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Abstract

While large language models (LLMs) have
demonstrated remarkable abilities across vari-
ous fields, hallucination remains a significant
challenge. Recent studies have explored hal-
lucinations through the lens of internal rep-
resentations, proposing mechanisms to deci-
pher LLMs’ adherence to facts. However,
these approaches often fail to generalize to
out-of-distribution data, leading to concerns
about whether internal representation patterns
reflect fundamental factual awareness, or only
overfit spurious correlations on the specific
datasets. In this work, we investigate whether
a universal truthfulness hyperplane that distin-
guishes the model’s factually correct and in-
correct outputs exists within the model. To
this end, we scale up the number of training
datasets and conduct an extensive evaluation
– we train the truthfulness hyperplane on a di-
verse collection of over 40 datasets and exam-
ine its cross-task, cross-domain, and in-domain
generalization. Our results indicate that in-
creasing the diversity of the training datasets
significantly enhances the performance in all
scenarios, while the volume of data samples
plays a less critical role. This finding sup-
ports the optimistic hypothesis that a univer-
sal truthfulness hyperplane may indeed exist
within the model, offering promising directions
for future research. Code is publicly avail-
able at https://github.com/hkust-nlp/
Universal_Truthfulness_Hyperplane.

1 Introduction

Although large language models (LLMs) have
gained significant success in a wide range of do-
mains (OpenAI, 2023; Touvron et al., 2023a,b),
hallucination problems remain the main challenges
that hinder their wider applications (Ji et al., 2023;
Zhang et al., 2023; Huang et al., 2023). This issue
is further aggravated by a limited understanding of
the opaque inner mechanisms of LLMs’ factual be-
haviors. Recent works start to investigate hallucina-

tions from the perspective of inner representations,
adopting the probing method (Alain and Bengio,
2017) to identify hyperplanes in the space of hid-
den states to distinguish between correct responses
and hallucinations (Burns et al., 2023; Azaria and
Mitchell, 2023; Li et al., 2023b; Zou et al., 2023;
Marks and Tegmark, 2023; CH-Wang et al., 2023).
The underlying hypothesis is that the hidden states
of language models already encode significant in-
formation on hallucination, and we are able to tell
hallucinations from the hidden states.

While these studies have achieved impressive
hallucination detection performance on the datasets
which the probes are trained on (Burns et al.,
2023; Li et al., 2023b; Zou et al., 2023; Marks
and Tegmark, 2023; CH-Wang et al., 2023), they
often struggle to generalize to out-of-distribution
(OOD) data samples (Burns et al., 2023; Marks and
Tegmark, 2023; CH-Wang et al., 2023). We fur-
ther verify such OOD generalization failure in our
experiments, confirming that the performance of
the probe trained solely on TruthfulQA (Lin et al.,
2022) – a widely used dataset to train probes (Li
et al., 2023b; Chen et al., 2023; Joshi et al., 2023) –
will drop 25 absolute points on average for several
other datasets compared to in-domain detection.
This failure raises two principled questions: (1)
Do the identified inner representation features in
previous works really capture the model’s inner
hallucination, or only overfit spurious patterns of
the specific dataset? (2) Does there exist a univer-
sal truthfulness hyperplane that can classify factual
correctness on diverse tasks?

We aim to answer these questions in this work.
Inspired by the success of diversified instruction
tuning (Sanh et al., 2022; Wei et al., 2022; Chung
et al., 2022; Wang et al., 2023), our idea is to in-
crease the diversity of the training data by scaling
up the number of training datasets, so that we may
find the universal truthfulness hyperplane that can
generalize across tasks using the framework shown
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Figure 1: Top: we extract representations from the last token of the input sequence, then specific locations of the hidden states
inside the LLM are selected and concatenated as input to train the probe. Bottom: Previous works mainly train the linear
probe on one dataset which tends to overfit spurious features. Our work utilizes diverse datasets to examine whether a universal
truthfulness hyperplane exists that can generalize to out-of-domain data.

in Figure 1. Specifically, we construct a comprehen-
sive and diverse collection of hallucination detec-
tion datasets to facilitate the analysis. The dataset
comprises 17 distinct categories of tasks covering
over 40 datasets from knowledge-seeking QA tasks
such as Triviaqa (Joshi et al., 2017), Natural Ques-
tions (Kwiatkowski et al., 2019) to structure-to-
text tasks such as E2ENLG (Dušek et al., 2020),
with each task containing both correct and incorrect
samples, as illustrated in Figure 2. These datasets
enable us to thoroughly evaluate the performance
and robustness of the truthfulness probes.

In our experiments, we train probes using di-
verse datasets and evaluate their generalization
performance in three scenarios: cross-task, cross-
domain, and in-domain. We study the effectiveness
of probing different locations of hidden states and
find that the attention heads lead to the highest
accuracy. Our probe method beats the prompting-
based approach as well as the probability baseline
significantly and outperforms the previous probe
that is trained only on one dataset by 14 absolute
points, achieving ∼ 70% cross-task accuracy. This
provides empirical evidence for the existence of
a shared representation of truthfulness within the
model. Notably, despite our probe being trained on
an extensive collection of datasets, it achieves high
performance with an average of only 10 data sam-
ples per dataset. This demonstrates the method’s
data efficiency and its straightforward applicability
in identifying a universal truthfulness hyperplane.

2 Probing Hidden States for Truthfulness

2.1 Overview
Probing methods are defined as training classifiers
with hidden states of the neural networks as input to
identify specific properties of the input (Alain and
Bengio, 2017; Belinkov, 2022). Previous works
primarily focus on the linguistic information in rep-
resentations (Jawahar et al., 2019; Tenney et al.,
2019), while recent works explore truthfulness as
the property and design probes to detect the truth-
fulness of large language models (Li et al., 2023b;
Chen et al., 2023; Marks and Tegmark, 2023; Zou
et al., 2023; CH-Wang et al., 2023). In addition to
typical linear supervised probes like logistic regres-
sion (LR) (CH-Wang et al., 2023) and mass mean
(MM) (Marks and Tegmark, 2023), unsupervised
linear probes such as CCS (Burns et al., 2023) and
LAT (Zou et al., 2023) are also studied for truth-
fulness. Previous works train the probe exclusively
on one or a few specific datasets and subsequently
evaluate their performance on the same or simi-
lar datasets (Li et al., 2023b; Chen et al., 2023;
Azaria and Mitchell, 2023; Marks and Tegmark,
2023), which may overfit the spurious features of
the datasets and fail to capture the underlying truth-
fulness inside the model. In contrast, our objec-
tive in this work is to examine the existence of a
universal truthfulness hyperplane encoded in the
trained probes that can generalize well across vari-
ous datasets.

2.2 Formulation
As many works argue that the linear representations
for high-level semantic concepts in LLMs (Tigges
et al., 2024; Jiang et al., 2024) and the linear struc-
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Figure 2: Our curated datasets and tasks. Left (Blue) part represents the training tasks, while the right (Orange) represents the
test tasks.

ture probes offer good interpretability, we employ
two linear probing methods: logistic regression
(LR) and mass mean (MM) to extract truthful-
ness from the hidden states of LLMs in this pa-
per. Formally, given a dataset D = {(xi, yi)|i =
1, · · · , N}, where xi is a data sample and yi ∈
{0, 1} indicates whether xi is factually correct or
not, we extract the representations by hi = ϕ(xi)
and then categorize them into two parts: H+ =
{hi|yi = 1} and H− = {hi|yi = 0}. As xi is
a text sequence in our context, we compute hi as
the representation of the last token in xi from a
transformer model (Vaswani et al., 2017) across
this paper, and in §2.4 we will discuss the specific
hidden states locations (e.g., from which layer to
extract hi) from transformers to extract hi. The LR
and MM probes learn different truthfulness vectors:

θlr = argmin
θ

∑

i

[
yi log

(
σ(θThi)

)
+

(1− yi) log
(
1− σ(θThi)

)]
,

(1)

θmm = H+ −H−, (2)

where H+ and H− correspond to the average
representations of the sets H+ and H−, respec-
tively. θlr is from logistic regression and θmm
just aligns with the direction from H− to H+.
After obtaining θ, classification is performed as
yi = 1(θTh ≥ 0) where 1 is the indicator func-
tion. This way, θTh = 0 essentially defines a
linear hyperplane that is orthogonal to the direction
of the truthful vector θ in the space of h to classify

truthfulness, and we refer to it as the truthfulness
hyperplane. The truthfulness hyperplane may be
specific to datasets, or universal across different
distributions that represent the self-awareness of
the truthfulness of the model, which is the question
we aim to study in this work.

2.3 Data Curation

Previous probing papers all focus on training the
probes exclusively on one or one type of dataset so
that they may fail to obtain the universal truthful-
ness hyperplane and overfit to the specific data. For
example, Li et al. (2023b); Chen et al. (2023) pri-
marily train and evaluate on TruthfulQA (Lin et al.,
2022), while Azaria and Mitchell (2023); Marks
and Tegmark (2023) mainly concentrate on datasets
containing single-sentence true or false statements.
Meanwhile, CH-Wang et al. (2023) only consider
the truthfulness probe on in-context generation
tasks. Some works have observed the failure of
generalization in OOD data samples (Burns et al.,
2023; Marks and Tegmark, 2023; CH-Wang et al.,
2023). Our experiments of OOD generalization
failure of probes solely trained on TruthfulQA in
§3.2 further validate that the learned hyperplane in
the probe is overfitting on the trained distribution
and not universal.

Therefore, to find the potentially universal truth-
fulness hyperplane, we create and collect a variety
of datasets used for hallucination detection. Fol-
lowing the task taxonomy from T0 and Flan (Sanh
et al., 2022; Wei et al., 2022), we create a collec-
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tion of 49 datasets in 17 tasks,1 shown in Figure 2.
We aim to conduct hallucination detection that re-
quires both correct and incorrect data. To collect
incorrect data points, for datasets that pair with
false answers, such as multiple-choice questions,
we select the wrong answers randomly as the re-
sponses. For text generation tasks that typically
only consist of a single correct answer, we employ
two different strategies to produce incorrect data
examples: For the grounding-based text generation
dataset E2ENLG (Dušek et al., 2020), we randomly
replace attributes to produce false attributes. Mean-
while, we utilize the GPT-3.5-turbo for WEBNLG
(Gardent et al., 2017) and the GPT-4-turbo for other
datasets (e.g. TriviaQA (Joshi et al., 2017)), to gen-
erate convincing but false answers.

As shown in Figure 2, we split the tasks into
training tasks and test tasks to evaluate cross-task
generalization. For each dataset, we use a prompt
template to format the input and divide the dataset
into training, validation, and test splits. It is impor-
tant to note that the training split for every dataset
consists of up to 800 data samples and each valida-
tion split has 100 data samples, while the remaining
samples are used as the test splits. We find that 800
training samples for each dataset are enough to
train the probe and we do not observe significant
gains as we further increase the training samples, as
we will show in §3.6. More details on data curation
are discussed in Appendix A.

2.4 The Probe Design
Input Representations: In §2.2 we have de-
scribed to use the representation of the last token of
the input sequence as the feature h. The last-token
representation is commonly used as sentence rep-
resentations as it aggregates the overall sentence
information (Burns et al., 2023; Li et al., 2023b).
However, the specific locations inside the trans-
former model to extract the representations are still
up to decide – for example, which layer of hidden
states to use? Shall we use attention activation or
layer residual activation? Various previous studies
have explored probing on different types of repre-
sentations. Li et al. (2023b); Campbell et al. (2023)
conduct truthfulness probing on the attention head
outputs, another line of works considers using the
layer residual activations (Burns et al., 2023; Azaria
and Mitchell, 2023; Marks and Tegmark, 2023).
Among these works, Burns et al. (2023) select

1The term ‘task’ is used to refer to a group of similar
datasets.

the last layer residual activation as input to train
probes, while Azaria and Mitchell (2023); Marks
and Tegmark (2023) utilize specific intermediate
layers to train probes. Based on our preliminary
experiments, we determine that attention head out-
puts serve as an effective representation, denoted
as h, for training our probe. We will report the ab-
lation results in §3.6 to compare the attention head
outputs to the layer residual stream activations. Be-
sides, one layer, or especially one attention head
may not be expressive enough, and the truthfulness
inside the model may be captured by different lo-
cations of representations together. Therefore, we
consider combining the attention heads across dif-
ferent layers. Relevantly, CH-Wang et al. (2023)
train probes in each layer respectively and ensem-
ble all of them to make the final prediction. How-
ever, we argue that using all hidden states inside
the model results in significant redundancy during
training and inference time, and it is likely that
only a small fraction of the hidden states capture
the truthfulness information. Therefore, we adopt
a hidden states location selection strategy to select
and combine certain representations of the last to-
ken in the input sequence to train the probe, as
we detail next. An overview of the input feature
extraction is illustrated in Figure 1.

Selecting Hidden States Locations: We hypoth-
esize that only a small fraction of the representa-
tions in the transformer model is related to truth-
fulness, and within these hidden states, different
locations may contain varying information about
the truthfulness of diverse datasets or different as-
pects of the same dataset. Therefore, we perform
a preliminary probe training procedure to select
the specific locations of representations of the last
token. Concretely, we train a preliminary probe
for each attention head across all layers of the last
token respectively on the aggregated training splits
of the training tasks, which leads to 1024 (32 layers
x 32 heads) different probes based on LLaMA2-7b-
chat (Touvron et al., 2023b) representations. Then
we measure the truthfulness classification accura-
cies of these probe models on the validation split
of each dataset in the training tasks respectively.
Subsequently, for each validation split, we select
the top num locations with the highest accuracy.
Such a procedure will select out at most 41 ∗ num
locations in total after removing duplicates where
41 is the number of validation splits. Finally, we
concatenate the representations of all these selected
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locations as the input to train the final probe model.
num is a tunable hyperparameter and we find that
larger num does not always produce better results
– in fact, in our experiments a num equal to 1 or 2
typically yields the best performance. We include
the ablation results on num in Appendix B.

Sparsity of Truthfulness Features: Even
though we select only a small fraction of hidden
representations of the model, the overall input
features are still high-dimensional. Inspired
by Gurnee et al. (2023), which examines the
sparsity of learned representations by k-sparse
probes trained on over 100 distinct features,
we consider enforcing sparsity constraints in
our probe design. Specifically, we evaluate the
sparsity of truthfulness by employing the linear
ranking method that utilizes the weights of the
trained classifiers to rank the neurons and selects
those with high ranks (Dalvi et al., 2019) – we
identify the indices of the largest k values in
|θ|, then we index the corresponding k features
from the original h to form the new input feature.
Our preliminary sparsity test, conducted on a
single dataset and one attention head output,
demonstrates that reducing the number of neurons
by nearly half does not decrease task performance,
as shown in Figure 3, where the experiment details
can be found in Appendix C. Consequently, we
introduce this tunable hyperparameter k used to
compress each representation into k dimensions.
The hyperparameter k can be set as 64 or 128,
with 128 representing the full dimensionality
of the attention head output for our used 3
models: LLaMA2-7b-chat (Touvron et al., 2023b),
LLaMA2-13b-chat (Touvron et al., 2023b) and
Mistral-7b (Jiang et al., 2023).

3 Experiment

3.1 General Setup
We experiment under three evaluation settings:
cross-task, cross-domain, and in-domain. In each
setting, we evaluate on the same test tasks (3 tasks:
sentence completion, short answer close book QA
and summarization tasks, 8 datasets) shown in Fig-
ure 2. For a given value of the hyperparameter
num, we always adopt the validation splits of the
training tasks as validation data for selecting num
positions. Concretely, for (1) Cross-Task, the train-
ing data are the training splits of the training tasks;
(2) Cross-Domain, the training data include the
training splits of all the training tasks plus all the

datasets within the current test task, except for the
test dataset itself; and (3) In-Domain, we utilize
the training splits of all the datasets – including
the training split of the test dataset itself – to train
the probe. Generally, we emphasize the cross-task
results the most, which we think reflects whether
the learned hyperplane can generalize in the wild
and is universal. We mainly conduct our experi-
ments with the LLaMA2-7b-chat model (Touvron
et al., 2023b), while in §3.4 we experiment with
the Mistral-7b-v0.1 base model (Jiang et al., 2023)
and the LLaMA2-13b-chat model (Touvron et al.,
2023b) as well. More details on the setup can be
found in Appendix E.

Hyperparameters: There are two hyperparam-
eters to tune in our probe model, num, which de-
cides the number of representations to the input,
and k which denotes the compressed dimensions
for every representation as indicated in §2.4. Hy-
perparameter tuning of num and k is performed
exclusively on the test splits of the training tasks in
Figure 2, ensuring that we never use the validation
or test splits of our test tasks to select the hyper-
parameters. Please see Appendix D for details on
hyperparameter tuning.

Baselines: We mainly compare our probe method
with two baselines. (1) Self-Eval (Kadavath et al.,
2022): In this approach, we directly prompt the
model to assess the correctness of each data sample
by the prompt such as “Is the answer correct or
wrong?”. Then we constrain the model to decode
only from “correct” or “wrong” tokens. (2) Proba-
bility: This method calculates the probability of an-
swers in data samples. In cases where the datasets
contain long answers, such as TruthfulQA (Lin
et al., 2022) and E2ENLG (Dušek et al., 2020), we
normalize log probability by length to compute the
per-token log probability. We classify the exam-
ple to be factually correct when the probability is
larger than a threshold τ , which is a hyperparame-
ter that is tuned on different training splits. Specif-
ically, these splits are from datasets of different
tasks for cross-task settings, a randomly different
dataset within the same task for cross-domain set-
tings, and the same dataset for in-domain settings.
For both Self-Eval and Probability baselines, we
select data samples from these different training
splits in the three settings as few-shot demonstra-
tions. In addition to the baselines, we also report
results from the Finetuning method, where we fine-
tune the entire model on the same training data
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Figure 3: Examples of sparsity test on different datasets using the logistic regression (LR) and the mass mean (MM) probe.

Method In-distribution Average OOD

Random 50.00 50.00
FT 79.50 56.51
Self-Eval 62.96 63.31
Probability 55.96 –
Probe-LR 82.28 54.44
Probe-MM 77.08 50.71

Table 1: The in-distribution and OOD accuracy of different
probes trained on TruthfulQA, Self-Eval, Probability, and FT
(finetuning) method (%).

as our probe to judge the truthfulness of the data
sample. We note that the Finetuning method ap-
proximately serves as an upper bound of our probe
method. This is because our work aims to identify
the potentially universal truthfulness hyperplane
where we do not change the model parameters or
hidden states, while finetuning the models is given
much more flexibility by updating the models.

3.2 Dedicated Probes Fail to Generalize

Before discussing the main results of our probe
model, we first reproduce the settings in previ-
ous works where we train our probe model on the
TruthfulQA dataset (Lin et al., 2022; Chen et al.,
2023). TruthfulQA is a popular dataset measuring
the truthfulness of models, and many works con-
duct truthfulness probing trained on TruthfulQA
and are dedicated to improving the TruthfulQA per-
formance (Li et al., 2023b; Chen et al., 2023). It
is unknown whether the linear probes from previ-
ous works identify the real truthfulness hyperplane,
or only overfitting to the truthfulness features of
the TruthfulQA dataset. Specifically, we train the
probe on TruthfulQA and utilize the TruthfulQA
validation split to tune the hyperparameters. We
evaluate the probe on the TruthfulQA test split as
in-distribution test, as well as 8 other datasets as
out-of-distribution (OOD) test, which are from the
test tasks in Figure 2. We report the average results,
while the details of baselines and OOD results for
every dataset can be seen in Appendix E.1.

Results: The in-distribution and out-of-
distribution (OOD) performance are reported
in Table 1. For OOD evaluation, we present
the average accuracy across the test tasks. Our
findings indicate that in the in-distribution Truth-
fulQA test, the probe method surpasses both the
Self-Eval and Probability baselines by nearly 20
percentage points. In stark contrast, the probe
method’s performance deteriorates significantly
when tested on OOD data, lagging behind the
Self-Eval baseline by approximately 10 percentage
points. The probe’s accuracy, close to the chance
level at 50, implies that the learned hyperplane
of the probe fails to contain any truthfulness
information pertinent to certain OOD datasets.
This OOD generalization failure observation is
consistent with prior research (CH-Wang et al.,
2023; Marks and Tegmark, 2023), which suggests
that representations of truthfulness are highly
task-specific and distribution-dependent. The
failure underscores that the hyperplane derived
from training solely on the TruthfulQA dataset is
not the universal truthfulness hyperplane.

3.3 Main Results – On the Universal
Truthfulness Hyperplane

To investigate the existence of the universal truth-
fulness hyperplane, we report the results of both
the logistic regression probe (Probe-LR) and the
mass mean probe (Probe-MM) in the cross-task,
cross-domain, and in-domain settings respectively.
Descriptions of the two probes can be found in §2.1.
In Table 2, we observe that both Probe-LR and
Probe-MM consistently outperform the Self-Eval
and Probability baselines across all three settings,
with average improvements of 5.10, 4.35, 6.69
absolute percentage points respectively over the
stronger baseline. The Probe-MM method outper-
forms the two baselines on 7 out of 8 test datasets
in the cross-task setting. Notably, both probe
methods achieved approximately 70% accuracy
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Method Short Answer Close Book QA Summarization Sentence Completion AverageNQ Trivia QA SciQ XSum CNN DM SC HS CoPA

Cross-task

FT 69.92 73.34 80.00 78.66 85.68 72.07 73.68 88.00 77.67
Self-Eval 56.80 69.90 81.70 67.00 65.98 65.71 56.48 54.50 64.76
Probability 57.56 68.96 68.05 52.12 61.94 56.95 49.30 72.50 60.92
Probe-LR 63.90 71.36 76.90 63.98 80.66 70.71 64.40 62.00 69.24
Probe-MM 58.52 71.88 82.60 75.82 71.38 73.06 59.50 71.00 70.47

Cross-domain

FT 70.54 73.54 80.70 58.20 95.82 71.43 73.18 85.50 76.11
Self-Eval 56.78 68.92 81.55 67.00 65.98 67.40 61.52 59.50 66.08
Probability 57.18 67.72 65.70 53.50 58.04 68.15 49.24 81.00 62.57
Probe-LR 64.66 71.48 79.45 65.64 85.34 68.79 67.06 68.50 71.36
Probe-MM 58.64 71.82 82.80 67.66 73.22 72.80 63.60 65.50 69.50

In-domain

FT 70.16 76.80 83.85 96.20 99.38 74.27 87.38 93.50 85.19
Self-Eval 57.60 70.96 84.30 67.00 65.98 66.92 58.04 78.50 68.66
Probability 56.66 70.54 85.20 54.46 62.52 69.70 52.68 88.50 67.53
Probe-LR 67.34 74.50 82.80 90.20 95.88 72.98 73.80 75.00 79.06
Probe-MM 58.56 71.96 83.55 78.08 76.88 72.47 61.12 70.50 71.64

Table 2: Results of training on diverse datasets, where FT indicates the Finetuning method, SC indicates the Story Cloze dataset,
and HS indicates the HellaSwag dataset.

in the challenging cross-task setting. Compared
to previous OOD generalization failure, our re-
sults convey positive signals on the existence of
a universal truthfulness hyperplane inside LLMs.
Comparing Probe-LR to Probe-MM, Probe-LR out-
performs Probe-MM in both cross-domain and in-
domain settings, while Probe-MM exhibits slightly
better generalization performance in the cross-task
scenario, which is expected since the Probe-MM
does not specifically “train” the classifier through
optimization, thus less likely to overfit to spuri-
ous patterns of the training data, similar findings
have been presented before in Marks and Tegmark
(2023). Notably, Finetuning (FT) achieves the high-
est accuracy, reaching over 75% accuracy across
all three settings. These results demonstrate the
practicality of FT on this task, and imply that a
well-tuned model may be able to classify truth-
fulness reasonably well. However, we note that
Finetuning neither produces any interpretation on
the hidden states of the model, nor answers our cen-
tral question on whether a universal truthfulness
hyperplane exists of not. We emphasize our focus
of this work on exploring whether LLMs’ hidden
states express the inner notion of truthfulness in a
simple way, i.e., with a linear hyperplane.

3.4 Experiments on Other Models

We also explore our method in the Mistral-7b-v0.1
base model (Jiang et al., 2023) and the LLaMA2-
13b-chat model (Touvron et al., 2023b), conducting
cross-task experiments. The results are shown in
Table 3. Consistent with the findings from the
LLaMA2-7b-chat experiments, Probe-MM demon-
strates superior generalization compared to Probe-
LR, particularly for the Mistral-7b model. Specifi-
cally, Probe-MM achieves better performance than
both the Self-Eval and Probability baselines for
both models, exhibiting a substantial improvement

of 12.81 absolute points for Mistral-7b and 1.23
points for LLaMA2-13b-chat. Moreover, Probe-
MM outperforms the baselines on 7 out of 8
datasets for Mistral-7b and 5 out of 8 datasets
for LLaMA2-13b-chat. Notably, both Mistral-7b
and LLaMA2-13b-chat achieve higher cross-task
accuracies than LLaMA-7b-chat in Table 2, with
Mistral-7b reaching 77.11 and LLaMA2-13b-chat
reaching 73.88, revealing a positive trend that the
universal truthfulness hyperplane within the hidden
states of more advanced LLMs tends to become
more pronounced. The details for hyperparameter
tuning can be seen in Appendix D.

3.5 The Same Hyperplane in the Fine-tuned
Models

We conduct cross-task experiments to explore the
generalization of our truthfulness hyperplane in
the fine-tuned LLaMA2-7b-chat model (the FT
model in Table 2). We directly evaluate our pre-
vious hyperplane trained from LLaMA2-7b-chat
(without our fine-tuning) to classify hidden states
from the fine-tuned LLaMA2-7b-chat model. Al-
though the hyperplane is not trained on the fine-
tuned model’s hidden states directly, we observe
surprisingly higher accuracy when using it for the
fine-tuned model than for the original LLaMA2-
7b-chat that the hyperplane is trained on in Table 4.
The same hyperplane can generalize to the fine-
tuned model and improve accuracy by 5 points,
approaching the full-tuning accuracy. This sug-
gests that after fine-tuning, the model has better
truthfulness awareness and its inner hidden states
are more linear-separable in terms of truthfulness.

3.6 Analysis

In this section, we perform a series of analysis and
ablation experiments to justify our probe designs
and gain deeper insights about the approach.
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Model Method Short Answer Close Book QA Summarization Sentence Completion AverageNQ Trivia QA SciQ XSum CNN DM SC HS CoPA

Mistral-7b

Self-Eval 60.44 66.08 79.35 61.34 52.96 51.84 50.76 50.00 59.10
Probability 61.00 74.34 60.45 56.36 57.04 66.81 50.40 88.00 64.30
Probe-LR 67.10 78.08 78.60 75.90 76.30 68.95 59.76 72.50 72.15
Probe-MM 63.84 77.56 87.35 84.60 81.74 71.75 69.00 81.00 77.11

LLaMA2-13b-chat

Self-Eval 59.14 71.52 83.40 76.94 80.60 68.92 61.48 83.50 72.65
Probability 61.90 72.34 74.70 54.60 61.14 70.34 49.36 84.50 66.11
Probe-LR 66.88 76.40 79.50 72.22 84.50 72.31 56.24 72.50 72.57
Probe-MM 59.74 74.62 85.80 71.66 81.54 71.14 67.04 79.50 73.88

Table 3: The result of cross-task experiments on Mistral-7b and LLaMA2-13b-chat models, where SC indicates the Story Cloze
dataset, and HS indicates the HellaSwag dataset.
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(a) The average cross-task accu-
racy of different probes trained
using attention head outputs and
layer residual activations on vary-
ing datasets.
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Figure 4: The analysis experiment results of training on attention head and layer activations, scaling number of training tasks,
and varying training split size per task.

Cross-task Acc

Fine-tuned Model 77.67
LLaMA2-7b-chat Probe-LR 69.24
LLaMA2-7b-chat Probe-MM 70.47
Fine-tuned Model Probe-LR 75.16
Fine-tuned Model Probe-MM 74.46

Table 4: The results of cross-task experiments using previous
hyperplane evaluation on Fine-tuned Model and LLaMA2-7b-
chat model.

Which representation is better? Attention
Heads or Layer Activations? In §2.4, we dis-
cussed the choice of input representation as part
of the probe design and chose to use the atten-
tion heads in our main experiments. Here we per-
form ablation on this design, comparing attention
head and layer activations which are outputs af-
ter residual connections of the transformer layer.
Concretely, we train LR and MM probes using dif-
ferent numbers of training datasets on attention
head outputs and layer residual activations respec-
tively, conducting the cross-task experiments. In
Figure 4a we show that probes based on attention
head outputs consistently outperform those trained
on layer residual activations at least 3 points. More
setup details can be seen in Appendix F. As a result,
we utilize the attention head output representations
for training probes in our paper.

Effect of Number of Training Tasks: In light of
the observed benefits of training on diverse datasets,
a critical ablation study focuses on the impact of
the quantity of training datasets on model perfor-

mance. To investigate this, we incrementally in-
crease the number of training tasks up to 14 (all
training tasks), with a corresponding increase in
the number of datasets up to 41, conducting cross-
task experiments of training on these incremented
tasks. Our findings, illustrated in Figure 4b, demon-
strate a clear trend: as the number of training tasks
increases, there is a general corresponding enhance-
ment in average accuracy. This trend further indi-
cates that training on more diverse datasets helps
to learn a more universal truthfulness hyperplane.
The Finetuning (FT) approach underperforms in
comparison to the Probe method, when using one
training task. This aligns with the observations
reported by Clymer et al. (2023). However, our
study reveals a shift when the diversity of train-
ing datasets is expanded: the generalization perfor-
mance of the FT method significantly outstrips that
of the Probe method.

Effect of Training Split Size for each Training
Dataset: To explore the influence of sampled
data volume for each dataset, we manipulate the
training split size for each dataset and examine its
effect on performance. The results are visualized
in Figure 4c. Surprisingly, the results indicate that
training even with as few as 10 data points per
dataset, the performance is comparable to that of
using 800 samples per dataset. This finding could
be attributed to the probes’ linear nature, making
it not rely on extensive training data but only mini-
mal data. These results are consistent with previous
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studies by Li et al. (2023b) and Zou et al. (2023),
highlighting the effectiveness of training probes
with limited data.

4 Related Works

Our work is related to a series of works trying to
identify the truthfulness hyperplane inside LLMs.
The existence of the universal truthfulness hyper-
plane is the foundation when considering truthful-
ness as an attribute for probing. Without such a
hyperplane, it implies that all efforts in truthfulness
probing (Burns et al., 2023; Azaria and Mitchell,
2023; Zou et al., 2023; Marks and Tegmark, 2023;
Li et al., 2023b; Chen et al., 2023) might merely be
overfitting to spurious features of the task, rather
than capturing genuine truthfulness. Based upon
such insights, several studies have also explored
interventions to enhance model truthfulness by
utilizing the vectors identified through probes (Li
et al., 2023b; Chen et al., 2023; Zou et al., 2023).
Generally, utilizing the learned truthful vector, they
edit the representation space directly (Li et al.,
2023b; Chen et al., 2023) or optimize the repre-
sentation space towards more truthful states (Zou
et al., 2023).

5 Conclusion

In this paper, we examine whether a universal truth-
fulness hyperplane exists inside the model, through
designing and training a probe on diverse datasets.
Our approach greatly improves existing results and
conveys positive signals on the existence of such a
universal truthfulness hyperplane.

Limitations

First, there are several other methods to probe the
language model’s knowledge or hallucination, such
as CCS (Burns et al., 2023) and LAT (Zou et al.,
2023). In our paper, we only consider the com-
monly used supervised probing methods: logistic
regression and mass mean. Further work can ex-
plore other methods. Second, although we strive
to include a wide range of diverse datasets, there
is still a gap between our curated datasets and real-
world data on truthfulness. Third, we leave the in-
tervention work as future research to verify whether
the identified vector is causally related to model be-
havior. Fourth, although we are talking about truth-
fulness, the absolute detection accuracy is restricted
by the knowledge of the model. The separation of

correct and incorrect data within hidden representa-
tions is contingent upon the model’s understanding.
Consequently, our curated datasets may include
noise stemming from the divergence between the
model’s knowledge and real-world knowledge, or
from instances that exceed the model’s knowledge
boundaries. We hypothesis that, in most cases, the
knowledge of models aligns with the knowledge in
data so that the Probe trained on our data can well
discern the truthful or untruthful belief of the model.
Lastly, our experiments are limited to 7B and 13B
size models, which demonstrate that stronger mod-
els exhibit a better truthfulness hyperplane. Future
work can investigate whether the hidden states of
even larger models, such as 70B models, are more
linearly separable on truthfulness.
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A Data Curation

We categorize datasets into one of the following
task categories. For each dataset, we select a single
prompt template to construct the dataset to reduce
complexity. We utilize a maximum of 5000 data
points for the test set for each dataset (if a dataset
contains fewer than 5000 data points, we include
all of them). Details of the used prompt and how
to construct the wrong data points can be found
below.

A.1 Natural language Inference

RTE RTE is a testing textual entailment dataset
(Wang et al., 2019). We use one prompt template
from Sanh et al. (2022):

Question: [premise]
Does this mean that [hypothesis] is true? A) yes

or B) no.
Answer: [label].

Here [label] can be “yes” or “no”. By selecting the
opposite label, we construct the wrong data points.

QNLI The QNLI (Question Natural Language
Inference) dataset is a collection of question-
answer pairs, where the task is to determine
whether the answer to a question is entailed in a
given sentence (Wang et al., 2019). We use one
prompt template from Sanh et al. (2022):

Can you answer the question [question] based
only on the following:

[sentence]
Answer: [label].

Here [label] can be “yes” or “no” By selecting the
opposite label, we construct the wrong data points.

ANLI ANLI (Nie et al., 2020) is a difficult
and adversarial NLI dataset. We use one prompt
template from Sanh et al. (2022):

[premise] Using only the above description and
what you know about the world, [hypothesis] is
definitely correct, incorrect, or inconclusive?

Answer: [label].

Here [label] can be “Correct”, “Inconclusive”, or
“Incorrect”. By randomly selecting the wrong label,
we construct the wrong data points.

A.2 Summarization
CNN Daily Mail CNN Daily Mail is a news
summarization task (Hermann et al., 2015; See
et al., 2017). Given an article, the task is to
generate the summary. We construct this dataset
using the following prompt:

Consider the accuracy of the summary of the
following article.

Article: [article]
Summary: [summary]

We leverage gpt-4-1106-preview to generate
wrong summaries for CNN DailyMail dataset us-
ing the following instruction in Table 5, which is
adapted from Li et al. (2023a).

XSum Xsum is a summarization task with more
concise summary (Narayan et al., 2018). We
also use gpt4-1106-preview to generate wrong
summaries using the same instruction as CNN
Daily Mail in Table 5.

A.3 Sentiment Analysis
IMDB IMDB is a sentiment analysis dataset
from Maas et al. (2011). Given a movie review, the
task is to determine the sentiment is positive or
negative. We use one prompt template from Sanh
et al. (2022):

[review]
Is this review positive or negative?
[label].
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I want you act as a hallucination summary generator.
Given a document and the right summary, your objective
is to write a hallucinated summary that sounds plausible
but is factually incorrect. You SHOULD write the hal-
lucinated summary using the following method (each
with some examples):

You are trying to write a summary but there is a factual
contradiction between the summary and the document.
#Document#: Christopher Huxtable, 34, from Swansea,
had been missing since the collapse in February. His
body was found on Wednesday and workers who carried
out the search formed a guard of honour as it was driven
from the site in the early hours of the morning. Ken
Cresswell, 57, and John Shaw, 61, both from Rotherham,
remain missing. The body of a fourth man, Michael
Collings, 53, from Brotton, Teesside, was previously
recovered from the site. Swansea East MP Carolyn
Harris, who has been involved with the family since
the incident, said they still did not know all the facts
about the collapse. She said: "I feel very sad. My heart
and my prayers go out to the family who have waited
desperately for Christopher’s body to be found. They
can finally have closure, and say goodbye to him and
grieve his loss. "But let’s not forget that there’s two
other families who are still waiting for their loved ones
to be returned." The building was due for demolition
when it partially collapsed in February.
#Right Summary#: A body found in the ruins of a col-
lapsed building at Didcot Power Station has been identi-
fied.
#Hallucinated Summary#: The body of a man whose
body was found at the site of the Swansea Bay Power
Station collapse has been removed from the site.

You should try your best to make the summary become
hallucinated. #Hallucinated Summary# can only have
about 5 more words than #Right Summary#.

#Document#: [document]
#Right Summary#: [summary]
#Hallucinated Summary#:

Table 5: Instructions used for CNN DailyMail and XSum.

Here [label] can be “Positive” or “Negative”. By
selecting the opposite label, we construct the
wrong data points.

Yelp Polarity Yelp is a sentiment dataset from
Zhang et al. (2015). Given a yelp review, the task
is to determine whether the review is good or
bad. We use one prompt template from Sanh et al.
(2022):

Review:
[review]
Overall rating (Good or Bad):
[label].

Here [label] can be “Good” or “Bad”. By selecting
the opposite label, we can construct the wrong data

points.

A.4 Topic Classification

AG News AG News is a topic classification
dataset from Zhang et al. (2015). Given a news
article, the task is to determine the topic of the
article. We use one prompt template from Sanh
et al. (2022):

Question: [text]
Which of the following sections of a newspaper

would this article likely appear in? “World News”,
“Sports”, “Business”, or “Science and Technol-
ogy”?

Answer: [label].

By selecting wrong label, we construct the wrong
data points.

DBPedia DBpedia is a topic classification
dataset constructed by picking 14 non-overlapping
classes from DBpedia 2014 Zhang et al. (2015).
We use the prompt template in Burns et al. (2023):

Consider the following example:
[text]
Which is the topic of this example, [label1] or

[label2]?
[label].

Here [label] can choose from “Company”, “Edu-
cational Institution”, “Artist”, “Athlete”, “Office
Holder”, “Mean Of Transportation”, “Building”,
“Natural Place”, “Village”, “Animal”, “Plant”, “Al-
bum”, “Film”, “Written Work”. By choosing the
wrong label from [label1] and [label2], we con-
struct the wrong data points.

A.5 Statement Fact Checking

Counterfact Couterfact is a model editing
dataset with a correct target and a wrong target
for a fact knowledge sentence (Meng et al., 2022).
By selecting correct targets or wrong targets, we
construct correct data points and wrong data points.
We directly use the sentence without any prompt
template.

[statement]
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Creak Creak is a dataset for commonsense
reasoning over entity knowledge with sentences
labeled true or false (Onoe et al., 2021). Same as
Counterfact, we don’t use any prompt template.

[statement]

SAPLMA SAPLMA is a true-false dataset with
statements covering the following topics: “Cities”,
“Inventions”, “Chemical Elements”, “Animals”,
“Companies”, and “Scientific Facts” (Azaria
and Mitchell, 2023). Same as Counterfact and
Creak, we directly use the statements as data points.

[statement]

A.6 Paraphrase Identification

MRPC MRPC dataset is a collection of sentence
pairs with binary labels indicating whether the pair
is a true paraphrase or not (Wang et al., 2019). We
use one prompt template from Sanh et al. (2022):

Question: I want to know whether the following
two sentences mean the same thing.

[sentence1]
[sentence2]
Do they?
Answer: [label].

Here [label] can be “Yes” or “No”. By selecting
the opposite label, we construct the wrong data
points.

QQP QQP dataset is a dataset consisting of pairs
of questions, which labeled as either “duplicate”
or “not duplicate”, indicating whether the two
questions are semantically equivalent or not (Wang
et al., 2019). We use one prompt template from
Sanh et al. (2022):

Are the questions [question1] and [question2]
asking the same thing?

Answer: [label].

Here [label] can be “Yes” or “No”. By choosing
the opposite label, we construct the wrong data
points.

PAWS PAWS dataset consists of sentence pairs
annotated as either semantically equivalent (i.e.,
paraphrases) or non-equivalent (Zhang et al.,
2019). We use one prompt template from Sanh
et al. (2022):

Sentence 1: [sentence1]
Sentence 2: [sentence2]
Question: Do Sentence 1 and Sentence 2 express

the same meaning? Yes or No?
Answer: [label].

Here [label] can be “Yes” or “No”. By choosing
the opposite label, we construct the wrong data
points.

A.7 Short Answer Close Book QA
Natural Questions Here we use nq open dataset
consisting of questions (from Google Search) and
short answers (Kwiatkowski et al., 2019). We use
the following prompt:

Question: [question]
Answer: [answer]

We leverage gpt-4-1106-preview to generate
false answers, using the following instruction in
Table 6:

Given a question and correct answer, you are asked to
generate a reasonable but false answer. Here are some
examples.
#Qusetion#: where did they film hot tub time machine
#Correct Answer#: Fernie Alpine Resort
#False Answer#: Town of Hobbiton, New Zealand

#Qusetion#: who does annie work for attack on titan
#Correct Answer#: Marley
#False Answer#: The Survey Corps

Here is the question and its correct answer, you need to
generate a reasonable but false answer.
#Question#: [question]
#Correct Answer#: [answer]
#False Answer#:

Table 6: Instructions used for Natural Questions

Trivia QA Trivia QA is a reading comprehension
dataset containing over 650K question-answer-
evidence triples (Joshi et al., 2017). We only retain
questions and answers and use the same prompt as
Natural Questions.

Question: [question]
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Answer: [answer]

We leverage gpt-4-1106-preview to generate
false answers, using the following instruction in
Table 7.

Given a question and correct answer, you are asked to
generate a reasonable but false answer. Here are some
examples.
#Question#: Wolf Mankowitz wrote the 1953 novel ‘A
Kid For Two. . . ’ what?
#Correct Answer#: Farthings
#False Answer#: Kookaburras

#Question#: The 2013-4 MacRobertson Shield interna-
tional competition, hosted in New Zealand, was in what
sport?
#Correct Answer#: Croquet
#False Answer#: Curling

Here is the question and its correct answer, you need to
generate a reasonable but false answer.
#Question#: [question]
#Correct Answer#: [answer]
#False Answer#:

Table 7: Instructions used for Trivia QA

SciQ The SciQ dataset contains crowdsourced
science exam questions about Physics, Chemistry
and Biology, among others with 4 answer options
each (Welbl et al., 2017). We select one answer
for each data and use same prompt as Natural
Questions.

Question: [question]
Answer: [answer]

By selecting the wrong answer, we construct the
wrong data points.

A.8 Long Answer Close Book QA
Natural Questions Long To increase the
diversity and better test generalization, we use
gpt-4-1106-preview to rewrite the short answer in
Natural Questions into one sentence long answer.
Still, we use the same prompt template as Natural
Questions.

Question: [question]
Answer: [answer]

We leverage gpt-4-1106-preview to paraphrase
the short answer into a long answer in Natural Ques-
tions dataset using the following instruction in Ta-
ble 8.

You need to rewrite the following short answers into
a longer, complete sentence as the answer, even if the
answer is incorrect, do not change the meaning.
#Qusetion#: where did the allies go after north africa
#Short Answer#: France
#Long Answer#: After the successful North African
campaign, the Allies proceeded to advance towards
France as part of their strategic plan during World War
II.

#Qusetion#: how many seasons of the bastard execu-
tioner are there
#Short Answer#: three
#Long Answer#: The Bastard Executioner" consists of
a total of three seasons.

Here is the question and its short answer, you only need
to generate a long answer. Remember don’t change the
meaning, even if the answer is incorrect.
#Question#: [question]
#Short Answer#: [answer]
#Long Answer#:

Table 8: Instructions used for Natural Questions Long

Trivia QA Long We also rewrite the short
answer into long answer in Trivia QA to construct
Trivia QA Long. We use the same prompt:

Question: [question]
Answer: [answer]

We leverage gpt-4-1106-preview to paraphrase
the short answer into a long answer in Trivia QA
dataset using the following instruction in Table 9.

You need to rewrite the following short answers into
a longer, complete sentence as the answer, even if the
answer is incorrect, do not change the meaning.
#Qusetion#: Wolf Mankowitz wrote the 1953 novel ‘A
Kid For Two. . . ’ what?
#Short Answer#: Pennies
#Long Answer#: Wolf Mankowitz, a notable author,
penned the 1953 novel titled "A Kid For Two Pennies,"
showcasing his literary prowess and storytelling abili-
ties.

#Qusetion#: Who is the patron saint of dancers?
#Short Answer#: St. Cecilia
#Long Answer#: St. Cecilia, a revered figure in re-
ligious history, holds the esteemed title of being the
patron saint specifically designated to protect and guide
dancers, bestowing upon them blessings and interceding
on their behalf.

Here is the question and its short answer, you only need
to generate a long answer. Remember don’t change the
meaning, even if the answer is incorrect.
#Question#: [question]
#Short Answer#: [answer]
#Long Answer#:

Table 9: Instructions used for Trivia QA Long
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A.9 Reading Comprehension (QA)

MultiRC MultiRC (Multi-Sentence Reading
Comprehension) is a dataset of short paragraphs
and multi-sentence questions with answers labeled
true or false (Khashabi et al., 2018). We use the
following prompt:

Exercise: read the text and answer the question.
Text: [passage]
Question: [question]
Answer: [answer]

Since MultiRC already has labeled wrong answers,
we construct the wrong data points using the
wrong answers.

SQuAD SQuAD is a reading comprehension
dataset, consisting of questions on a set of
Wikipedia articles, where the answer to every
question is a segment of text, or span, from the
corresponding reading passage, or the question
might be unanswerable (Rajpurkar et al., 2016).
We use one prompt template from Sanh et al.
(2022):

Refer to the passage below and answer the fol-
lowing question:

Passage: [context]
Question: [question]
Answer: [answer]

We use gpt-4-1106-preview to generate false an-
swers for SQuAD dataset using the instruction in
Table 10.

A.10 Reading comprehension multi-choice

BoolQ BoolQ is a question answering dataset for
yes/no questions with passages (Clark et al., 2019).
We use the following prompt:

Passage: [passage]
After reading this passage, I have a question:

[question]? True or False?
Answer: [answer].

[answer] can be “True” or “False”. By selecting
the opposite answer, we construct the wrong data
points.

Given a passage, a question and the right answer, your
objective is to write a answer that sounds plausible (ap-
pears in the passage) but is incorrect. Here is an exam-
ple.
#Passage#: Super Bowl 50 was an American football
game to determine the champion of the National Foot-
ball League (NFL) for the 2015 season. The American
Football Conference (AFC) champion Denver Broncos
defeated the National Football Conference (NFC) cham-
pion Carolina Panthers 24–10 to earn their third Super
Bowl title. The game was played on February 7, 2016, at
Levi’s Stadium in the San Francisco Bay Area at Santa
Clara, California. As this was the 50th Super Bowl,
the league emphasized the "golden anniversary" with
various gold-themed initiatives, as well as temporarily
suspending the tradition of naming each Super Bowl
game with Roman numerals (under which the game
would have been known as "Super Bowl L"), so that the
logo could prominently feature the Arabic numerals 50.
#Question#: Where did Super Bowl 50 take place?
#Correct Answer#: Santa Clara, California
#False Answer#: San Francisco, California

#Passage#: Archaeological evidence shows that Homo
erectus lived in the region now known as Myanmar
as early as 400,000 years ago. The first evidence of
Homo sapiens is dated to about 11,000 BC, in a Stone
Age culture called the Anyathian with discoveries of
stone tools in central Myanmar. Evidence of neolithic
age domestication of plants and animals and the use of
polished stone tools dating to sometime between 10,000
and 6,000 BC has been discovered in the form of cave
paintings near the city of Taunggyi.
#Question#: When was the extinct species believed to
have lived in Myanmar?
#Correct Answer#: 400,000 years ago
#False Answer#: 11,000 BC

Here is the passage question and its correct answer, you
need to generate a reasonable but false answer.
#Passage#: [passage]
#Question#: [question]
#Correct Answer#: [answer]
#False Answer#:

Table 10: Instructions used for SQuAD

RACE RACE is a reading comprehension
dataset with passages, questions and four choices
collected from English examinations in China,
which are designed for middle school and high
school students (Lai et al., 2017). We use one
prompt template in Sanh et al. (2022).

I’m taking a test and have to guess the right
answer to the question after the article.

Article: [article]
Question: [question]
Options: A: [options.0]
B: [options.1]
C: [options.2]
D: [options.3]
Answer: [answer].
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[answer] can be “A”, “B”, “C” or “D”. By selecting
the wrong answer, we construct the wrong data
points.

DREAM DREAM is a multiple-choice
Dialogue-based Reading comprehension exam-
ination dataset. In contrast to existing reading
comprehension datasets (Sun et al., 2019). We use
one prompt template from Sanh et al. (2022):

Dialogue:
[dialogue]
Question: [question]
- choices[0]
- choices[1]
- choices[2]
Answer: [answer]

[answer] is selected from three choices. By
selecting wrong choices, we construct the wrong
data points.

A.11 Sentence Completion
CoPA CoPA is a causal reasoning task to
determine either the cause or the effect of a given
premise (Roemmele et al., 2011). We use one
prompt template in Sanh et al. (2022):

Exercise: choose the most plausible alternative.
[ premise ]
{ if [question] == “cause” } because... { else }

so... { endif }
- [choice1]
- [choice2]
Answer: [answer]

[answer] is selected from the two choices. By
selecting the wrong choice, we construct the wrong
data points.

HellaSwag Hellaswag dataset is a benchmark
dataset created for the task of commonsense
reasoning and understanding, specifically for the
task of predicting the correct continuation of a
given sentence (Zellers et al., 2019). We use one
prompt template from Sanh et al. (2022):

Complete the description with an appropriate
ending:

First, [sentence1] Then, [sentence2] ...
(a) choices[0]
(b) choices[1]
(c) choices[2]
(d) choices[3]
Answer: [answer]

[answer] is selected from the four choices. By se-
lecting the wrong choices randomly, we construct
the wrong data points.

Story Cloze Story Cloze is a commonsense
reasoning dataset for evaluating the choosing the
correct ending to a four-sentence story ability
(Mostafazadeh et al., 2017). We use one prompt
template from Sanh et al. (2022):

[sentence1] [sentence2] [sentence3] [sentence4]
What is a possible continuation for the story

given the following options ?
- choices[0]
- choices[1]
Answer: [answer]

[answer] is selected from two choices. By selecting
the wrong choices, we construct the wrong data
points.

A.12 Close Book Multi-Choice QA

CommonsenseQA CommonsenseQA is a
multiple-choice question answering dataset
that requires different types of commonsense
knowledge to predict the correct answers (Talmor
et al., 2019). We use one prompt template from
Sanh et al. (2022):

Question: Given the following options, what
do you think is the correct answer to the question
below:

[question]
Options:
- A: choices[0]
- B: choices[1]
- C: choices[2]
- D: choices[3]
- E: choices[4]
Answer: [answer].

[answer] is selected from “A”, “B”, “C”, “D”,
“E”. By randomly selecting wrong answers, we
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construct the wrong data points.

ARC ARC is a multi-choice QA dataset which
requires knowledge and reasoning (Clark et al.,
2018). It includes challenge and easy parts. We
use both parts.
For arc easy part, we use one prompt template in
Sanh et al. (2022):

[question]
Options:
- choices[0]
- choices[1]
- choices[2]
- choices[3]
Answer: [answer]

Here [answer] is selected from the two choices. By
selecting wrong choices randomly, we construct
the wrong data points.
For arc challenge part, we also use one prompt
template in Sanh et al. (2022):

Here’s a problem to solve: [question]
Among the 4 following options, which is the

correct answer?
- A: choices[0]
- B: choices[1]
- C: choices[2]
- D: choices[3]
Answer: [answer].

Here [answer] is selected from “A”, “B”, “C”, “D”.
We construct wrong data points by selecting wrong
answer.

PIQA PIQA is a dataset requiring physical
commonsense reasoning. Given a question q and
two possible solutions s1, s2, the task is to choose
the most appropriate solution (Bisk et al., 2020).
We use one prompt template in Sanh et al. (2022):

Solution 1: [sol1]
Solution 2: [sol2]
Goal: [goal]
Given the goal, what is the correct solution?
Answer by copying the correct solution
Answer: [answer]

Here [answer] is selected from two sol choices. By
selecting wrong choices, we construct wrong data

points.

OpenBookQA OpenBookQA contains ques-
tions that require reasoning and commonsense
knowledge (Mihaylov et al., 2018). The task is
to select correct answer from four choices for the
given question. We use one prompt template in
Sanh et al. (2022):

Question: [question]
Choose an answer from this list:
- choices[0]
- choices[1]
- choices[2]
- choices[3]
Answer: [answer]

Here [answer] is selected from the four choices.
By selecting wrong choices, we construct wrong
data points.

A.13 Structure To Text
E2ENLG Here we use E2ENLG CLEAN
dataset. The E2E NLG dataset is a dataset for the
task of data-to-text natural language generation
(Dušek et al., 2020). It consists of tables containing
structured data, and corresponding human-written
textual descriptions of that data. We use one
prompt template in (Sanh et al., 2022):

Combine all of the following data into a concise
and grammatically correct text:

key1: value1
key2: value2
...
Generated_text: [human_reference]

Following the synthetic hallucinations method
mentioned in CH-Wang et al. (2023), for an
example with n attributes, we modify k attributes
(drawn uniformly from [1, n − 1]) by replacing
their values with other values that correspond to
the same key. Using the resulting modified data
and keeping [text] unchanged, we construct wrong
data points.

WEBNLG WebNLG dataset is mapping data
to text, where the data is a set of triples extracted
from DBpedia and the text is a verbalisation of
these triples (Gardent et al., 2017). We use one
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prompt template in Sanh et al. (2022):

Take the following triple set as part of a Data-
to-Text task: [data]. Make a lexicalization of the
triple set into plain text.

Generated text: [text]

We use gpt-3.5-turbo to modify the attributes and
then generate new text using the instruction in Ta-
ble 11.

A.14 Coreference

Definite Pronoun Resolution Definite Pronoun
Resolution (DPR) dataset is a collection of
annotated sentences that are used to train and
evaluate models for resolving definite pronouns
in English text (Rahman and Ng, 2012). Given a
pronoun, the task is to select the correct antecedent
noun phrase that the pronoun refers to. We use the
following prompt:

Question: [sentence]
Who is [pronoun] referring to?
[candidate1] or [candidate2]
Answer: [answer].

[answer] is selected from [candidate1] and
[candidate2]. By selecting wrong candidates, we
construct wrong data points.

Winogrande Here we use Winograde xl version.
Winogrande is a dataset to test a machine’s ability
to understand natural language in context and
resolve ambiguities (Sakaguchi et al., 2021). With
binary options, the goal is to choose the right
option for a given sentence. We use one prompt
template in Sanh et al. (2022):

Question: [sentence] In the previous sentence,
does _ refer to [option1] or [option2]?

Answer: [answer].

[answer] is selected from two options. By selecting
wrong options, we construct wrong data points.

WSC.Fixed WSC Fixed dataset is a collection
of pronoun resolution problems used for evaluating
natural language understanding systems. The goal
is to determine the correct referent for the pronoun
in each sentence (Levesque et al., 2012). We use

one prompt template in Sanh et al. (2022):

[text] In the previous sentence, does the pronoun
“[pronoun]” refer to [noun]? Yes or no?

[answer].

Here [answer] is “Yes” or “No”. By selecting
the opposite answer, we construct the wrong data
points.

A.15 Reading Comprehension and Common
Sense

ReCoRD Reading Comprehension with Com-
monsense Reasoning Dataset (ReCoRD) is a
large-scale reading comprehension dataset which
requires commonsense reasoning. ReCoRD
consists of queries automatically generated from
CNN/Daily Mail news articles; the answer to each
query is a text span from a summarizing passage
of the corresponding news (Zhang et al., 2018).
We use one prompt template in Sanh et al. (2022):

[passage]
[query]
You should decide what “@placeholder” is re-

ferring to. Choose between:
- choices[0]
- choices[1]
...
Answer: [answer].

Here [answer] is selected from choices. By
selecting wrong choices, we construct wrong data
points.

CosmosQA CosmosQA is a dataset of problems
that require commonsense-based reading compre-
hension, formulated as multiple-choice questions.
It focuses on people’s everyday narratives, asking
questions concerning on the likely causes or effects
of events that require reasoning beyond the exact
text spans in the context. We use one prompt
template in Sanh et al. (2022):

[context]
According to the above context, choose the best

option to answer the following question.
Question: [question]
Options:
- choices[0]
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- choices[1]
...
Answer: [answer]

Here [answer] is selected from choices. By
selecting wrong choices, we construct wrong data
points.

A.16 Multi-step Reasoning QA

HotpotQA HotpotQA is a question answering
dataset where the questions require finding and
reasoning over multiple supporting documents to
answer (Yang et al., 2018). We use the following
prompt:

Questino: [question]
Answer: [answer]

We leverage gpt-4-1106-preview to generate false
answers, using the following instruction in Ta-
ble 12:

Strategy QA StrategyQA is a question-
answering benchmark focusing on open-domain
questions where the required reasoning steps are
implicit in the question and should be inferred
using a strategy (Geva et al., 2021). We use the
following prompt:

Question: [question]
Answer: [answer].

Here [answer] can be “Yes” or “No”. By selecting
the opposite answers, we construct the wrong data
points.

A.17 Other

Truthful QA TruthfulQA is a benchmark to
measure whether a language model is truthful in
generating answers to questions where questions
are crafted so that some humans would answer
falsely due to a false belief or misconception (Lin
et al., 2022). We use the following prompt:

Question: [question]
Answer: [answer]

By selecting false answers in the dataset, we
construct the wrong data points.

Arithmetic Arithmetic dataset is a QA dataset
comprising straightforward questions involving
addition, subtraction, multiplication, and division
(Saxton et al., 2019; Brown et al., 2020). We use
the dataset in Srivastava et al. (2023). We use the
following prompt:

Question: [question]
Answer: [answer]

We use the given wrong answer in the dataset when
constructing the wrong data points.

B Ablation study on hyperparameter
num

num is the hyperparameter that determine the num-
ber of selected positions for each validation split.
Here, we conduct ablation studying on num. Vary-
ing the num, we train probes on all our curated
training tasks, selecting num positions for every
validation split in training tasks and evaluate on
the test tasks in Figure 2. The results in Figure 5
show that num is 1 or 2 yields highest performance,
while including more positions for every validation
split even leads to a slight performance decline. Be-
sides, increasing num also leads to more memory
and time cost.
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k=64 Probe-MM
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Figure 5: Ablation study of varying num on cross-task test,
where k is the compression hyperparameter (128 represents
all dimensions of the attention head output).

C Sparisty

In this experiment, we study the sparsity by train-
ing probes on the training set of a single dataset
and evaluating them on the corresponding test split.
We train probes for every attention head output
and then select the position with the highest ac-
curacy to study the sparsity of the representation.
Using the ranking method described in §2.4, we
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first compress the full dimensions of the attention
head output to varying k dimensions. Then we re-
train probes using the compressed representations
and test the newly trained probes on the test split.
Figure 6 displays more results. Our results indicate
that using half the dimensions of the attention head
output is sufficient to achieve performance compa-
rable to using the full dimensions. Therefore, we
set the hyperparameter k to be 64 or 128.

Besides, we also explore the sparsity on layer
residual activations. Following the same experi-
ment setting, the result is shown in Figure 7. We ob-
serve that using less than 1024 neurons can achieve
comparable performance than using all 4096 neu-
rons.

D Details on Hyperparameters Tuning

We have two tunable hyperparameters for the Probe
method: num for the number of selected represen-
tations and k for the compressed dimensions for
every representation. We note that we select num
positions according to each validation split. How-
ever, we tune the k and num hyperparameters on
the test splits of training tasks, that we select the hy-
perparameters that achieves highest accuracy on the
test splits of training tasks. Therefore, it’s impor-
tant to note that we never tune the hyperparameters
on validation or test splits of the test tasks.

The range of k is always 64, 128. When conduct-
ing experiment training the probe on single dataset
in §3.2, the range of num is 1, 2, 4, 10, 20, 30,
40, 60, 120. When conducting experiment training
on all training tasks in §3.3, §3.4, and the study
of training splits size in §3.6, the range of num
is 1,2,4. When training the probe on the varying
number of training tasks in §3.6: the experiment of
comparing attention head and layer residual acti-
vations and the experiment of varying the number
of training datasets, the num is still selected from
1, 2, 4, 10, 20, 30, 40, 60, 120. However, we con-
trol the upperbound for num as 160/t, where t is
the number of datasets used training, to make sure
a consistent upper bound for the overall selected
positions when varying the training tasks.

E Experiment Details Setting

E.1 Probes Fail to Generalize
To evaluate in-distribution performance on the
TruthfulQA dataset, we implement a 5-shot Prob-
ability baseline. This involves selecting five data
samples from the TruthfulQA dataset to serve as

demonstrations. We then measure the normalized
probability and determine a threshold that maxi-
mizes accuracy on the TruthfulQA training split.
Similarly, we apply the 5-shot approach when im-
plementing the Self-Eval baseline. For out-of-
distribution (OOD) testing, we employ the Self-
Eval baseline in a 0-shot setting, which does not
rely on any prior examples. The detailed results for
the OOD test are presented in Table 13.

E.2 Main Experiments
Basically, we follow the principle that select few
shot demonstrations or threshold from the same
dataset (in-domain), a different dataset within the
same task (cross-domain), and a dataset from a
different task (cross-task).

Probability baseline of cross-task When testing
on the Short Answer Close Book QA task, consid-
ering Hotpot QA’s (Yang et al., 2018) format or
type is close to the task, we rely on the Hotpot QA
for the few shot demonstrations and threshold. To
be specific, we first conduct the 5-shot Probability
experiments on the Hotpot QA and then scan to find
the threshold that achieves the highest accuracy on
Hotpot QA’s training split. Using the threshold
and 5 correct demonstration from Hotpot QA, we
then evaluate on the Short Answer Close Book QA
task. When testing on the Summarization task, we
use 3 correct demonstrations from WEBNLG (Gar-
dent et al., 2017) dataset and also use the threshold
that makes WEBNLG training split highest accu-
racy. When testing on the Sentence Completion
task, considering the tasks all are multi-choice QA,
we use 5 correct ARC easy (Clark et al., 2018) as
demonstrations and use the ARC easy’s threshold.

Probability baseline of cross-domain In the
Short Answer Close Book QA task, we use Trivia
QA (Joshi et al., 2017) for demonstrations and
threshold when testing SciQ (Welbl et al., 2017)
and NQ (Kwiatkowski et al., 2019) and we use
SciQ for or demonstrations and threshold when test-
ing Trivia QA. In the the Summarization task, con-
sidering the summarization tasks’s data is too long
that not appropriate selected as few shot demon-
strations, we still use WEBNLG as demonstrations.
When testing XSum (Narayan et al., 2018), we use
the threshold that makes CNN Daily Mail’s (Her-
mann et al., 2015; See et al., 2017) training set
highest accuracy during 3 shot Probability (demon-
strations from WEBNLG) experiment. When test-
ing CNN Daily Mail, we use threshold from XSum.
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Figure 6: Some other sparsity observations of attention head outputs on different tasks using the logistic regression (LR) and the
mass mean (MM) probe.
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Figure 7: Some other sparsity observations of layer residual activations on different tasks using the logistic regression (LR) and
the mass mean (MM) probe.

In the Sentence Completion task, when testing
story cloze (Mostafazadeh et al., 2017) and Hel-
laSwag (Zellers et al., 2019), we use 5 shot demon-
strations and threshold from CoPA (Roemmele
et al., 2011). When testing CoPA, we use 5 shot
demonstrations and threshold from story cloze.

Probability baseline of in-domain We all use
threshold that makes its training split highest ac-
curacy. We use few shot demonstrations from its
training set except Summarization task that we still
use WEBNLG (Gardent et al., 2017) since the data
is too long.

Self-Eval baseline of cross-task When testing
the Short Answer Close Book QA task, we use 5
data (labeled with Correct or Wrong) from Hot-
pot QA (Yang et al., 2018) as few shot demonstra-
tions. When testing the Summarization task, as
mentioned above that the data is so long that the
model is hard to follow our aim to judge "Correct"
or "Wrong", we here use 0 shot prompt like "Is the
answer correct or wrong?\nIt is" When testing the
Sentence Completion task, we use 5 data (labeled
with Correct or Wrong) from ARC easy.

Self-Eval baseline of cross-domain In the Short
Answer Close Book QA task, we use Trivia
QA (Joshi et al., 2017) for demonstrations when
testing SciQ and NQ and we use SciQ for demon-
strations and threshold when testing Trivia QA.
In the Summarization task, we still use 0 shot

prompt. In the Sentence Completion task, when
testing story cloze (Mostafazadeh et al., 2017)
and HellaSwag (Zellers et al., 2019), we use 5
shot demonstrations from CoPA (Roemmele et al.,
2011). When testing CoPA, we use 5 shot demon-
strations from story cloze.

Self-Eval baseline of in-domain We use demon-
strations selected from its training set except Sum-
marization that we still use 0 shot.

Finetune model setting We construct data sam-
ples using the prompt like

“Please determine whether the following answer
is correct.

[data]
It is correct/wrong. ”
We use these constructed data to full finetun-

ing the model and use same prompt and constrain
model generate from "correct" and "wrong" two
tokens when evaluating. When training datasets
contain fewer than 14 tasks, we use a learning rate
of 2e-5 and train the model for 3 epochs. In con-
trast, when training datasets contain more than 14
tasks, we use a learning rate of 2e-5 and train the
model for only 1 epoch.

F Experiment Details for Training on
Attention Head and Layer Activations

In our study, we have explored training probes us-
ing the layer residual activations and attention head
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outputs, finding that probes trained on layer acti-
vations consistently underperform attention head
outputs.

We conduct the cross-task experiments with
varying number of training datasets, 4 datasets,
8 datasets, 12 datasets respectively. When train-
ing the probes on attention head outputs, following
the hyperparameters range: k can be 64 or 128,
num can be selected from 1, 2, 4, 10, 20, 30, 40,
60, 120, but maintain the consistent upper bound
160/t, where t is the number of training datasets.
For training probes on layer residual activations,
we also utilize the same framework, including k
and num two hyperparameters, where k can be
1024, 4096 and num fixed at 1, reflecting the lim-
ited selection options available for layers.

Given the mtriple_set data and its corresponding plain
text, you are asked to modify some (but not all) of the
feature information in the mtriple_set and generate a
new text based on the new mtriple_set. Here are some
examples.
#mtriple_set#: [
"Pontiac_Rageous | productionStartYear | 1997",
"Pontiac_Rageous | assembly | Michigan"
]
#text#: The Pontiac Rageous was first produced in 1997
in Michigan.
#new mtriple_set#: [
"Pontiac_Rageous | productionStartYear | 1997",
"Pontiac_Rageous | assembly | Ohio"
]
#new text#: The initial production of the Pontiac Ra-
geous took place in 1997 in Ohio.

#mtriple_set#: [
"Acharya_Institute_of_Technology | president | "B.M.
Reddy"",
"Acharya_Institute_of_Technology | city | Bangalore",
"Acharya_Institute_of_Technology | established |
2000",
"Acharya_Institute_of_Technology | country | "India"",
"Acharya_Institute_of_Technology | state | Karnataka",
"Acharya_Institute_of_Technology | numberOfPost-
graduateStudents | 700",
"Acharya_Institute_of_Technology | campus | "In Solde-
vanahalli, Acharya Dr. Sarvapalli Radhakrishnan Road,
Hessarghatta Main Road, Bangalore – 560090.""
]
#text#: Acharya Institute of Technology (president B
M Reddy) was established in 2000 and has 700 post-
graduate students. The campus is located at Soldevana-
halli, Acharya Dr. Sarvapalli Radhakrishnan Road, Hes-
sarghatta Main Road, Bangalore – 560090, Karnataka,
India.
#new mtriple_set#: [
"Acharya_Institute_of_Technology | president | Mr.
B.G. Reddy",
"Acharya_Institute_of_Technology | city | Mysore",
"Acharya_Institute_of_Technology | established |
2000",
"Acharya_Institute_of_Technology | country | India",
"Acharya_Institute_of_Technology | state | Karnataka",
"Acharya_Institute_of_Technology | numberOfPost-
graduateStudents | 700",
"Acharya_Institute_of_Technology | campus | In Solde-
vanahalli, Acharya Dr. Sarvapalli Radhakrishnan Road,
Hessarghatta Main Road, Mysore – 560090."
]
#new text#: Acharya Institute of Technology, located
in Mysore, Karnataka, India, was established in the
year 2000. Under the leadership of President Mr. B.G.
Reddy, the institute has grown to accommodate 700
postgraduate students. The campus is situated in Sol-
devanahalli, on Acharya Dr. Sarvapalli Radhakrishnan
Road, Hessarghatta Main Road, Mysore – 560090.

Here is the test.
#mtriple_set#: [mtriple_set]
#text#: [text]
#new mtriple_set#:

Table 11: Instructions used for WEBNLG
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Given a question and correct answer, you are asked to
generate a reasonable but false answer. Here are some
examples.
#Qusetion#: What nationality was James Henry Miller’s
wife?
#Correct Answer#: American
#False Answer#: British

#Qusetion#: British band The Wanted’s third album
includes a song with a title about which Barbadian su-
perstar?
#Correct Answer#: Rihanna
#False Answer#: Shakira

Here is the question and its correct answer, you need to
generate a reasonable but false answer.
#Question#: [question]
#Correct Answer#: [answer]
#False Answer#:

Table 12: Instructions used for Hotpot QA
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Method Short Answer Close Book QA Summarization Sentence Completion Average
NQ Trivia QA SciQ XSum CNN DM Story Cloze Hellaswag CoPA

Probe (LR) 60.40 54.70 51.25 58.06 52.30 62.26 50.02 46.50 54.44
Probe (MM) 51.70 50.42 49.80 53.06 49.56 50.19 50.98 50.00 50.71
Self-Eval 0-shot 58.40 68.74 82.25 67.00 65.98 53.69 51.90 58.50 63.31
FT 62.38 68.44 62.90 52.56 51.26 53.55 50.98 50.00 56.51
Random 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

Table 13: Probe trained on TruthfulQA, Self-Eval 0-shot baseline and FT (finetuning) method hallucination detection accuracy
(%) on OOD test sets.
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