed at mitigating the negative effects of
the noisy training signal (Song et al., 2022). How-
ever, the evaluation of these approaches has two
main limitations.
Limitation 1: Simulated noise is too easy. Most
current research in noise-robust learning relies on
experiments with simulated label noise (Tänzer
et al., 2022; Klie et al., 2023). While this allows
for evaluation in a controlled setting, it has been
shown that simulated noise, even though it can
model noise well to some extent, is much easier for
deep learning models to disregard than real label
noise (Jiang et al., 2020; Zhu et al., 2022).

Refer to Figure 1 for an illustrative comparison
between real and simulated noise for three example
sentences, including different types of errors that
occur in NER datasets. These examples demon-
strate that simulated noise can introduce similar
errors as real noise, however the choice of spans to
mislabel is random and as a result often less plau-
sible. This means that an approach shown to be
robust to simulated noise may not in fact be robust
to real noise in practice.
Limitation 2: Distinct types of real noise. Ad-
ditionally, there exist many possible sources of
"real" noise. For instance, expert labelers may
make different mistakes than crowd workers (Fre-
nay and Verleysen, 2014). Next to human label-
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ORG

ORG

Correct label

Noisy label from crowdsourcing

Simulated noisy label

ORG

... letter to UN Security Council ...

... letter to UN Security Council ...

... letter to UN Security Council ...

(a) Example of a partial match
error induced by noise. Real noise
makes a plausible mistake by la-
beling "UN" as ORG (organiza-
tion), whereas simulated noise im-
plausibly caused "Council" to be
labeled.

Correct label

Noisy label from crowdsourcing

Simulated noisy label

MISCMISC

MISCLOC

MISC LOC MISC

MISC

... Swiss Grand Prix  cycling race on Sunday...

... Swiss Grand Prix  cycling race on Sunday...

... Swiss Grand Prix  cycling race on Sunday...

(b) Examples of type and non-entity errors in-
duced by noise. Real noise makes a plausible
mistake by labeling "Swiss" as a LOC (loca-
tion), whereas simulated noise implausibly la-
bels "Grand Prix" as LOC. Real noise makes a
plausible non-entity mistake by labeling "Sun-
day", whereas simulated noise labels "cycling".

Correct label

Noisy label from crowdsourcing

Simulated noisy label

MISCLOC

LOC

MISC

... in Zurich, the Olympic champion...

... in Zurich, the Olympic champion...

... in Zurich, the Olympic champion...

(c) Example of a missing mention in-
duced by noise. Real noise causes
a plausible omission ("Olympic"),
whereas simulated noise omits a triv-
ial entity annotation ("Zurich")

Figure 1: Examples of text snippets with correct labels (top row) and two types of noise: Real noise from
crowdsourcing (middle row) and simulated class-dependent noise (bottom row). This introduces different types of
errors: (a) partial matches of correct entity mentions, (b) a wrong type and a non-entity mention and (c) a missing
entity. We qualitatively find real noise to be more plausible than simulated noise.

ing, there are widely-used automatic approaches
to create NER-labeled datasets such as distant su-
pervision from a knowledge base (Mintz et al.,
2009; Hedderich et al., 2021) and weak supervi-
sion using rules (Zhang et al., 2021b). Lastly, cur-
rent research investigates the use of LLMs to label
datasets (Golde et al., 2023; Wang et al., 2023).

We postulate that these types of real noise differ
in their characteristics, meaning that a noise-robust
learning approach shown to perform well on one
type of noise may not perform well on another. For
this reason, we argue there is a need for evaluating
noise-robustness across multiple label noise types.
Contributions. With this paper, we present
NOISEBENCH, a new benchmark for measuring
the impact of label noise in the training data on the
prediction quality of trained NER models. In more
detail, our contributions are:

• We construct a noisy training dataset in 7 dif-
ferent variants, where each noisy variant con-
tains the same sentences and is affected by one
class of real errors, spanning errors made by
experts, crowd workers, distant supervision,
weak supervision and teacher LLMs.

• We present a set of experiments that empiri-
cally show that real noise from NOISEBENCH

is significantly more difficult for current ap-
proaches. We further find that during training,

real noise is memorized immediately, whereas
memorization of simulated noise is delayed.

• We comparatively evaluate current state-of-
the-art approaches for noise-robust learning
on NOISEBENCH, and experimentally estab-
lish upper bounds.

Our analysis finds that no single current approach
works best for all types of real noise, and that all
current approaches fall far short of their theoretical
upper bound. To enable the research community
to leverage our benchmark in their evaluations, we
publicly release all data and implementation.

2 NOISEBENCH

Our benchmark is derived from a subset of the
classic CoNLL-03 dataset for NER in English, an-
notated with entities belonging to four classes. We
chose this dataset since it has been extensively stud-
ied in the field, allowing us to integrate various
prior works. We derive a similar benchmark for
NER in German, in Section 5 and Appendix A.

NOISEBENCH consists of the following parts:
(1) A noise-free test split to evaluate trained models.
(2) Seven variants of the training split, where six
are annotated with different types of noise and one
is without noise. Table 1 presents the quality of the
six noisy variants w.r.t. the noise-free dataset.
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The training split contains 5,885 sentences from
400 documents, covering 9,685 entity mentions.
The test split contains 3,427 sentences from 231
documents, covering 5,725 entity mentions.

2.1 Types of Noise
In the following, we discuss each training split and
the type of noise it models.

2.1.1 Noise-Free Data
Our benchmark requires two splits without any
label noise: A clean test split to evaluate models
trained on noisy training data, and a Clean training
split to measure the upper bound performance.

Since the original annotations of CoNLL-03
have been shown to be noisy (Wang et al., 2019;
Reiss et al., 2020), we use the labels of CLEAN-
CONLL (Rücker and Akbik, 2023), a recently re-
leased resource in which 7% of all original anno-
tations were semi-automatically relabeled. In their
evaluation, Rücker and Akbik (2023) find their re-
sulting dataset to be of very high quality and largely
improved consistency. The Clean Test split in our
benchmark is the standard CoNLL-03 test split,
with the CLEANCONLL labels.

2.1.2 Expert Errors
Most machine learning datasets are created using
manual annotation by domain experts that provide
high-quality labels. However, errors have been
found to occur even in expert annotation, affecting
even well-known benchmarks, though usually with
relatively low noise shares of under 10% (Northcutt
et al., 2021b; Song et al., 2022). To represent such
noise, our benchmark includes a variant of the train
split called Expert, which contains the original
CoNLL-03 annotations. As Table 1 shows, this
split has a noise share of 5.5% and is thus the split
with lowest noise.

2.1.3 Crowdsourcing Errors
Crowdsourcing is a less costly alternative to expert
annotation, but also more prone to annotation errors
(Frenay and Verleysen, 2014). In order to create
noisy variants of the train set representing real-
world human errors, we utilize the crowdsourced
labels by Rodrigues et al. (2014). This study in-
volves 47 crowd workers labelling a subset of the
English CoNLL-03 dataset, of around 400 news
articles. They released their dataset and all annota-
tions produced by each crowd worker. We selected
only the sentences where the tokenization matched
the Clean variant, resulting in 5,885 sentences.

We include two noisy training splits based on
crowd annotations into our benchmark: (1) In the
first, Crowd, we do a simple majority vote over
all annotations provided for each token, i.e. the
baseline method for aggregating crowdsourced an-
notations. (2) In the second, Crowd++, we use
an oracle version of the majority vote, selected by
either taking the correct label if it is provided by
any of the annotators or, in the absence of a cor-
rect label, by choosing the label with the majority
of votes. This version represents the upper bound
of crowdsourced labels given a perfect label ag-
gregation method. As Table 1 shows, the noise
share of Crowd (36.6%) is considerably higher
than Crowd++ (15.3%).

2.1.4 Distant Supervision
One approach for labeling data without human
participation is distant supervision (Mintz et al.,
2009), where entity mentions in target datasets are
matched to entity types in knowledge bases (KBs).

We include a Distant noisy training variant in
our benchmark, adapted from the annotations by
Liang et al. (2020)2 that use the Wikidata cor-
pus and gazetteers collected from multiple online
sources as external knowledge bases. After ini-
tial POS tagging, the unlabeled sentences were
matched with the knowledge bases. This process
results in incomplete annotations due to limited
coverage over entity types of KBs. This explains
the rather high number of missing entities and the
overall noise level (31.3%) of the Distant training
variant, as shown in Table 1.

2.1.5 Weak Supervision
Another approach aimed at reducing manual an-
notation efforts is weak supervision. Here, labels
are obtained using a number of “weak” supervi-
sion sources, such as heuristics or expression-based
rules. Each weak source is typically specialized to
detect only a subset of the correct labels.

We use the labels from the approach by Lison
et al. (2020)2 to create our Weak label set. This
covers 16 weak labeling sources (Zhang et al.,
2021b), including heuristics, gazetteers and pre-
dictions of NER models trained on other corpora.
An example heuristic is detecting PER (person)
entities using a pre-defined list of first names.

We aggregate the weak label sets with simple
majority voting. We apply majority vote on every
token with at least one entity label assigned to it,

2Available under Apache 2.0 license
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#Entities %Errors

Noisy train split %Noise F1token F1entity Total Correct Missing (FN) Non-entity (FP) Type Partial

Expert 5.5 99.0 94.5 9,644 9,129 10.0 2.8 74.0 13.3
Crowd++ 15.3 96.7 84.7 8,607 7,751 59.6 8.7 17.0 14.7
Crowd 36.6 92.3 63.4 7,188 5,352 61.9 10.2 16.0 11.9
Distant 31.3 92.9 68.7 7,329 5,846 65.4 10.5 12.9 11.1
Weak 40.4 91.9 59.6 10,640 6,058 17.4 34.6 36.3 11.8
LLM 45.6 87.4 54.4 11,349 5,726 22.5 45.4 28.3 3.7

Table 1: Overview of the noisy training splits in NOISEBENCH. The table shows the noise level, the micro-averaged
token-level F1 score (F1token), micro-averaged entity-level F1 (F1entity), the number of entities (Total), number
of correct entities (Correct) and share of each error type: missing mentions (Missing (FN)), non-entity mentions
(Non-entity (FP)), wrong type (Type) and partial matches (Partial). All metrics are in reference to the Clean split.

following Zhang et al. (2021b). Due to the large
number of labelling sources, majority voting yields
a large number of entities, as shown in Table 1,
including many false positives. As a result, the
Weak label set has a high noise share of 40.4%.

2.1.6 LLM Teacher Models
Our benchmark includes a noisy variant of the train
split annotated by an LLM. This follows recent ef-
forts that use LLMs for dataset generation (Wang
et al., 2023). Here, the main idea is to pass a de-
scription of the annotation task and target classes
to an LLM, and provide sentences to label. LLMs
are able to generate high quality labels for some
tasks (e.g. sentiment classification) while for oth-
ers (e.g. NER and question type categorization) the
resulting labels are very noisy (Golde et al., 2023).

We created the LLM variant using the Fabricator
toolkit (Golde et al., 2023) by prompting GPT3.5
for named entities in our training dataset. To use
LLM outputs for annotation of NER datasets, a cer-
tain output format is required. To achieve this, we
provide one example with the correct output format
in each prompt. This example is the same for each
sentence we wish to annotate, which we refer to
as a static one-shot setting. The example sentence
was selected from the remainder of the CoNLL-03
training split, which consists of all sentences not
included in our benchmark.

As Table 1 shows, the LLM label set results in
the highest noise share of 45.6%. This is mainly
due to the large number of nouns incorrectly iden-
tified as entity mentions, which also makes this the
label set with the largest number of entity annota-
tions out of the variants in NOISEBENCH.

2.2 Statistics
An overview of NOISEBENCH is given in Table 1.
The table shows token-level F1 score and entity-
level F1 score expressed as percentages. We define

the noise level (%Noise) in terms of the entity-level
F1 score, as 100 −%F1. The noise levels of the
noisy splits range from 5.5 to 45.6 percent.

The table also shows the share of different error
types. The errors are categorized into 4 main cat-
egories: missing mentions, non-entity mentions
(false positives), incorrect entity type (where the
boundary is correct, but type incorrect) and partial
matches. Partial matches are special cases where
the type is correct, but the mention boundary is only
partially correct. Refer to Figure 1 for examples.

We observe that the Crowd++, Crowd and Dis-
tant label sets have a lower total number of entity
annotations than the Clean dataset, and the largest
portion of errors are missing mentions. Conversely,
the Weak and LLM label sets have more annota-
tions than the Clean dataset, and most of the errors
are either an incorrect mention or incorrect type.
Most of the errors in the Expert label set are due
to incorrect type. Regarding the number of partial
matches, for almost all noise types, they make up
between 10% and 15% of all errors.

3 Comparing Real and Simulated Noise

We first use NOISEBENCH to investigate how real
label noise affects NER model performance in com-
parison to simulated noise. For this, we conduct
two experiments: the first one addresses the impact
of each type of training noise on the clean test set
performance, and the second one compares training
dynamics under real and simulated label noise to
highlight the differences in noise memorization.

3.1 Noise Simulation Methods

We consider two noise simulation methods, namely
the simple uniform noise used in most prior work
and a more involved oracle class-dependent noise
method that we design to mirror each noisy variant
in NOISEBENCH.
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Uniform noise. Uniform noise corrupts samples
into any other label with a uniform probability dis-
tribution, given a target noise share. Studies investi-
gating simulated noise in the NER task commonly
rely on variants of this method (Mayhew et al.,
2019; Tänzer et al., 2022).
Oracle class-dependent noise. Class-dependent
noise is based on the knowledge that some pairs of
classes are more likely to be mislabeled than others.
It is defined by a noise transition matrix, which
contains the mislabeling probabilities between all
pairs of classes (Hedderich et al., 2021). We design
an oracle version of class-dependent noise, where
the per-class mislabeling probabilities of real noise
are known. This allows us to investigate class-
dependent noise in an ideal case, where it is able
to mirror real noise closely, even though this is not
possible in practice. This method mirrors real noise
by utilizing the token-level mislabeling frequencies
as probabilities to form a noise transition matrix.

Using each noise simulation method, we created
6 label sets, corresponding to each noise level in
NOISEBENCH. It should be noted that the simu-
lated labels replicate the token-level F1 scores of
the real noisy labels, however the entity-level F1
and sentence-level accuracy can deviate.

3.2 Experimental Setup
In both experiments, we train a baseline approach
for NER on each noisy variant of the training split,
as well as on the additional simulated noise.
Validation splits. We evaluate the setting in which
all available data to train a model is noisy, includ-
ing the validation set. To obtain noisy validation
sets for each of our 7 dataset variants, we split the
noisy datasets into training and validation sets. All
sentences from 66 news documents from 1996-08-
24 comprise the validation set, which is around
17% of all sentences, and are left out from model
training and used for hyperparameter tuning.
Baseline. For NER, as a baseline approach, we
fine-tune an xlm-roberta-large transformer us-
ing the FLERT approach (Schweter and Akbik,
2021). It improves upon the regular fine-tuning
setup by considering document-level features of a
sentence to be tagged. We use a learning rate of
5e-6 and a batch size of 32, for a fixed number of
10 epochs, without early stopping. These parame-
ters were obtained according to the performance on
a noisy validation set, keeping in mind that larger
batch sizes are more robust to noise (Rolnick et al.,
2017). We use entity-level micro F1-score.

3.3 Experiment 1: Impact of Label Noise on
Test Performance

In the first experiment, we compare how the clean
test set performance is impacted by the 6 types of
real label noise when present in the training set.
In addition, we provide the same comparison for
corresponding simulated noisy label sets.

3.3.1 Results and Discussion
The results for uniform noise are shown in Ap-
pendix D. We initially established that uniform
noise is less challenging for the model, so in the
results for Experiments 1 and 2 we chose to focus
solely on oracle class-dependent noise.

The main results from Experiment 1 for oracle
class-dependent noise are shown in Table 2. Fol-
lowing are our main observations.
Label noise degrades performance. When we
compare the test F1 scores of the real noisy variants
with the average score of 93.99 achieved when
training on the Clean variant, we see that model
performance is affected by each noise type. As the
noise levels increase, this impact becomes more
pronounced, showing that the baseline model lacks
robustness to real noise. Comparing the test F1
scores of the simulated noisy variants, we can see
that noise of 5.9% in the training set results in a
score comparable to training on the Clean variant.
However, as simulated noise levels increase, the
noise does degrade test set scores.
Real noise is more difficult. Furthermore, when
we compare the real noisy label sets with their
equivalent simulated noisy variants, we can ob-
serve that the simulated training variants show a
score of around 2.5 percentage points higher on
average than the real label sets. This shows that

Real noise Simulated noise ∆

%Noise F1 %Noise F1 F1

Clean 0 94.0 ±0.0 - - -
Expert 5.5 89.8±0.2 5.9 93.7±0.2 3.9
Crowd++ 15.3 86.7±0.3 17.9 88.9±0.4 2.2
Crowd 36.6 70.5±0.6 41.3 72.4±1.0 1.8
Distant 31.3 70.8±0.1 39.2 74.5±0.4 3.7
Weak 40.4 65.9±0.4 41.2 63.1±0.8 -2.8
LLM 45.6 62.6±0.4 47.2 68.6±1.3 6.0
Average 74.4±0.3 76.9±0.7 2.5

Table 2: F1 scores on the Clean Test split of the baseline
FLERT approach, fine-tuned on different noisy variants
of the training set. The scores are averages of 3 runs.
The column ∆ (difference) refers to the difference in F1
score on the test split when training on a dataset with
real noise compared to simulated class-dependent noise.
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for predictive NER models, real noise is more dif-
ficult to overcome than simulated noise. In other
words, models are more likely to overfit to real
noisy labels, rather than simulated ones.

Models generalize to unseen entities well. Fig-
ure 2 shows F1 scores for seen and unseen entities
separately, further distinguishing seen entities by
whether their label in the training set was clean or
noise-corrupted. In Figure 2a we see that for the
Expert and Crowd++ noise types, the score on the
seen (clean) and the unseen entities is comparable,
which indicates the model has the ability to gener-
alize to unseen entities well. As for the remaining
training splits with noise levels of over 30%, noise
also affects the performance on unseen entities.

Simulated noisy patterns are disregarded. For
all real noise types, the score on the seen (noisy)
entities is low. With simulated noise however, in
Figure 2b we see that for Expert and Crowd++, the
score on the seen-noisy entities and seen-clean enti-
ties is close. This means that at low noise levels, the
models are able to disregard simulated noisy pat-
terns and predict the same entities correctly when
they appear in the test set.

(a) Real noise

(b) Simulated class-dependent noise

Figure 2: F1 scores on different subsets of entities in
the test set: all, seen (clean), seen (noisy) and unseen.

3.4 Experiment 2: Memorization of Noise
Prior analysis has found that there are distinct
phases of learning when training a model on data
with label noise (Arpit et al., 2017). This has been
referred to as a generalization phase, where mod-
els learn patterns that generalize well to clean data,
followed by a memorization phase, where models
overfit to the label noise and deteriorate in predic-
tion quality (Tänzer et al., 2022).

To investigate this phenomenon for real and sim-
ulated noise, we extend the training stage to 100
epochs. At the end of each epoch, we measure the
F1 score of the model on both the noisy training
split it is being trained on, and separately on the
clean training split. The difference between these
two scores allows us to measure memorization.

3.4.1 Results and Discussion
In Figure 3 we show training curves from
training with real and simulated variants of
NOISEBENCH for 3 noise types: Expert,
Crowd++ and Distant. We plot two scores: the F1-
score on the respective noisy variant of the training
set, and the F1 score on the Clean variant of the
training set. In all training curves, we can observe
the memorization effect, with each model perfectly
fitting the noisy data by the end of training and
reaching an F1 score close to 1.
Delayed memorization of simulated noise. How-
ever, we note that with simulated noise (see Figure
3d, 3e, 3f) this happens much later in the training
process than with real noise. In addition, the train-
ing curves of simulated noise show a stage during
the early epochs where the score on the clean labels
is consistently higher than the score on the noisy
labels. This confirms previous findings that the
model is able to learn general patterns first, before
starting to memorize the noise.
Immediate memorization of real noise. With real
noise, this does not happen and the model starts
fitting the noisy labels from the beginning (see
Figure 3a, 3b, 3c). As a result, the score on the
clean labels is consistently lower than the score on
the noisy labels, throughout the training run3.

Our experiments find that real noise does not dis-
play distinct generalization/memorization phases
during training, and rather immediately begins with
memorization4. This makes intuitive sense, as real
noise has underlying patterns that may be extracted

3We confirm this finding for German in Appendix A.2.2.
4We confirm this finding for a smaller model, as well as a

randomly initialized model in Appendix E.

18187



Expert Crowd++ Distant
R

ea
l
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(d) Simul. Expert - 6% noise (e) Simul. Crowd++ - 15% noise (f) Simul. Distant - 39% noise

Figure 3: Comparison of model performance during extended training. The top row shows models fine-tuned on
label sets with real noise, while the bottom row models fine-tuned on corresponding simulated (class-dependent)
noisy labels. The plots are averages of 3 runs. The graphs for Crowd, Weak and LLM are shown in Appendix E.

during learning. This lends further evidence to
the increased challenges and the need to evaluate
noise-robust learning with real noise.

4 Evaluating Noise-Robust Learning

Having established the difficulty of real noise, we
now use NOISEBENCH to perform a comparative
evaluation of widely-used noise-robust learning ap-
proaches. Our goal is to determine their effective-
ness in the presence of real label noise, and to es-
tablish upper bounds of what noise-robust learning
could ideally achieve.

4.1 Compared Approaches

We surveyed current state-of-the-art methods for
noise-robust NER and found that many approaches
rely on the same underlying ideas for handling la-
bel noise. In the following, we group approaches
by the underlying idea, select a state-of-the-art rep-
resentative for each group and, if possible, derive
an upper bound method for each group. For more
details about the implementation of compared ap-
proaches refer to Appendix B.

4.1.1 Learning from a Clean Subset
The first family of approaches relies on utilizing the
subset of each noisy dataset in which all labels are
correct. One type of these approaches filters out all
likely incorrect annotations and learns only from
a clean subset. Another type derives confidence

weights for each sample so that annotations judged
to be of higher quality feature more during training.

As a representative of the former type of ap-
proaches targeting clean subsets of noisy datasets,
we chose Confident Learning (Northcutt et al.,
2021a), while the latter type is represented by
CrossWeigh (Wang et al., 2019) and Learn-To-
Reweight (L2R) (Ren et al., 2018).
Upper bound: Oracle subset. To obtain an upper
bound for this family of approaches, we use an
oracle to select the subset of clean sentences from
each of the noisy training splits in NOISEBENCH.
We then use the baseline fine-tuning approach only
on this subset, illustrating a best-case scenario.

4.1.2 Delaying Memorization
Another family of noise-robust learning approaches
seeks to leverage the two phases of learning (gen-
eralization and memorization) we discussed in Sec-
tion 3.4. They seek to either draw our the gener-
alization phase or cease training before memoriza-
tion begins. While our experiments indicate that
these two phases do not exist for real noise, we
nevertheless include this family of approaches in
our evaluation since they are widely used. As rep-
resentative of this class of approaches, we chose
co-regularization (Zhou and Chen, 2021).
Upper bound: Oracle stopping. To obtain an
upper bound for this family of approaches, we use
a simple stopping criterion based on the score on
the clean test set at the end of each epoch. We use
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the epoch of best generalization to report the final
score. This simulates an ideal stopping.

4.1.3 Combined Approaches
While the approaches discussed so far each build
on the individual ideas of identifying a clean sub-
set or delaying memorization, many current ap-
proaches in fact combine multiple of such ideas in
multi-stage pipelines (Liang et al., 2020; Yu et al.,
2021; Wang et al., 2022). As representative of
such approaches, we evaluate BOND (Liang et al.,
2020) and meta self-refinement (MSR) (Zhu et al.,
2023a), both of which combine pseudo-labeling
in a student-teacher setup and confidence-based
sample selection.
No upper bound for pseudo-labeling. We cannot
derive a separate upper bound for pseudo-labeling,
as the best case scenario here would mean that all
noisy labels are replaced by correct labels, which
is the same as training on the Clean dataset.

4.1.4 Additional Clean Data
We include a further upper bound for the scenario
in which a small amount of high quality noise-free
data is available. This is inspired by the extensive
analysis of the use of clean validation data in Zhu
et al. (2023b). Here, after first training on the noisy
training set, they use a small clean dataset to con-
tinue fine-tuning the model. We include this upper
bound to measure the accuracy gains that may be
achieved if one were to invest effort in manually
annotating additional noise-free data.

4.2 Results

Table 3 summarizes the evaluation results. We
make the following observations:
Identifying a clean subset has highest potential.
The upper bound of training only the clean subset
of each noisy split (see "Oracle subset" in Table 3)
achieves the best scores of all upper bounds. This
makes intuitive sense as training is performed only
over fully clean sentences, albeit a smaller subset
of the full training data as all noisy sentences are fil-
tered out. Similarly, we find strong improvements
for the "Additional clean data" upper bound. Ora-
cle stopping, on the other hand, does not achieve
the same level of performance as the oracle subset,
only slightly outperforming the FLERT baseline.
This is in line with our findings in Experiment 2 that
the early-learning generalization phase is skipped
when training with real noise. This indicates that
noise-robust learning approaches that target early

stopping have little potential.
Small benefit of noise-robust approaches. Ev-
idently, there is no single best approach for all
noise types. For each noise type, at least one noise-
robust approach outperforms the baseline, how-
ever on average most of them are comparable to
it. Only MSR outperforms the baseline averaged
over all noise types, bringing improvements for
Crowd++, Distant, Weak and LLM. Additionally,
L2R works well for LLM noise and BOND for
Crowd. Still, the performance is far below the up-
per bound. This raises the issue of trade-offs of
existing noise-robust learning approaches, since
they often require additional hyperparameter tun-
ing or incur computational costs, but only lead to
slight improvements in the presence of real noise.

5 Ablation: NOISEBENCH for German

Using the German sentences in CoNLL-03, we
created a noisy label benchmark for German to
confirm our findings for a different language. Fol-
lowing the English counterpart described in Section
2, it consists of (1) a noise-free test split to evaluate
trained models and (2) three variants of the training
split, where two are annotated with different types
of noise and one is the ground truth. The two types
of noise include Expert labels, with 16.2% noise
and LLM labels, with 54% noise. More details can
be found in Appendix A.1.

5.1 Experimental Results

Table 4 shows the results of the noise-robust ap-
proaches and upper bounds when training on the
German datasets. More experimental details and
results can be found in Appendix A.2.
Oracle subset score reaches an upper limit. Re-
garding the upper bounds, we see that the perfor-
mance of the oracle subset of Expert and LLM is
close, meaning that the 40005 clean sentences in
the LLM subset are already enough to reach an
F1 score over 82. Despite having more samples,
the Expert subset does not result in a much higher
score. This could signify that the remaining sen-
tences, not included in the Expert subset, are diffi-
cult examples necessary to properly learn the task.
Poor performance of noise-robust approaches.
Regarding the noise-robust approaches, only Con-
fident Learning is able to match and slightly out-
perform the baseline. All other methods mainly
perform poorly on the German dataset, even below

5See Appendix C for the size of the oracle subset.
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Clean Expert Crowd++ Crowd Distant Weak LLM Avg.

Baseline 93.99±0.04 89.84±0.19 86.71±0.29 70.52±0.62 70.75±0.13 65.87±0.36 62.60±0.39 77.18

Upper bounds
Oracle subset - 90.31±0.28 91.83±0.33 85.95±0.59 83.07±0.59 81.13±1.25 75.70±1.10 85.99
Oracle stopping 94.06±0.07 89.88±0.19 87.23±0.24 71.04±0.88 71.84±0.61 66.98±0.22 63.64±0.44 77.81
Additional clean data 94.14±0.18 90.04±0.30 89.14±0.67 81.70±0.95 80.19±0.73 71.66±1.66 72.06±1.32 82.70

Noise-robust learning
Confident learning 93.71±0.31 90.01±0.15 86.53±0.23 69.99±0.97 71.41±0.34 65.81±0.46 61.75±0.56 77.03
CrossWeigh 93.50±0.12 89.68±0.49 85.01±0.83 64.95±1.18 70.55±0.24 66.15±0.24 60.87±1.40 75.82
L2R 90.29±2.12 82.10±4.10 79.91±2.27 67.51±1.01 65.45±2.01 63.36±0.34 65.29±4.15 73.42
Co-regularization 93.65±0.11 89.55±0.22 86.91±0.31 72.22±0.73 70.45±0.22 65.52±0.62 62.23±0.76 77.22
BOND 89.92±0.71 86.78±0.35 86.13±0.81 74.12±0.49 73.62±0.70 66.60±0.36 60.99±0.77 76.88
MSR 92.83±0.16 89.53±0.48 88.45±1.08 68.44±3.79 75.80±1.41 69.48±0.32 64.57±1.22 78.44

Table 3: Performance of noise-robust approaches on the Clean test set, when training on NOISEBENCH training
split variants. Results are expressed in terms of F1 score. Each score is averaged over 3 runs.

Clean Expert LLM Avg.

Baseline 90.24±0.2 79.02±0.4 57.86±0.4 75.7

Upper bounds
Oracle subset - 83.11±0.6 82.72±0.6 82.9
Oracle stopping 90.50±0.2 79.48±0.3 61.81±0.9 77.3
Additional clean data 89.86±0.9 82.85±1.7 69.50±1.4 80.7

Noise-robust learning
Confident learning 90.00±0.3 79.57±0.3 58.03±0.2 75.9
CrossWeigh 90.11±0.3 78.32±0.3 57.50±0.8 75.3
L2R 81.45±3.1 74.14±0.8 53.07±1.6 69.6
Co-regularization 88.50±0.2 78.49±0.2 54.47±0.5 73.8
BOND 86.53±0.3 77.56±0.5 55.89±0.6 73.3
MSR 85.34±0.5 76.42±0.4 64.00±0.7 75.3

Table 4: German variant: Performance of noise-robust
approaches on the Clean test set, when training on each
training split variant. Results are expressed in terms of
F1 score. Each score is averaged over 3 runs.

the baseline, with the exception of the improvement
brought by MSR on the LLM dataset.

6 Related Work

There are a few benchmarks for learning with label
noise and related areas. The WRENCH benchmark
(Zhang et al., 2021b) focuses only on weak supervi-
sion labels for multiple tasks, with the emphasis on
combining multiple weak labelling sources. Klie
et al. (2023) compare a large number of methods
for the detection of annotation errors. Multiple
tasks are included, including NER on CoNLL-03,
where they evaluate the detection of expert errors,
concluding that most approaches are not successful
at this. Similarly, Chong et al. (2022) evaluate an-
notation error detection on datasets with noise only
from crowdsourced labels, for part-of-speech tag-
ging and natural language inference tasks. Liu et al.
(2022) propose a benchmark for text classification
under label noise, where they re-annotate an exist-

ing sentiment classification dataset and construct
noisy label sets according to annotator disagree-
ments; however, they do not publish these label sets.
NoisyWikiHow, a benchmark for intention identi-
fication has also been presented (Wu et al., 2023),
where the authors propose a method to simulate
realistic noise that imitates human errors by pro-
ducing heterogeneous and instance-dependent er-
rors. For NER in Estonian, Hedderich et al. (2021)
introduce the NoisyNER, which includes multi-
ple noise levels obtained from distant supervision
approaches with varying quality. MultiCoNERv2
(Fetahu et al., 2023) addresses textual noise in the
input data itself (e.g. typos), instead of label noise.

7 Conclusion

In this paper, we address the issue of label noise
in the NER task. We introduce a new benchmark,
based on the commonly used NER dataset CoNLL-
03, for evaluating the impact of 6 distinct types of
real label noise on the same set of sentences, with
varying degrees of difficulty.

We demonstrated that real noise causes
transformer-based language models to immediately
memorize the noise pattern, making real label noise
a more challenging problem than simulated label
noise, even in the case of oracle class-dependent
noise informed by the characteristics of real noise.

We further presented an evaluation of popular
noise-robust learning approaches. Our experiments
indicate that current methods fall far short of what
can potentially be achieved on the noise types in
NOISEBENCH and that approaches that focus on au-
tomatically identifying a clean subset of labels have
the highest potential. We hope that NOISEBENCH

aids other researchers in the further development
of more effective noise-robust approaches.
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Limitations

This paper focuses on the scenario when the en-
tire available dataset could be noisy and we do not
have access to a small, high-quality labelled, data
subset. While this is a certainly scenario which
reflects a large number of real-world cases, it could
be argued that in some situations it is realistic to
have the resources to ensure a subset of the data
is clean, with high-quality annotations. However,
when this is the case, Zhu et al. (2023b) show-
cased that this clean data would be better utilized
by directly fine-tuning the models on it, instead of
using it for validation. Therefore, we argue that
this alternative setup is not particularly useful for
the evaluation of label-noise-robust approaches.
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A NOISEBENCH for German: Additional
Details

Following are additional details about the German
version of NOISEBENCH, as well as results from
Experiment 2 for this dataset.

A.1 Overview
The training split contains 12,705 sentences from
553 documents, covering 10,008 entity mentions.
The test split contains 3,160 sentences from 155
documents, covering 3,051 entity mentions.

A.1.1 Noise-Free Data
As noise-free labels for the German part of CoNLL-
03, we take the updated annotations from 20066.
This updated label set is considered ground-truth
by the research community.

When compared to the original CoNLL-03 Ger-
man labels, he most changes in this label set are for
the MISC class, most notably the removal of adjec-
tives derived from names. This can alternatively
be considered an update in annotation guidelines.
With this, it should be noted that for the German
dataset we do not have access to labels with verified
high quality, as we do for the English counterpart
with the CleanCoNLL labels.

A.1.2 Expert Errors
Similar as for English, we take the original CoNLL-
03 labels (Tjong Kim Sang and De Meulder, 2003)
as labels with expert errors. This results in a noise
share of 16.2%.

A.1.3 LLM Teacher Models
Similar as for English, we use GPT3.5 to create a
noisy version of the training split annotated by an
LLM. This results in a high noise share of 54%.

6More details about the revision of the labels can be found
in the ner.tz file, downloaded from https://www.clips.
uantwerpen.be/conll2003/ner/, more specifically in the
/ner/etc.2006/revision.txt and ner/etc.2006/guide.pdf files.

A.1.4 Statistics
When compared to the noise shares for Expert and
LLM in NOISEBENCH in Table 1 (5.5% and
45.6%), the noise shares for German are higher
(16.2% and 54% respectively). This is due to LLMs
performing more poorly on languages other than
English, as well as due to fewer research efforts
focusing on re-annotating and cleaning the Ger-
man part of CoNLL-03, resulting in less consistent
labels.

We see that most of the errors in German are non-
entity mentions. Overall, we also note that type
errors and partial matches are much less prominent
here (less than 10%), even though they formed a
larger part of the errors in NOISEBENCH.

A.2 Experiments

A.2.1 Validation Split
We take the last 96 documents from the training
split to serve as a validation set, corresponding to
roughly 17% of all sentences.

A.2.2 Experiment 2
We performed Experiment 2 for the German ver-
sion of NOISEBENCH, where the goal is to observe
the memorization of label noise. The resulting
graphs for both noise types are shown in Figure
4. We observe a similar behaviour as in the En-
glish part of NOISEBENCH, where the real noisy
datasets are memorized immediately.

(a) Expert - 16.4% noise

(b) LLM - 54.7% noise

Figure 4: Comparison of model performance during
extended training, for the German dataset.
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#Entities %Errors

Noisy train split %Noise F1token F1entity Total Correct Missing (FN) Non-entity (FP) Type Partial

Expert 16.2 98.2 83.8 11852 9156 14.5 73.0 6.1 6.4
LLM 54.0 92.1 46.0 16526 6102 19.8 69.9 3.2 7.0

Table 5: Overview of the noisy training splits in NOISEBENCH for German. The table shows the noise level, the
micro-averaged token-level F1 score (F1token), micro-averaged entity-level F1 (F1entity), the number of entities (Total),
number of correct entities (Correct) and share of each error type: missing mentions (Missing (FN)), non-entity
mentions (Non-entity (FP)), wrong type (Type) and partial matches (Partial). All metrics are in comparison to the
Clean split.

B Implementation Details

In all our experiments with noise-robust methods
we use the same xlm-roberta-large transformer
as in the FLERT baseline with a batch size of 32,
except for L2R, for which we used a batch size of
16 due to VRAM constraints.

B.1 Confident Learning

We use regular transformer fine-tuning and obtain
predicted probabilities for each sample in the train-
ing dataset using cross-validation. The number of
folds is the only parameter in this approach and we
performed a small search before choosing 3 folds.
We use the implementation by Klie et al. (2023) to
adapt this approach for NER by aggregating token-
level predictions. We perform the final sample
selection on the sentence level, training the model
only using sentences that do not contain entities
flagged as errors or have missing entities.

B.2 Co-Regularization

We perform a hyperparameter sweep as suggested
by the authors, and choose the best performing
ones on the validation set of the respective noise
type.

B.3 BOND

In our experiments we found that limiting BOND’s
first stage of training to 1 epoch is not enough for
optimal performance, hence why we rely on the
findings reported by Tänzer et al. (2022) and stop
the first stage after the first 3 epochs. The second
stage is limited to 7 epochs in order to reproduce
the same training length as in the FLERT baseline.
We update the teacher model in the second stage of
training every 2 epochs as suggested by the authors
for the CoNLL-03 dataset, and use hard pseudo-
labels in the second stage, which we found to out-
perform soft pseudo-labels in our experiments.

B.4 CrossWeigh

We ran the CrossWeigh framework with 5 folds
and 3 iterations, because according to the ablation
experiments ran by the authors, higher numbers did
not bring significant performance improvements.
For a fair comparison, we adjust the CrossWeigh
framework to use transformer fine-tuning as a base
model. For the final training run using the sample
weights, we used the same FLERT approach as in
the baseline.

B.5 L2R

We rely on the implementation provided by Zhu
et al. (2023b), test out two meta-learning rates
while keeping the model learning rate fixed at 5e-6,
and perform the validation step every 0.1 epoch
with a patience of 10 validation steps.

B.6 MSR

We used the implementation provided by the
authors (Zhu et al., 2023a) and the hyperpa-
rameters they selected for CoNLL, as stated in
their paper. For the German dataset, we used
xlm-roberta-base as a multilingual model.

B.7 Upper Bound: Additional Clean Data

This upper bound assumes an additional small
dataset with high-quality labels is available. We
fix this number to 100 sentences, which are ran-
domly chosen from the validation split (otherwise
not used to train the models). This training setting
first fine-tunes the baseline model for 10 epochs,
and then continues fine-tuning only on the small
clean dataset for 5 more epochs.

B.8 GPT3.5

To obtain an LLM-annotated variant of the
training splits, for NOISEBENCH we used
gpt-3.5-turbo-0613, while for German we used
gpt-3.5-turbo-0125.
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C Size of Oracle Subsets

In Table 6, the number of clean sentences in the ora-
cle subset for each noisy variant is shown. These or-
acle subsets are used as performance upper bounds,
as explained in Section 4.1.1.

% of all sentences Oracle subset size

NoiseBench split
Clean 100.0 4879
Expert 92.6 4483
Crowd++ 79.4 3786
Crowd 55.3 2554
Distant 59.7 2728
Weak 49.6 2294
LLM 38.2 1705

German split
Clean 100.0 10824
Expert 81.6 8827
LLM 37.8 4095

Table 6: Details about the oracle subset used as an upper
performance bound. The table shows the percentage of
clean sentences and the absolute number, for each noise
type.

D Baseline for Uniform Noise

Table 7 shows the results from Experiment 1 for
uniform noise. We can see the the model is quite
robust to uniform noise and that it results in higher
test performance, when compared to real noise of
the same level. The average difference in F1 scores
in 17 percentage points, which is why we focus on
the more realistic oracle class-dependent noise sim-
ulation method in the main results of Experiments
1 and 2.

Real noise Uniform noise ∆

%Noise F1 %Noise F1 F1

Clean 0 94.0 ±0.0 - - -
Expert 5.5 89.8±0.2 5.4 93.8±0.3 4,0
Crowd++ 15.3 86.7±0.3 16.1 92.8 ±0.5 6.1
Crowd 36.6 70.5±0.6 36.7 88.4 ±0.3 17.9
Distant 31.3 70.8±0.1 31.7 90.0 ±0.5 19.3
Weak 40.4 65.9±0.4 42.2 91.7 ±0.2 25.8
LLM 45.6 62.6±0.4 47.3 89.7 ±0.6 27.1
Average 74.4±0.3 91.40.4 17.0

Table 7: F1 scores on the Clean Test split of the baseline
FLERT approach, fine-tuned on different noisy variants
of the training set. The scores are averages of 3 runs.
The column ∆ (difference) refers to the difference in F1
score on the test split when training on a dataset with
real noise compared to uniform noise.

E Memorization of Crowd, Weak and
LLM Noise

Figure 5 is an extension of Section 3.4 and shows
the memorization plots from Experiment 2 for the
Crowd, Weak and LLM dataset variants. We again
observe immediate memorization of real noise and
delayed memorization of simulated noise.

F Additional Experiments on
Memorization

In addition to the main Experiment 2, we ran two
ablation experiments regarding memorization.

F.1 Effect of Pre-training on Memorization

The first ablation compares fine-tuning a pretrained
model and a model with randomly initialized
weights. Figure 6 shows this comparison during
an extended training run for the Crowd++ train-
ing variant, where we used DistilBERT (learning
rate of 5e-05). We can see that even without pre-
training, the model starts overfitting to the noisy
labels and we can observe a large gap between the
performance on the clean and noisy labels.

(a) Pre-trained model

(b) Random initialization

Figure 6: Memorization of label noise in DistilBert,
using the pretrained model and a model with randomly
initialized weights. The experiment was run for one
noise type - Crowd++.

F.2 Memorization in a Smaller Model

The second experiment investigates memorization
when fine-tuning a smaller model, DistilRoBERTa,
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Figure 5: Comparison of model performance during extended training, for Crowd, Weak and LLM from
NOISEBENCH. The top row shows models fine-tuned on label sets with real noise, while the bottom row models
fine-tuned on a corresponding simulated noisy label set. The graphs show both the F1 score on the noisy training
labels and on the clean training labels, for 3 different noise types. The plots are averages of 3 runs.

because the model we use in the main experiments,
XLM-RoBERTa-Large, is quite large. Figure 7
shows an extended training run for three noise types
in NoiseBench. We observe the same patterns of
immediate and delayed memorization as with the
larger model.

G Extended Performance Metrics

In this section we provide extended metrics of
the predictive performance of the baseline FLERT
method. These metrics and analysis correspond to
Experiment 1 from Section 3.3.

G.1 Analysis of Test Errors

We can characterize the model predictions in a
similar way as we characterized the different types
of errors in Table 1 and Figure 1. Table 8 shows
how representative different types of prediction
errors are, expressed as a percentage of all errors.
We can see that with Expert noise, a majority of
the mistakes are wrong entity types. Furthermore,
for the Crowd and Distant dataset versions, the
largest number of errors is due to missing entities,
while for the Weak and LLM datasets, the errors
are mostly non-entities or wrong type. This is in
line with the characteristics of the noisy datasets
themselves, described in Table 1.

For German we make similar observations. For
the clean variant, most errors are missing entities.

However, for the two noisy variants, which include
a large number of noisy non-entity annotations as
seen in Table 5, the majority of prediction errors
are also non-entity mentions.

We also examined the confusion matrices of the
predictions. We were able to identify some patterns,
regarding which types of errors are more prone to
memorization. For most noise types in English
NOISEBENCH, the largest number of prediction
mistakes (out of the strings previously seen with a
noisy label in the training set) were missing ORG
and MISC entities, as well as ORG misclassified
as LOC. These mistakes were present in a large
number consistently across noise types.

However, we also observed a large number of
missing ORG and MISC entities in the predictions
when using the clean training set, which indicates
that this is an inherently difficult pattern, even when
noise is not present. On another hand, the pattern
of misclassifying ORG as LOC does not happen
when clean data is available. Therefore we can
conclude that when this type of noisy pattern is
present in the training set, the models are not able
to recognize it as noise and are not robust to it.

G.2 Per-Class Metrics

We provide per-class metrics for a more exten-
sive evaluation of the performance of the baseline
method, for both German and English, in Table 9.
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Figure 7: Comparison of model performance during extended training with a smaller model, Distil-RoBERTa.
The top row shows models fine-tuned on label sets with real noise, while the bottom row models fine-tuned on a
corresponding simulated noisy label set. The graphs show the F1 score on the noisy training labels and on the clean
training labels, for 3 noise types. The plots are averages of 3 runs.

% Prediction errors
Missing Non-entity Type Partial

NoiseBench split
Clean 13.9 25.4 29.6 31.1
Expert 12.2 14.4 54.1 19.3
Crowd++ 27.0 11.9 42.1 18.9
Crowd 55.2 6.4 25.3 13.1
Distant 64.6 8.2 14.4 12.8
Weak 14.2 24.5 49.5 11.8
LLM 20.5 34.9 38.3 6.4

German split
Clean 39.9 26.4 16.7 16.9
Expert 17.8 61.9 11.7 8.6
LLM 26.7 61.5 4.8 6.9

Table 8: Overview of the percentage of different types
of prediction errors

We can see that both precision and recall for
the MISC class are generally lower than the other
classes. This is especially noteworthy in the Expert
label set of the German split, which does not have
a high noise share, but it does have very low per-
formance on MISC. This is however expected, as
most of the noisy labels in this label set are related
to MISC entities.
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LOC ORG PER MISC

Prec. Recall #Ent. Prec. Recall #Ent. Prec. Recall #Ent. Prec. Recall #Ent.

NoiseBench split
Clean 93.9 ±0.6 93.5 ±0.4 1413 93.5 ±0.1 94.6 ±0.1 1909 99.0 ±0.2 99.1 ±0.1 1591 82.9 ±1.0 86.2 ±1.0 812
Expert 81.1 ±0.1 95.5 ±0.6 1413 92.0 ±0.6 81.9 ±0.3 1909 98.4 ±0.7 99.0 ±0.3 1591 85.3 ±0.9 81.4 ±1.1 812
Crowd++ 75.9 ±0.6 94.4 ±0.4 1413 91.8 ±0.3 75.4 ±0.8 1909 97.6 ±0.5 97.8 ±0.3 1591 86.5 ±0.5 70.8 ±0.1 812
Crowd 65.5 ±0.4 90.7 ±1.2 1413 83.7 ±0.8 44.5 ±0.3 1909 93.6 ±1.9 71.7 ±1.2 1591 84.4 ±0.4 47.5 ±0.6 812
Distant 83.8 ±0.7 74.8 ±0.2 1413 85.3 ±1.3 55.9 ±1.0 1909 75.7 ±1.7 84.8 ±0.8 1591 98.6 ±1.4 13.8 ±3.1 812
Weak 52.5 ±0.2 93.1 ±0.1 1413 49.9 ±0.2 34.6 ±0.3 1909 88.5 ±0.3 88.9 ±1.0 1591 84.2 ±0.9 57.3 ±0.9 812
LLM 52.7 ±0.3 84.6 ±0.5 1413 57.7 ±0.9 45.4 ±0.5 1909 95.4 ±0.6 98.3 ±0.1 1591 12.7 ±0.4 11.8 ±0.4 812

German split
Clean 93.0 ±0.7 90.8 ±0.2 1051 80.3 ±0.6 82.3 ±0.3 584 96.6 ±0.4 97.1 ±0.2 1210 77.1 ±1.7 56.5 ±0.6 206
Expert 88.4 ±0.6 83.3 ±0.9 1051 67.1 ±0.8 84.0 ±0.2 584 96.9 ±1.0 96.0 ±0.4 1210 13.1 ±0.3 40.6 ±0.8 206
LLM 63.9 ±0.4 70.3 ±0.9 1051 37.3 ±0.7 82.8 ±1.4 584 66.8 ±0.2 63.7 ±0.6 1210 10.4 ±0.6 18.4 ±1.6 206

Table 9: Per-class metrics of the predictions on the Clean test set
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