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Abstract

Large Vision-Language Models (LVLMs) have
achieved impressive performance, yet research
has pointed out a serious issue with object hallu-
cinations within these models. However, there
is no clear conclusion as to which part of the
model these hallucinations originate from. In
this paper, we present an in-depth investigation
into the object hallucination problem specifi-
cally within the CLIP model, which serves as
the backbone for many state-of-the-art vision-
language systems. We unveil that even in isola-
tion, the CLIP model is prone to object halluci-
nations, suggesting that the hallucination prob-
lem is not solely due to the interaction between
vision and language modalities. To address this,
we propose a counterfactual data augmentation
method by creating negative samples with a va-
riety of hallucination issues. We demonstrate
that our method can effectively mitigate ob-
ject hallucinations for the CLIP model, and we
show that the enhanced model can be employed
as a visual encoder, effectively alleviating the
object hallucination issue in LVLMs. 1

1 Introduction

Current Large Vision-Language Models (LVLMs)
demonstrate significant potential in tasks requiring
joint visual and linguistic perception, such as image
captioning (Agrawal et al., 2019b), visual question
answering (Antol et al., 2015), visual grounding
(Yu et al., 2016), and autonomous agents (Durante
et al., 2024; Xi et al., 2023). Despite the success of
LVLMs, previous studies have revealed that they
commonly suffer from hallucinations in practice,
including object hallucinations (Li et al., 2023c;
Leng et al., 2023; Zhou et al., 2023), spatial hallu-
cinations (Kamath et al., 2023), attribute hallucina-
tions (Zhang et al., 2024), etc. It is widely believed
that hallucinations degrade model performance and

* Equal contribution.
1Our benchmark and code are publicly available on https:

//github.com/Yufang-Liu/clip_hallucination.

reliability, and severely impair the user experience
in real-world applications (Ji et al., 2023).

In this work, we focus on investigating the
causes of the highly-concerned object hallucina-
tions, i.e., LVLMs generate nonexistent objects in
the image (Biten et al., 2022). A typical LVLM uti-
lizes a Large Language Model (LLM) as its cogni-
tive foundational model and employs a pre-trained
image encoder as its visual perception module
(mainly the CLIP encoder). Kamath et al. (2023)
investigated the spatial hallucination (e.g., confus-
ing “left of” and “right of”) in LVLMs, and they
found that various CLIP encoders struggle to rec-
ognize simple spatial relationships (achieving only
a 55.0% accuracy on benchmarks, whereas humans
are 98.8%). Inspired by their findings, we hypoth-
esize that the CLIP visual encoder might also be
one of the causes of object hallucinations.

Hence, we first curate the Object Hallucination
Detection (OHD-Caps) benchmark from subsets
of the COCO (Lin et al., 2014), Flickr30K (Young
et al., 2014), and Nocaps (as an out-of-domain
benchmark because it comprises unseen objects)
(Agrawal et al., 2019a) image caption datasets re-
spectively, to more strictly measure the extent of
object hallucinations present in CLIP encoders. We
randomly select 16k/1k/1.5k (train/dev/test) sam-
ples, with each sample containing one image, one
positive descriptive text, and 27 negative descrip-
tive texts. The negative samples are perturbations
of the positive sample, achieved by adding descrip-
tions of nonexistent objects or reducing descrip-
tions of existing objects. Theoretically, a CLIP
model without object hallucinations should accu-
rately assign the highest CLIP score to the positive
sample. However, taking the most commonly used
“CLIP ViT-L/14” in LVLMs as an example, it only
scores the highest for positive samples in 19.0%
of cases. Since we have observed that the CLIP
encoder already has a serious issue with object hal-
lucination, how can we mitigate it?
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In the contrastive pretraining of CLIP, negative
samples come from text descriptions of other im-
ages within the batch, which makes the distinc-
tion between them quite straightforward. However,
mitigating object hallucinations requires the CLIP
encoder to be able to differentiate between sub-
tle errors at the object level. We further fine-tune
the CLIP model using the training set from OHD-
Caps. By incorporating a fine-grained object-level
contrastive loss, we greatly reduce object halluci-
nations in the CLIP. Then employing the fine-tuned
CLIP as the visual encoder, the object hallucina-
tions in our retrained LVLM, LLaVA-1.5, are also
diminished.

In this paper, we study the object hallucinations
of CLIP models. Our main contributions are,

• we propose a benchmark, OHD-Caps, for evalu-
ating object hallucinations in CLIP models.

• we quantitatively evaluate a wide range of en-
coders from the CLIP family and find that they
all exhibit severe object hallucination issues.

• we propose a fine-grained object-level contrastive
loss to further fine-tune the CLIP model, signifi-
cantly alleviating its object hallucination issues
(e.g., from 14.3 to 82.5 for “CLIP ViT-B/32”) and
concurrently reducing the hallucination problems
of the LLaVA-1.5 (from 80.2 to 83.2 on Nocaps),
which uses it as a visual encoder.

2 Related Work

2.1 Large Vision-Language Model

Recently, inspired by the success of large language
models (LLMs), researchers have begun to dedicate
efforts to enhance vision language models (VLMs)
by integrating robust LLMs, aiming to broaden
the knowledge scope of the model and amplify its
linguistic comprehension capabilities.

LVLM architectures typically consist of three
components: a visual encoder, a modality con-
nection module, and a LLM. The visual encoder
and LLM are typically fixed large pretrained mod-
els, the visual encoder is usually a variant of
the CLIP model (Radford et al., 2021), used for
extract visual features, while the LLM, such as
LLaMA (Touvron et al., 2023) and Vicuna (Chiang
et al., 2023), is used to integrate image information
and text information, and completes the predic-
tion of the target. Research focuses on optimizing
modality connection modules, with approaches like

Flamingo’s (Alayrac et al., 2022) cross-attention
module, LLaVA’s (Liu et al., 2023c) linear layer,
and BLIP2’s (Li et al., 2023a) Q-former, diverse yet
all boosting VLM performance on various vision-
language tasks.

2.2 Hallucination in LVLMs

Despite the fact that LVLMs perform well in solv-
ing visual-language tasks, they are also plagued
by hallucinations. The problem of hallucinations
in LVLMs mainly refers to the mismatch between
visual input and textual output. For example, in
the image captioning task, hallucination refers to
the generation of captions that describe objects that
do not exist in the image. Although the halluci-
nation problem of LLMs has been widely studied
in the NLP field (Ji et al., 2023), there has not
been enough research on mitigating the hallucina-
tion issue in LVLMs (Shekhar et al., 2017; Liu
et al., 2024, 2023a). Recent efforts to mitigate hal-
lucination in LVLMs have focused on enhancing
each compoment of the model. For example, Liu
et al. (2023b); Hu et al. (2023) constuct instruction-
tuning datasets with contrastive question-answer
pairs for LVLMs; Sun et al. (2023b); Yu et al.
(2023) employ Reinforcement Learning from Hu-
man Feedback (RLHF) (Stiennon et al., 2020)
to enchance the connection module between the
modalities; Leng et al. (2023) propose a visual
contrastive decoding strategy for LLM decoing.
Despite the wide application of the CLIP model
in VLMs and its in-depth study in pairwise com-
parison context (Yüksekgönül et al., 2023; Hsieh
et al., 2023), there has been little discussion on its
evaluation regarding hallucinations. Our research
addresses this gap in the literature.

3 The OHD-Caps Benchmark

Recent studies have found that LVLMs are prone to
object hallucinations (Li et al., 2023c; Zhou et al.,
2023). In response, researchers have developed
several datasets to assess the extent of these hallu-
cinations in such models (Li et al., 2023c; Wang
et al., 2023c). However, there is a relative lack
of assessment work regarding the hallucinatory ef-
fects of the CLIP model, which is widely used as
a visual encoder within LVLMs. In this section,
we introduce the Object Hallucination Detection
benchmark (OHD-Caps) we create to evaluate the
object hallucination problem in CLIP models and
the pipeline for evaluations. Figure 1 shows the
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SEEM

Caption: A tower stands over a bunch of 
trees with a mountain in the background.

Object prone to Hallucinations

Popular: person, wall, … 

Random: boat, bird, …

Adversarial: road, grass, ... 

Segmented Objects

mountain, tree, …

A tower stands beside a road, 
overlooking a bunch of trees with 
a mountain in the background.

A tower stands over a bunch of 
trees with a bird circling above and 
a mountain in the background.

A tower stands over a bunch of 
trees with a mountain in the 
background.

A tower towers over a bunch of 
trees with a mountain cityscape  in 
the background.

CLIP Score

18.1

18.6

18.3

20.5

Figure 1: The pipeline of our benchmark creation process. For an image, we first use SEEM (Zou et al., 2023)
to identify objects within the image and obtain illusory objects that do not exist in the picture through different
sampling strategies. Then we ask GPT to insert or delete objects in the original sentences to create negative samples.
We provide both positive and negative samples to the CLIP model to observe if the model predicts the positive
samples as having the highest score. This image is from the NoCaps dataset, and the model is CLIP ViT-B/32.

pipeline of our benchmark creation process.

3.1 Dataset Construction
CLIP is a versatile neural network that excels at
image understanding and can predict text for im-
ages in a zero-shot manner. To evaluate the CLIP
model’s ability to handle object hallucinations in
paired comparison scenarios, given an image with
a correct caption, we create incorrect captions con-
taining hallucinatory content. The purpose is to
observe whether the model can accurately select
the correct text without hallucinations.

Inserting Hallucinatory Objects Previous
work (Li et al., 2023c; Zhou et al., 2023) show that
LVLMs are more prone to generate hallucinatory
responses for objects that frequently appear in
the dataset. Inspired by this, we create negative
samples by inserting objects prone to hallucination
into the correct captions. To collect object
annotations, we first use SEEM (Zou et al., 2023)
to automatically segment objects in the images.
Three kinds of hallucinatory objects are collected:
random objects which are sampled randomly,
popular objects which are the top frequent objects
in the whole dataset, and adversarial objects
which are the top frequent objects with the
segmented objects. Each category contains three
objects. To create examples with varying levels of
hallucinations, we attempt to insert one to three
objects for each category, resulting in each type
of hallucination containing a total of 7 (

∑3
r=1C

r
3 )

samples.

Given a caption text and several hallucinatory
objects, we insert the objects into the appropriate
locations in the caption, which can be effectively
achieved with the help of GPT4. Automatically,
the caption and objects are fed to the GPT4, with
the prompt as Add_Prompt (see Table 13).

Removing existing Objects Except from insert-
ing hallucinatory objects, we also remove ob-
jects from the captions to create negative sam-
ples. We randomly select 1 or 2 segmented objects
in the image which results in 6 negative samples
(
∑2

r=1C
r
3), and ask GPT4 to remove them from

the caption with the Remove_Object_Prompt. To
account for scenarios where the identified objects
are not present in the title text, we ask GPT to
alter elements like objects, colors, and properties
in the original caption, the prompt we use is Al-
ter_Object_Prompt. The prompt can be found in
Table 13.

we construct a dataset of 500 samples for each
of the COCO (Lin et al., 2014), Flickr30K (Young
et al., 2014), and the out of domain subset of No-
Caps Validation datasets (Agrawal et al., 2019a),
with 27 negative samples for each image. Specif-
ically, the out of domain subset of NoCaps com-
prises objects not seen in the COCO dataset, com-
monly used to measure a model’s ability to gener-
alize to unseen classes. 2 The average length of the
captions in the datasets is shown in Table 10.

2Our selection of Nocaps as the out-of-domain dataset is
specific to our fine-tuning process in Section 4 and not the
pre-training process of CLIP.
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3.2 Evaluation and Analysis
We study several models to evaluate their perfor-
mance on our benchmark. Each image is paired
with a correct caption and 27 negative samples, and
models are required to calculate the similarity be-
tween the image and the caption candidates and
select the correct caption.

Models We evaluate a variety of models on our
benchmark, including CLIP (Radford et al., 2021)
ViT-B/32 and ViT-L/14; MetaCLIP (Xu et al.,
2023) and DFN2B CLIP (Fang et al., 2023) are
models pretrained on high-quality dataset after data
curation; CLIPA(Li et al., 2023b) which achieves
efficient training by using shorter image/text se-
quences, which reduces the computational load
during the training period; EVA CLIP (Sun et al.,
2023a) which employs innovative representation
learning technology, optimization methods, and
enhancement strategies to improve model perfor-
mance; SigLIP(Zhai et al., 2023) which employs
a contrastive learning loss function based on the
Sigmoid function instead of the traditional soft-
max for pre-training on language and image data;
CLIP ConvNext(Liu et al., 2022) is a variant of
the CLIP model that uses ConvNext as the image
encoder; CLIP NLLB-SigLip (Visheratin, 2023) is
another variant that combines a text encoder from
the NLLB model (Costa-jussà et al., 2022) and
an image encoder from the SigLIP model; Neg-
CLIP (Yüksekgönül et al., 2023), an improved
model based on CLIP ViT-B/32, which enhances
the understanding of relationships between objects,
attributes, and the sequence of words by swapping
phrases; CECLIP (Zhang et al., 2023) which further
develop enhanced negative samples and employ
contrastive loss to enhance compositional reason-
ing; FLAVA (Singh et al., 2022) which is a single
unified foundation model which can work across
vision, language as well as vision-and-language
multi-modal tasks; CoCa (Yu et al., 2022) is a
pretrained model with contrastive and generative
learning objectives; XVLM (Zeng et al., 2021)
which aligns the visual concept and textual input
in a multi-grained manner with 14M and 16M pre-
trained images; BLIP (Li et al., 2022) which effec-
tively utilizes the noisy web data by bootstrapping
the captions with 14M and 129M pretrained im-
ages; BLIP2 (Li et al., 2023a) 3 which bridges the
gap between the visual and textual modalities with

3We use the image-text matching head for both BLIP and
BLIP2.

Model Params OHD-Caps Benchmark

COCO Flickr30K NoCaps Avg.

(a) comparisons with CLIP Models

CLIP ViT-B/16 149M 16.6 17.2 8.6 14.1
CLIP ViT-B/32 151M 15.2 17.6 10.2 14.3
CLIP ViT-L/14 428M 22.4 22.6 12.0 19.0
MetaCLIP B/32 151M 25.6 25.2 16.0 22.3
MetaCLIP L/14 428M 36.8 26.4 19.4 27.5
CLIPA V2 L/16 428M 35.6 31.0 18.8 28.5
EVA-02 CLIP-B/16 149M 26.4 25.4 18.6 23.5
EVA-02 CLIP-L/14 428M 38.8 31.6 21.4 30.6
DFN2B CLIP B/16 149M 29.4 27.8 17.0 24.7
DFN2B CLIP L/14 428M 37.6 37.8 23.2 32.9
CLIP ConvNext-B 180M 34.0 28.0 20.4 27.5
CLIP ConvNext-L 352M 43.4 35.8 25.0 34.7
SigLIP B/16 203M 34.2 32.2 23.8 30.1
SigLIP L/16 652M 48.4 38.4 30.8 39.2
SigLIP SoViT-400m 877M 50.8 41.4 26.6 39.6
CLIP NLLB-SigLip-B 508M 25.2 20.0 22.6 22.6
CLIP NLLB-SigLip-L 1.1B 32.6 29.0 26.4 29.3
NegCLIP 151M 32.8 28.0 25.0 28.6
CECLIP 151M 52.8 40.8 23.4 39.0

(b) comparisons with other Image-Text Matching Models

FLAVA 350M 28.0 28.4 16.6 24.3
CoCa 2.1B 26.0 24.4 20.0 23.5
XVLM 4M 216M 46.4 35.8 34.0 38.7
XVLM 16M 216M 41.8 19.4 21.8 27.7
BLIP 14M 583M 51.4 48.0 42.0 47.1
BLIP 129M 583M 40.8 38.0 31.2 36.7
BLIP2 3.4B 62.6 42.2 41.2 48.7

Table 1: Results of various models on our benchmark.
NoCaps subset is used to evaluate zero-shot generaliza-
tion.

a Q-former.

Results Table 1 shows the results of the models
on our benchmark. From the results, we could find
that,

• First of all, the vanilla CLIP models perform
poorly across all three datasets, indicating their
limited ability to recognize illusory objects in
images. Multiple variants of CLIP, through im-
provements in data (e.g., MetaCLIP, DFN2B
CLIP), model architecture (e.g., CLIP ConvNext,
CLIP NLLB-SigLip), and training methods (e.g.,
CLIPA, EVA CLIP, SigLip), achieve a slight
enhancement in the performance of the origi-
nal CLIP. Among these variants, SigLIP demon-
strates the most notable performance, exhibiting
the best results on out-of-domain datasets and
showcasing superior generalization capabilities.

• Secondly, NegCLIP attempts to enhance the
model’s understanding of the text by parsing
and substituting phrases, but it only achieves a
marginal improvement compared to the original
CLIP model. CECLIP exhibits relatively better
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performance, which is mainly due to the con-
structed negative samples enhancing the model’s
comprehension of the combined semantics of
sentences. The NegCLIP and CECLIP models
are trained on the COCO training set to distin-
guish between positive samples and enhanced
negative samples. This might contribute to CE-
CLIP’s good performance on the COCO dataset,
owing in part to the model’s memory of the orig-
inal correct text. However, their performance
on the NoCaps dataset indicates that these mod-
els cannot effectively differentiate hallucinated
objects.

• Furthermore, generative vision-language models
typically achieve higher performance than vanilla
CLIP models due to their more precise alignment
of image and text representations. Furthermore,
it is generally observed that the larger the model
parameters, the better the performance. In partic-
ular, BLIP2, which has the highest number of pa-
rameters, performs best across all three datasets.
In comparison, the XVLM 4M model has rel-
atively fewer parameters but still demonstrates
good performance. This indicates that XVLM’s
strategy of multi-scale alignment indeed assists
the model in more accurately capturing the fine-
grained details within images.

• Finally, the overall trend among different models
is consistent across the three datasets, with their
performance typically being the lowest on the
NoCaps dataset. Although fewer objects are rec-
ognized on the NoCaps dataset than Flickr30K,
the performance is the lowest there due to the
inclusion of categories that are out-of-domain.
The BLIP 14M model demonstrates the best per-
formance on both Flickr and NoCaps, which in-
dicates its strong generalization capabilities.

Analysis The inability of models to recognize
hallucinated objects primarily stems from the data
used and the learning methods employed. The
vanilla CLIP model is trained with a large number
of image-caption pairs collected from the internet,
using a contrastive loss function for optimization.
Those captions are often brief and noisy, and the
model is optimized to differentiate between cor-
rect and a multitude of incorrect image-text pairs.
However, because the incorrect pairs are usually
significantly different from the correct ones, the
model can easily distinguish them. This means that
the model does not need to learn the rich details in

the pictures to make accurate predictions. To ad-
dress this issue, we need to make improvements to
the original CLIP model in terms of data utilization
and learning methodologies.

4 Methodology

We first revisit the training process of the vanilla
CLIP model. Let I be the image and T be the text,
the training objective of CLIP is to maximize the
similarity between the image and text pairs and
minimize the similarity between the image and text
pairs that are not matched. The loss function is
defined as:

Li2t = − log
exp(I · T+/τ)∑

T ∗∈{T+,T−} exp(I · T ∗/τ)
,

Lt2i = − log
exp(T · I+/τ)∑

I∗∈{I+,I−} exp(T · I∗/τ) ,

L0 =
1

2

(
Li2t + Lt2i

)
,

(1)

where T+ and I+ are the correct text and image,
and T− and I− are the incorrect text and image,
respectively.

With the addition of the negative samples Tneg

created as in the previous section, we could modify
the loss Li2t as:

Li2t = − log
exp(I · T+/τ)∑

T ∗∈{T−,Tneg ,T+} exp(I · T ∗/τ)
.

(2)
To further enhance the model’s ability to distin-

guish between positive and negative samples, we
additionally introduce a margin loss. This is to
ensure that the distance between an image and its
corresponding correct text is smaller than the dis-
tance to incorrect text by a specific threshold. This
concept can be formulated as:

L1 = max(0, τ1 − I · T+ + I · T ∗), (3)

where τ1 is the margin threshold, and T ∗ =
{T−, Tneg}.

Additionally, we generate enhanced negative
samples by introducing perturbations to the orig-
inal positive samples. Such negative samples are
typically more challenging to distinguish than other
negative samples within the batch. To encourage
the model to recognize the partially correct infor-
mation contained in the enhanced negative samples,
resulting in a higher similarity to the positive sam-
ples compared to other negative samples within the
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Model OHD-Caps

COCO Flickr30k NoCaps Avg.

Random 3.6 3.6 3.6 3.6

(a) comparisons with CLIP-Base baselines

CLIP-B/32 15.2 17.6 10.2 14.3
NegCLIP 32.8 28.0 25.0 28.6
CECLIP 52.8 40.8 23.4 39.0
Ours-B/32 80.4 85.0 82.0 82.5

(b) comparisons with CLIP-Large baselines

CLIP-L/14 26.0 27.0 16.8 23.3
Ours-L/14 87.0 91.0 88.4 88.8

Table 2: Results on OHD-Caps. CLIP-B/32, and CLIP-
L/14 represent CLIP ViT-B/32 and CLIP ViT-L/14 336
px respectively.

batch, we introduce a margin loss between the in-
batch negative samples and the enhanced negative
samples:

L2 = max(0, τ2 − I · Tneg + I · T−), (4)

where τ2 is the margin threshold.
Next, we assign different weights to the afore-

mentioned loss terms, allowing the model to learn
adaptively. Consequently, the final loss function
can be expressed as follows:

L =
1

2

(
Lt2i + Li2t

)
+ λ1L1 + λ2L2. (5)

5 Experiments

Training Datasets We sample 8k images from
the training set of COCO and 8k images from
Flickr30k datasets, then generate negative sam-
ples for each image as in Section 3. Additionally,
we randomly select ∼1k samples from the COCO
dataset’s validation set as our dev set for the se-
lection of hyper-parameters. Detailed information
about the dataset is provided in Table 10.

Training Details We utilize the CLIP ViT/32-B
and CLIP ViT/14-L-336px implemented by Hug-
gingface (Wolf et al., 2020) as the initial models
and conduct fine-tuning for 10 epochs. The train-
ing process is carried out on a single A6000 GPU,
with batch sizes of 56 and 14 set for the base and
large models, respectively, and the learning rate is
set at 1e-6. The selection of hyper-parameters is
determined by their performance on the validation
set, where λ1 and λ2 are set as 0.1 and 0.1, τ1 and
τ2 are set as 2.
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(a) comparisons with CLIP-Base baselines
CLIP-B/32 89.8 64.2 63.3 46.3 32.6 97.1 65.6
NegCLIP 85.9 60.9 55.7 31.9 26.8 95.8 55.8
CECLIP 81.1 55.0 40.4 41.9 20.6 95.6 59.5
Ours-B/32 89.1 66.0 60.5 51.7 31.9 96.5 66.0

(b) comparisons with CLIP-Large baselines
CLIP-L/14 95.0 74.4 76.6 61.4 52.4 99.4 76.5
Ours-L/14 95.0 74.8 72.8 67.3 43.6 99.4 75.5

Table 3: Zero-shot results on various datasets. The
last column displays the average performance across 7
datasets.

Evaluation To verify the impact of our method
on the model’s generalization capabilities, we con-
ducted zero-shot experiments on the following
datasets: CIFAR-10/100 (Krizhevsky et al., 2009),
ImageNet-1K (Deng et al., 2009), DTD (Cimpoi
et al., 2014), Eurosat (Helber et al., 2019), GT-
SRB (Stallkamp et al., 2012) and STL10 (Coates
et al., 2011).

5.1 Main Results
We present the results for our self-constructed
dataset in Table 2, and various zero-shot datasets
in Table 3. From the results, we could find:

• Our model shows comparable zero-shot perfor-
mance to vanilla CLIP Models (65.6 vs 66.0) and
achieves significant improvements in hallucina-
tion recognition (14.3 vs 82.5). NegCLIP and
CECLIP enhance the model’s capability of un-
derstanding composites by constructing negative
samples and also achieve a moderate improve-
ment on the OHD-Caps benchmark, with perfor-
mance rising from 14.3% to 39.0%. However, the
zero-shot performance of NegCLIP and CECLIP
significantly decreases. This could be due to their
reliance on rule-based methods to construct neg-
ative samples (such as swapping phrases), which
may interfere with the model’s understanding of
sentence semantics.

• Our model also demonstrates strong general-
ization capabilities in hallucination recognition.
NegCLIP, CECLIP, and our model are all fine-
tuned on the training set of the COCO dataset.
Although they show varying degrees of perfor-
mance improvement in COCO-related halluci-
nation tests (NegCLIP at 32.8%, CECLIP at

18293



Dataset Criterion Full Fine FT LoRA FT

LLaVA Ours LLaVA Ours

COCO

Accuracy (↑) 85.4 81.2 85.7 88.3
Precision (↑) 81.8 90.9 81.8 89.7
Recall (↑) 91.9 85.1 92.5 86.9
F1 Score (↑) 86.4 87.9 86.7 88.2
Yes (→50%) 56.5 46.9 56.8 48.6

Flickr30K

Accuracy (↑) 73.7 81.2 74.4 82.8
Precision (↑) 67.5 78.5 67.9 83.0
Recall (↑) 96.9 88.0 96.9 85.7
F1 Score (↑) 79.2 82.7 79.5 83.5
Yes (→50%) 73.1 56.8 72.5 52.9

NoCaps

Accuracy (↑) 76.7 81.3 76.7 82.6
Precision (↑) 71.2 80.6 71.2 81.8
Recall (↑) 92.7 84.0 92.3 84.9
F1 Score (↑) 80.2 82.0 80.2 83.2
Yes (→50%) 66.0 52.7 65.6 52.3

Table 4: Results on expanded POPE datasets. Yes de-
notes the proportion of answering “Yes” to the given
question.

Model Full FT LoRA FT

CS ↓ CI ↓ Cover↑ Length CS ↓ CI ↓ Cover↑ Length

LLaVA 56.4 14.9 79.1 106.4 58.2 16.4 79.9 106.5
Ours 55.0 14.5 79.2 107.5 56.8 14.9 79.2 108.5

Table 5: CHAIR hallucination evaluation results (max
new tokens is 512) on COCO dev set. Smaller values
correspond to less hallucinations.

52.8%), their performances are worse when fac-
ing unknown categories (NegCLIP at 25.0%, CE-
CLIP at 23.4% for NoCaps images), indicating
limited generalization capabilities of the mod-
els. In contrast, our model performs consistently
across three different datasets, at approximately
82%. This result verifies that our model can
effectively distinguish hallucinated objects in dif-
ferent datasets and possesses the capability to
generalize across datasets.

5.2 Evaluation for LVLM
To verify the effectiveness of the enhanced CLIP
model compared to the original CLIP in assisting
large vision-language models to mitigate the issue
of object hallucination, we replace the CLIP ViT-
L/14-336px baseline model in LLaVA-1.5 with our
fine-tuned version. We train LLaVA (Liu et al.,
2023c) from scratch using the hyper-parameters
specified in the original paper. Comparison re-
sults with other methods, such as constructing SFT
data (Wang et al., 2023a) or introducing DPO pro-
cesses (Zhou et al., 2024; Zhao et al., 2023) for

Dataset Criterion Full FT LoRA FT

LLaVA Ours LLaVA Ours

Generative
CS (↓) 7.2 6.5 7.2 6.1
CI (↓) 35.4 31.7 33.4 30.1
Cover (↑) 52.2 50.9 51.7 50.7

Discriminative

Accuracy (↑) 74.3 80.2 74.2 80.8
Precision (↑) 93.9 85.5 93.5 86.4
Recall (↑) 65.6 84.4 65.7 84.3
F1 (↑) 77.2 84.9 77.2 85.3

Table 6: Results on AMBER dataset which includes the
assessment of hallucinations in both discriminative and
generative responses.

Model Existence Attribute State Number Action Relation

(a) Full FT
LLaVA 83.5 72.4 67.0 78.7 85.2 57.4
Ours 94.2 79.1 77.1 79.5 88.6 64.3

(b) LoRA FT
LLaVA 83.0 73.2 71.7 73.2 81.8 56.5
Ours 94.3 79.4 77.8 80.4 86.7 63.4

Table 7: Detailed performance on AMBER discrimina-
tive subset which includes evaluation results of other
types of hallucinations, such as attribute, number, and
relation.

further alignment can be found in Appendix B.

Hallucination Detection To evaluate the occur-
rence of hallucination phenomena in discriminative
and generative responses within models, we select
the following evaluation methods for analysis: an
extended version of the POPE dataset (Li et al.,
2023c) for discriminative response evaluation, and
CHAIR evaluation (Rohrbach et al., 2018) for gen-
erative response; the AMBER dataset (Wang et al.,
2023b) contains both types of evaluations. The
format of the question contained in POPE is: ‘Is
there a X in the image?’, where X refers to the
name of the object. The questions in the dataset
are designed such that the objects are present and
absent in equal measure, therefore the ideal ‘yes’
response rate should be around 50%. We extend the
POPE dataset and incorporate the Flickr30k and
NoCaps domains to test the model’s generalization
capabilities. The CHAIR metric evaluates object
hallucinations in image descriptions by measuring
the ratio of referenced objects not found in the
ground-truth label set, with CHAIRS for sentence
level:

CS =
| { hallucinated objects } |
| { all mentioned objects } | ,
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Model MME VQAv2 VisWiz SciQA-IMG TextVQA

(a) Full FT
LLaVA 1459.4 79.1 48.9 69.4 58.5
Ours 1487.2 79.2 50.0 69.3 58.2

(b) LoRA FT
LLaVA 1445.4 79.1 46.8 69.8 58.5
Ours 1455.4 79.2 47.2 68 58.4

Table 8: Results on various benchmarks.

CHAIRI for image-level analysis:

CI =
| { captions w/ hallucinated objects } |

| { all captions } | ,

and Cover measures the object coverage of re-
sponses:

Cover =
| { captions w/ hallucinated objects } |

| { ground truth objects } | .

Table 4, 5, 6 show the results of the expanded
POPE dataset, CHAIR evaluation, and AMBER
dataset, respectively. From the results, we could
find:

• For discriminative responses, our model achieves
significant improvements on various datasets. On
the POPE dataset, compared to the original, it
attains a better balance between accuracy and
recall which results in a higher F1 score and also
approaches a more ideal balance in the proportion
of "Yes" responses. The same phenomenon of
performance improvement is also observed in the
AMBER dataset.

• For generative responses, our model demon-
strates a lower proportion of hallucinated content
on the COCO validation set and the AMBER
dataset, while maintaining a relatively stable cov-
erage and response length.

General Performance We evaluate the model’s
general performance on different datasets, which in-
clude: MME-Perception (Fu et al., 2023) evaluates
the model’s visual perception with yes/no questions.
VQA-v2 (Goyal et al., 2017) evaluate model’s vi-
sual perception capabilities on open-ended short an-
swers; VizWiz (Gurari et al., 2018) and ScienceQA
(Lu et al., 2022) with multiple choice to evaluate
the model’s zero-shot generalization on visual ques-
tions; TextVQA (Singh et al., 2019) contains text-
rich visual question answering.

Model L0 L1 L2 OHD-Caps CIFAR10 CIFAR100 Avg.

CLIP 14.3 89.8 64.2 39.4
Ours ✓ 80.1 88.6 66.4 79.1

✓ ✓ 80.5 89.3 66.0 79.4
✓ ✓ 81.6 89.0 66.3 80.0
✓ ✓ ✓ 82.5 89.1 66.0 80.5

Table 9: Ablation of losses on CLIP ViT-B/32.

Results are shown in Table 8. We can observe
that with full fine-tuning, there is a slight improve-
ment in the model’s average performance. Specifi-
cally, the average performance of the model across
five datasets increased from 343.1 to 348.5, with
the most notable improvement on the MME dataset.
Conversely, when employing LoRA fine-tuning,
the average performance of the model remained
unchanged (340.0 vs 341.7).

5.3 Ablation Study
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Figure 2: The performance of the model on the OHD-
Caps dataset with different training data volumes pro-
vided. We report the average results of three random
seeds.

In this subsection, we present ablation studies to
examine the impact of our model’s different compo-
nents. We conduct these experiments on the CLIP
ViT-B/32 model.

Losses As demonstrated in Table 9, the inclusion
of the L0 loss alone significantly improves OHD-
Caps performance over the baseline. Subsequently,
iterative incorporation of L1 and L2 provide incre-
mental benefits, with the full combination yielding
the highest average performance. Compared to L1

loss, L2 loss has a more significant effect on im-
proving model performance. This suggests that by
increasing the distance between constructed neg-
ative samples and other negative samples in the

18295



batch, the model can achieve a more refined under-
standing.

Data Volume Figure 2 shows the performance
of the OHD-Caps dataset with varying amounts
of training data. As can be seen from the figure,
even with a very small amount of data, the model’s
performance can be significantly improved. For
example, by training with just 1% of the data (that
is, 160 images), the performance of the CLIP-L/14
model can increase from 20% to 60%. However, as
more data is added, the performance improvement
gradually slows and stabilizes.

6 Conclusion

Our study investigates the reasons behind object
hallucination in LVLMs. We construct a bench-
mark specifically for the evaluation of hallucina-
tions and find that the visual perception module
commonly used in current LVLMS, i.e., the CLIP
model, cannot effectively discriminate hallucinated
text. By designing negative samples and optimizing
the contrastive loss function, we achieve a signif-
icant improvement in model performance on the
hallucination detection dataset. Moreover, replac-
ing the original CLIP model with our improved
model can effectively alleviate the issue of object
hallucination in the LLaVA model.

Limitations

Although we conducted a series of explorations,
our research still has its limitations. Firstly, our
focus is solely on the issue of object hallucina-
tion within LVLMs, and we do not extend our re-
search to other types of hallucinations. Secondly,
the benchmark we propose comprises over 20 neg-
ative samples. Due to budgetary constraints, the
size of this dataset is much smaller compared to
the datasets used for evaluating compositional un-
derstanding, e.g. ARO dataset (Yüksekgönül et al.,
2023). Thirdly, we only evaluate the visual en-
coders of most LVLMs, i.e. the CLIP models, but
we do not conduct research on encoders used by
some other models, for instance, the variant of
ResNet called NFNet-F6 (Brock et al., 2021) used
by Flamingo (Alayrac et al., 2022).

Ethics Statement

Object hallucination severely limits the practical
application of LVLMs. For example, in medical
image diagnosis, it can lead to false descriptions

of tumor objects that are not present in the image.
While our work has mitigated hallucinations in the
visual encoder of LVLMs, hallucinations may still
exist in the multi-head attention layers and feed-
forward layers. Real-world applications based on
LVLMs must systematically control hallucinations
to avoid negative impacts on users.
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A Statistics on the Datasets

Dataset Size #Negative Samples #Avg Length

Train
COCO 8000 27 16.0
Flickr30K 8000 27 18.4

Dev
COCO 990 27 15.6

Test
COCO 500 27 16.3
Flickr30K 500 27 21.1
Nocaps 500 27 19.1

Table 10: Statistics of the datasets used in our bench-
mark.

The statistical information of the dataset is pre-
sented in the Table 10, which is divided into three
parts: training, testing, and validation. The average
length displayed in the table refers to the average
length of the negative examples in the dataset.

B Comparison with Other Methods

To demonstrate that the proposed method has fewer
object hallucinations and better general perfor-
mance than other popular methods, we additionally
compared the following approaches: LVIS (Wang
et al., 2023a) built a 220k visual instruction dataset.
By utilizing the excellent visual analysis ability of
GPT-4V and generating data through carefully de-
signed prompts. Expanding the original LLaVA
training data, datasets of different sizes, 619k and
880k, were obtained; POVID (Zhou et al., 2024)
and DPO (Zhao et al., 2023) build hallucination
texts using GPT4V and GPT4 respectively, and
compose pairs with high-quality non-illusionary
replies for DPO optimization. We report the model
results based on the checkpoints provided by the
paper.

The results are shown in Table 11 and Table 12.
From the results, our method outperforms the in-
struction finetune-based and dpo-based methods in

Model COCO Flickr30K Nocaps

F1 Yes % F1 Yes % F1 Yes %

(a) Full FT
LLaVA 86.4 56.5 79.2 73.1 80.2 66.0
LVIS-619k 77.4 32.6 70.2 33.6 67.3 31.2
LVIS-880k 85.6 41.7 79.7 45.6 80.6 43.7
Ours 87.9 46.9 82.7 56.8 82.0 52.7

(a) LoRA FT
LLaVA 86.7 56.8 79.5 72.5 80.2 65.6
POVID 86.8 44.9 81.9 51.8 81.4 49.6
HADPO 84.6 43.0 75.1 43.5 78.4 43.7
Ours 88.2 48.6 83.5 52.9 83.2 52.3

Table 11: Comparison results on expanded POPE
datasets. Yes% denotes the proportion of answering
“Yes" to the given question.

Model MME VQAv2 VisWiz SciQA-IMG TextVQA

(a) Full FT
LLaVA 1459.4 79.1 48.9 69.4 58.5
LVIS-619k 1473.6 79.2 50.0 68.1 57.7
LVIS-880k 1517.7 79.6 51.7 68.9 58.7
Ours 1487.2 79.2 50.0 69.3 58.2

(b) LoRA FT
LLaVA 1445.4 79.1 46.8 69.8 58.5
POVID 1418.5 78.8 42.3 67.5 58.0
HADPO 1430.4 76.4 43.4 70.3 56.6
Ours 1455.4 79.2 47.2 68 58.4

Table 12: Comparison Results on various benchmarks.

terms of performance on POPE (our method im-
proved the average F1 score by 2.6, while LVIS,
HADPO, and POVID showed no significant im-
provement), demonstrating lower hallucination
rates. Additionally, our method shows comparable
performance to other methods in terms of general
performance.

C More Examples

We present more examples in Figure 3. It can be ob-
served that our method can seamlessly integrate ob-
jects that are not present in the original image into
the text. The names of the added objects are high-
lighted in red. Removing objects that are present
in the picture can be accomplished with minimal
adjustments. As for the removal of objects not de-
picted in the image, such as the “food” mentioned
in the third figure, the negative samples typically
involve modifications to the objects, attributes, and
other content in the positive samples.
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Caption: A person on a snowboard 
weaves down a mountain slope. 

Add ‘backpack’: A person with a 
backpack on a snowboard weaves 
down a mountain slope. 

Add ‘car’: A person in a car 
weaves down a mountain slope. 

Delete ‘person’: A snowboard 
glides down the mountain slope.

Caption: A barber is trimming the 
neckline of a man on the side of the 
street.

Caption: Two cans of redbull along with 
several other energy drink supplements 
and a starbucks coffee cup. 

Add ‘sky’: A barber is trimming the 
neckline of a man under the sky on the 
side of the street.

Add ‘river’: A barber is trimming the 
neckline of a man by the side of the 
river.

Delete ‘food’: Three bottles of green 
tea along with several other herbal tea 
bags and a porcelain tea cup.

Add ‘person’: A person holding two 
cans of Redbull, along with several 
other energy drink supplements and a 
Starbucks coffee cup.

Figure 3: Examples from our benchmark OHD-Caps. The three images in the figure are from the COCO, Flickr,
and Nocaps datasets, respectively.

Prompt Template

Add_Prompt: Given a sentence {caption}, generate a new sentence and includes each
object from the list {objects}. Make the changes to the original sentence as minimal as
possible. Ensure that the new sentence is coherent, natural, semantically smooth and
free of grammatical errors.

Remove_Object_Prompt: Given a sentence {caption}, generate a new sentence and
remove each object from list {objects} to make the semantics of the sentence different.
Ensure that the new sentence is coherent, natural, semantically smooth and free of
grammatical errors.

Alter_Object_Prompt: Given a sentence {caption}, choose to modify the objects, colors,
attributes, etc., within the sentence to make the semantics of the sentence different. Make
the changes to the original sentence as minimal as possible. Ensure that the new sentence
is coherent, natural, semantically smooth and free of grammatical errors.

Table 13: Prompt Templates for Querying GPT-4. We replace the object that is to be added or deleted with object in
the prompt, and replace caption with the original caption text. The revised text should then be submitted to GPT-4
to generate the corresponding output.

D Prompt Template

Table 13 presents the prompt templates for generat-
ing negative samples that we used in Section 3.
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