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Abstract

Pretrained language models have been shown
to significantly predict brain recordings of peo-
ple comprehending language. Recent work sug-
gests that the prediction of the next word is a
key mechanism that contributes to this align-
ment. What is not yet understood is whether
prediction of the next word is necessary for this
observed alignment or simply sufficient, and
whether there are other shared mechanisms or
information that are similarly important. In
this work, we take a step towards understand-
ing the reasons for brain alignment via two
simple perturbations in popular pretrained lan-
guage models. These perturbations help us
design contrasts that can control for different
types of information. By contrasting the brain
alignment of these differently perturbed mod-
els, we show that improvements in alignment
with brain recordings are due to more than im-
provements in next-word prediction and word-
level information.

1 Introduction

Language models (LMs) that have been pretrained
to predict the next word over billions of text doc-
uments have also been shown to significantly pre-
dict brain recordings of people comprehending lan-
guage (Wehbe et al., 2014b; Jain and Huth, 2018;
Toneva and Wehbe, 2019; Caucheteux and King,
2020; Schrimpf et al., 2021; Goldstein et al., 2022).
Understanding the reasons behind the observed
similarities between representations of language
in machines and representations of language in the
brain can lead to more insight into both systems.
Recent studies suggest that the prediction of the
next word is a key mechanism that contributes to
the alignment between the two (Goldstein et al.,
2022). What is not yet understood is whether pre-
diction of the next word is necessary for this ob-

Code available at
github.com/gab709/brain-llm-beyond-next-word.

Figure 1: An illustration of additional information that
may be important for alignment between language mod-
els and brain recordings. Our approach is largely agnos-
tic about the exact linguistic information contained in
the conceptual quantities "word-level information" and
"multi-word information", and the only assumption is
that "word-level information" is not affected by word
order.

served alignment or simply sufficient, and whether
other shared information is similarly important.

Understanding the impact of other kinds of infor-
mation on brain alignment is complicated by corre-
lations with next-word prediction (NWP). Because
NWP is the LM training objective, better NWP
may also be related to improved representations
of other types of information (Piantadosi and Hill,
2022) that the human brain is sensitive to, such
as word-level or multi-word information (Lerner
et al., 2011). Neuroscientists are still investigating
the exact linguistic features at the word- and multi-
word levels that are important for processing in the
brain, so for the remainder of the paper, we take
an abstract approach and refer to “word-level infor-
mation” as the non-contextualized representation
of the word, and to “multi-word information” as
relating to multiple words (e.g. syntax). For exam-
ple, each word in “Harry throws the broom” has
a non-contextualized meaning and the phrase has
a different meaning depending on the word order
(“Harry throws the broom” vs. “The broom throws
Harry”, see Figure 1). We note that these are con-
ceptual quantities and not ones we are claiming to
be able to quantify directly. The only assumption
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key to our argument is that word-level information
is not impacted by word order. Other than that, our
methods are agnostic about the specific linguistic
information contained by these conceptual quanti-
ties. Both word-level and multi-word information
may contribute to brain alignment, but their effect
cannot be disentangled from that of next-word pre-
diction using previous approaches.

In this work, we aim to disentangle the contri-
butions of next-word prediction and word-level in-
formation from other factors, such as multi-word
information, in the brain alignment of GPT-2-based
models (Radford et al., 2019). Our methodology
builds upon the traditional neuroscientific approach
of constructing contrasts between brain activity
elicited by different conditions. A contrast reveals
the processing of a specific property P in the brain,
by subtracting the brain activity elicited by two
conditions (condition A and B) that are tightly con-
trolled to contain similar information except for
the target property P. We leverage this approach
and design contrasts between the predicted brain
activity by two related models: an original model
and its perturbed version. By contrasting the brain
alignment of these two models, we can conclude
that any difference in brain alignment is due to
the perturbation. Conversely, if the two contrasted
conditions are controlled for some factor, then any
difference in the predicted brain activity between
the two conditions cannot be due to this factor.

Our key insight is to design a contrast that con-
trols for both information related to next-word pre-
diction and word-level information. This contrast
is enabled by two proposed perturbations. The first
perturbation, which we name input scrambling,
scrambles the order of the input words at infer-
ence time. This perturbation controls for the word-
level information when contrasting a model’s brain
alignment related to the original vs. the scrambled
inputs, because, by definition, the word-level in-
formation encoded in the model representations
remains the same. Any remaining brain alignment
after the contrast must therefore be due to factors
beyond word-level information, such as next-word
prediction or multi-word information. The second
perturbation further disentangles the contribution
of next-word prediction to brain alignment. This
perturbation, which we name stimulus-tuning, fine-
tunes a model to predict the next word in the spe-
cific naturalistic stimulus text corresponding to the
brain recordings. The fine-tuning is done until the
next-word prediction performance matches a pre-

defined level above its input-scrambled version,
similar to the baseline model’s improvement over
its input-scrambled version. Contrasting brain pre-
dictions from pairs of models—-baseline vs. scram-
bled and stimulus-tuned vs. scrambled—-controls
for both word-level information and next-word pre-
diction. Any residual brain alignment is then due
to other factors, such as multi-word information.
We note that our methodology is based on models
trained to predict the next word; however, we only
control for next-word prediction performance at
inference time. Therefore, we cannot draw conclu-
sions about the importance of the training objective
itself, but rather about the information that has
emerged after the training process.

After controlling for word-level and next-word
prediction in the final contrast, we still observe
residual brain alignment. Across three types of
models (GPT-2-small, GPT-2-medium (Radford
et al., 2019) and GPT-2-distilled (Sanh et al.,
2019)), we find consistent residual brain align-
ment in two specific brain areas that are thought
to process language (Fedorenko et al., 2010; Fe-
dorenko and Thompson-Schill, 2014)–the inferior
frontal gyrus (IFG) and the angular gyrus (AG)–
suggesting that the brain alignment between the
language model and these brain regions is due to
more than next-word prediction and word-level in-
formation. We speculate that this alignment is due
to multi-word information, which is consistent with
previous findings about processing in these regions
(Friederici, 2012; Humphreys et al., 2021).

Our main contributions are as follows: (i) pro-
pose perturbations to pretrained language models
that, when combined in suitable contrasts, can con-
trol for the effects of next-word prediction and
word-level information on brain alignment; (ii)
demonstrate that a proposed perturbation, which
consist of tuning a language model on a validation
stimulus text, can increase the alignment with brain
recordings that correspond to a heldout text; (iii) re-
veal that the brain alignment with language regions,
in particular in the inferior frontal gyrus (IFG) and
the angular gyrus (AG), is due to more than next-
word prediction and word-level information.

2 Methods

2.1 Baseline models

We use GPT-2-based language models (Radford
et al., 2019) as the baseline pretrained language
models. In particular, we investigate GPT-2-small,

18432



GPT-2-medium (Radford et al., 2019) and GPT-2-
distilled (Sanh et al., 2019). GPT-2-based models
achieve strong results on a variety of natural lan-
guage processing tasks such as question answer-
ing, summarization, and translation, without any
specific training beyond next-word prediction. Fur-
thermore, we analyze GPT-2-based models to allow
for a direct comparison with prior brain alignment
research (Goldstein et al., 2022; Schrimpf et al.,
2021). We will present the averaged results across
the three types of models in the main paper, and
the individual results in the Appendix H, I, J. We
observed that as the model size increases, the ef-
fect of the stimulus-tuning perturbation as well as
the residual effect after the contrast decrease. This
reduction in effect is likely due to the small size of
the dataset that we use for fine-tuning, which limits
the learning capacity of larger models that already
have a better next-word prediction ability. There-
fore, we did not include additional larger models.
For the baseline models we use the checkpoints
provided by Huggingface (Wolf et al., 2020b)123.

2.2 fMRI data

To evaluate the brain alignment of GPT-2 and of
its perturbations, we use publicly available fMRI
data provided by Wehbe et al., 2014a, one of the
largest publicly available fMRI datasets in terms of
samples per participant. fMRI data were obtained
from eight participants as they read chapter 9 of
Harry Potter and the Sorcerer’s Stone (Rowling
et al., 1998) word-by-word. One fMRI image (TR)
was acquired every 2 seconds (TR = 2 sec). The
chapter was divided into four runs of approximately
equal length and participants were allowed a short
break at the end of each run. Each word of the
chapter was presented for 0.5 seconds, after which
a new word was presented immediately.

2.3 Evaluation tasks

We use two tasks to evaluate models: prediction
of the next-word and brain alignment. Importantly,
both tasks are evaluated using the same text, which
corresponds to the fMRI stimulus. For consistency,
we use the same setting to evaluate both next-word
prediction and brain alignment: we evaluate each
metric as described below using sliding windows
of 20 consecutive words (overlapping by 16 words,

1https://huggingface.co/openai-community/gpt2
2https://huggingface.co/openai-community/

gpt2-medium
3https://huggingface.co/distilbert/distilgpt2

which corresponds to 4 TRs). We choose this win-
dow length because previous work has shown that
using contexts larger than 20 words does not sub-
stantially improve brain prediction performance
with similarly-sized language models (Toneva and
Wehbe, 2019). We empirically verified that this
also holds in our setting.

Next-word prediction. To generate the next to-
ken, we follow best practices for GPT-2-based mod-
els which consist of a linear prediction head with
weights tied to the input embeddings (Wolf et al.,
2020a). We evaluate the next-word prediction per-
formance using the cross-entropy measure.

Brain alignment. To measure the brain align-
ment between a GPT-2-based model and the fMRI
recordings, we employ a standard linear prediction
head on top of the last transformer block. This
prediction head learns a function that maps input
stimulus representations to output brain recordings
and is frequently used to measure how well word
representations obtained from a language model
can predict brain recordings (Jain and Huth, 2018;
Toneva and Wehbe, 2019; Schrimpf et al., 2021).
Similarly to previous work, we parameterize this
function as a linear function, regularized using the
ridge penalty. We train this function in a cross-
validated way and test its performance on the data
that was heldout during training. We select the
ridge parameter via nested cross-validation. As
a result, for each participant, we train four func-
tions, then we aggregate the predictions and eval-
uate the brain alignment. We provide further de-
tails about this prediction head in Appendix A. We
evaluate the brain alignment using Pearson correla-
tion, computed between the predictions of heldout
fMRI recordings and the corresponding true data.
Specifically, for a model q and voxel vj with corre-
sponding heldout fMRI yj , the brain alignment is
computed as

brain alignment(q, vj) = corr(ŷj , yj),

where ŷj = q(X)Wq,j , X is the input text sample
to model q, and Wq,j are the learned prediction
weights corresponding to the voxel. All voxel-wise
brain alignment scores are visualized on each par-
ticipant’s brain surface using PyCortex (Gao et al.,
2015).

2.4 Perturbations
We aim to disentangle the effects on brain align-
ment of different types of information contained
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in language models, that we describe in Section
1: next-word prediction, word-level information,
and multi-word information. To achieve this, we
designed two perturbations that isolate the contri-
butions of these different types of information to
the brain alignment when used as part of carefully
designed contrasts (see Section 2.5).

Input scrambling. The aim of the first pertur-
bation is to control for the effect of word-level
information on brain alignment. This perturbation
consists of scrambling the words at inference time
in each text sequence that we use to predict one
fMRI TR image (i.e., 20 consecutive words). The
order of words has been shown to be marginally
important for other downstream tasks at inference
time (Sinha et al., 2021). Therefore, if the words
are scrambled, even though the next-word predic-
tion ability will decrease, we expect the model to
still predict the next word above chance level, using
information from the 20-word context.

Stimulus-tuning. The second perturbation fine-
tunes the baseline pretrained model with the next-
word prediction objective on a training portion of
the stimulus text. To perform the stimulus-tuning,
we select training samples that consist of non-
overlapping sequences of 80 consecutive words.
For each baseline model, we trained four models,
one for each held-out run of the fMRI data (see
Appendix B for more details on model training).

We expect stimulus-tuning to improve all three
brain-relevant types of information we consider
(next-word prediction, word-level information, and
multi-word information). Therefore, we also ex-
pect that the stimulus-tuned model will also exhibit
better brain alignment than the baseline. However,
stimulus-tuning itself is not sufficient to investigate
the independent effect of either type of informa-
tion on brain alignment. This perturbation is useful
when combined with the input scrambling perturba-
tion. By ensuring that the drop in next-word predic-
tion accuracy after the scrambling perturbation is
similar to the drop in the baseline after scrambling,
we can control for both next-word prediction and
word-level information (see Section 2.5).

2.5 Contrasts to disentangle brain alignment
factors

Baseline − Baseline scrambled: We first con-
sider the contrast of brain alignment between the
baseline model and its scrambled counterpart. Any
change in brain alignment between the two can

be due to changes in word-level information, next-
word prediction, or other factors, such as multi-
word information:

∆base = ∆base
WL +∆base

NWP +∆base
∗ , (1)

where ∆base is the change in brain alignment of
the baseline model due to scrambling, ∆base

WL is the
change in alignment related to differences in word-
level information, ∆base

NWP is the change in align-
ment related to differences in next-word prediction,
and ∆base

∗ is the change in alignment related to
other factors, such as multi-word information. By
definition, word-level information is not affected
by context, so perturbing the order of words in
the input does not affect word-level information.
Therefore, ∆base

WL = 0 which simplifies Eq. 1:

∆base = ∆base
NWP +∆base

∗ . (2)

(Stimulus-tuned−Stimulus-tuned scrambled)

− (Baseline−Baseline scrambled):

Any residual brain alignment in the previous con-
trast (i.e. ∆base) may still be due to differences in
next-word prediction information (∆base

NWP ). There-
fore, while the previous contrast controls for the ef-
fect of word-level information on brain alignment,
it is not able to additionally control for the effect of
next-word prediction. To control for the next-word
prediction effect, we designed a second-level con-
trast i.e. (stimulus-tuned − stimulus-tuned scram-
bled) vs (baseline − baseline scrambled) (∆stim

- ∆base). Similarly to the baseline model, we can
show that ∆stim = ∆stim

NWP+∆stim
∗ . Therefore, the

residual brain alignment of the proposed second-
level contrast is as follows:

∆stim −∆base =∆stim
NWP +∆stim

∗ (3)

−∆base
NWP −∆base

∗ .

To control for the next-word prediction, we specifi-
cally select a fine-tuning checkpoint of the stimulus-
tuned model such that the change in next-word pre-
diction performance due to scrambling is similar to
that of the baseline (i.e. δstim ≈ δbase, where δ sig-
nifies the change in next-word prediction between
a model and its scrambled counterpart). There-
fore, f(δstim) − f(δbase) ≈ 0, when f is a linear
function. Previous work has shown a linear rela-
tionship f between next-word prediction and brain
alignment (Schrimpf et al., 2021), which also holds
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with high correlation in our setting (0.61 Pearson
correlation, see Appendix E). Therefore:

∆stim
NWP −∆base

NWP ≈ 0. (4)

Combining Eq. 3 and Eq. 4, we see:

∆stim −∆base ≈ ∆stim
∗ −∆base

∗ . (5)

Therefore, if any brain alignment remains after
this second-level contrast, it must be due to fac-
tors beyond next-word prediction and word-level
information, such as multi-word information.

3 Results

In this section, we report the results averaged across
models. The results for the individual models can
be found in Appendices H, I, J.

3.1 Next-word prediction
In Figure 2A, we report the next-word prediction
performances of the GPT-2-small model and the
corresponding perturbed models. The results for
GPT-2-distilled and GPT-2-medium are consistent
and reported in Appendix Figures 14, 20. We ob-
serve that the stimulus-tuned model performs better
than the baseline. This verifies that stimulus-tuning
indeed improves the model’s ability to predict the
next word in the heldout stimulus set.

As expected, the performance of the scrambled
models is worse than their unscrambled counter-
parts (i.e. baseline scrambled vs. baseline and
stimulus-tuned scrambled vs. stimulus-tuned). We
further observe that the next-word prediction per-
formance of the stimulus-tuned scrambled model
is still better than that of the baseline, indicating
that the information gained by stimulus-tuning is
not entirely counteracted by the scrambling pertur-
bation.

3.2 Brain alignment
Figures 2C-F visualize the brain alignment of the
baseline model (i.e., Pearson correlation between
predicted and true brain recordings) and the per-
centage change between pairs of models for one
participant for GPT-2-small. Results for the remain-
ing participants and models are largely consistent
and are shown in Appendix Figs. 9, 21, 15.

Effects of stimulus-tuning. In Figure 2D, we ob-
serve that the stimulus-tuned model aligns better
with the brain recordings than the baseline, partic-
ularly in many brain areas that have been previ-
ously implicated in language-specific processing

(Fedorenko et al., 2010; Fedorenko and Thompson-
Schill, 2014) and word semantics (Binder et al.,
2009) (visualized in Figure 2B and listed in Ap-
pendix C). We quantify the improvement across
models and participants in brain alignment due
to stimulus-tuning in language processing regions
versus non-language processing regions in Figure
3. Here, we demonstrate that the stimulus-tuned
model has higher brain alignment in language-
related regions than in non-language-related re-
gions. This indicates that the stimulus tuning per-
turbation contributes to an improvement in the
model’s performance, particularly in language-
related ROIs. The results shown are computed us-
ing all voxels in the brain, including a large number
of noisy voxels. Therefore, the reported numbers
are numerically low. To focus on more informative
voxels, we quantify the difference in each language-
related ROI and use an estimate of the noise ceiling
in each voxel to discard noisy voxels (see Appendix
G for details). In Figure 4, we present the average
percentage gain in brain alignment due to stimulus-
tuning across models in each specific language ROI.
Here we include only voxels that have estimated
noise ceiling values > 0.05. The figure reveals a
positive gain of the stimulus-tuned model over the
baseline in every language region.

The results show that stimulus-tuning leads to
both an improved ability to predict the next word
and an improved alignment with fMRI recordings,
but we are not able to conclude that the improve-
ment in alignment with the brain is due to the im-
proved prediction of the next word. The reason is
that improving a model’s ability to predict the next
word may also improve other aspects of the model
that are brain-relevant, such as its ability to repre-
sent word-level or multi-word information, that are
specific to the stimulus narrative.

Effects of scrambling. In Figure 2E-F, we ob-
serve that for both the baseline and stimulus-tuned
model the scrambling perturbation affects the align-
ment, particularly in the language-related ROIs (see
Figure 2B).

However, both the baseline scrambled and
stimulus-tuned scrambled models still align with
the fMRI recordings, particularly in the language
ROI, as shown in Appendix Figures 9, 15, 21. This
suggests that even when perturbing the next-word
prediction capability and multi-word information, a
language model is able to strongly align with brain
areas that are thought to process language.
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Figure 2: Performances of the GPT-2-small baseline and perturbed models at next-word prediction averaged across
runs with standard deviation (A) and brain alignment (C-F). Stimulus-tuning improves both the next-word prediction
(stimulus-tuned vs baseline in (A)) and brain alignment (D). Instead, scrambling reduces the next-word prediction
(baseline vs baseline scrambled in (A)) and reduces the brain alignment (E and F). Despite the reduction in alignment
due to the scrambling perturbation, all four models exhibit alignment in language processing regions (B) (see
Appendix Figure 9 for brain alignment plots for all participants and Appendix Figures 15, 21 for other models.

Figure 3: Impact of the stimulus-tuning perturbation
on the baseline model. For each model (GPT-2-small,
medium, distill) we computed the median difference in
language and non-language regions across participants.
Here we display the average difference across models
as well as the standard deviation. Results for the single
models are reported in Appendix Figures 10, 16, 22.

Interestingly, we observe that the effect of scram-
bling on the stimulus-tuned model is much larger
for brain alignment than for next-word predic-
tion. For next-word prediction, the stimulus-tuned
scrambled performs worse than the stimulus-tuned
model but better than the baseline. In Appendix
Figures 9, 15, 21, we see that the stimulus-tuned
scrambled performs worse at brain alignment, not
only with respect to the stimulus-tuned model but
also to the baseline. This is an initial hint that next-
word prediction is not the only key information in

aligning language models and brain recordings.
We show that scrambling affects both the next-

word prediction ability and the brain alignment of
language models. However, we are not able to
draw a conclusive link yet. The reason is that the
scrambling procedure only controls for word-level
information, but not for any possible changes in
multi-word information, which may also contribute
to the decrease of alignment with the language
processing brain areas.

3.3 Controlling for both word-level
information and next-word prediction

In Figure 5, we report the average percentage
gain by (stimulus-tuned - stimulus-tuned scram-
bled) over (baseline - baseline scrambled) (∆stim -
∆base), across GPT-2 models, in each specific ROI,
including voxels that have estimated noise ceiling
values > 0.05 (see Figures 13, 19, 25 in Appendix
for the corresponding brain plot of each model).
Given the high variability across subjects and the
number of subjects in our setting, obtaining statis-
tically significant results is challenging (see Ap-
pendix D for details). Despite these challenges we
observe that there is still a positive residual brain
alignment after the contrast for two language pro-
cessing regions, the Inferior Frontal Gyrus (IFG)
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Figure 4: Impact of the stimulus-tuning perturbation
on the baseline model. For each model (GPT-2-small,
medium, distill) we computed the median percentage
gain by stimulus-tuned over baseline in language re-
gions across participants. Here we display the average
percentage gain across models as well as the standard
deviation. We include only voxels with estimated noise
ceiling values >0.05. Results for the single models are
reported in Appendix Figures 11, 17, 23.

and Angular Gyrus (AG), even when controlling
for next-word prediction and word-level informa-
tion, across three different models. This is evidence
that the alignment with the language model in these
areas is due to more than next-word prediction and
word-level information (See Eq. 5).

4 Related Works

Several previous studies have investigated the align-
ment between pretrained language models and
brain recordings of people comprehending lan-
guage, finding significant similarities (Wehbe et al.,
2014b; Jain and Huth, 2018; Toneva and Wehbe,
2019; Abdou et al., 2021; Schrimpf et al., 2021;
Hosseini et al., 2024). Our work builds on these
and further studies the reasons for these similari-
ties. The work of Goldstein et al. (2022) is most
directly related to our research question, as they
suggest that the prediction of the next word is a key
reason for the alignment between language mod-
els and brain recordings, based on evidence that
ECoG electrodes can predict the neural network
representation of upcoming words in a story. Our
work uses perturbations to disentangle next-word
prediction from other types of information that may
affect brain alignment (word-level and multi-word
information) and offers an additional account of
the necessary information for brain alignment.

Our work also relates to a growing body of re-

Figure 5: Impact of the scrambling perturbation on the
stimulus-tuned model versus its impact on the baseline
model. For each model (GPT-2-small, medium, distill)
we computed the median percentage gain by (stimulus-
tuned - stimulus-tuned scrambled) over (baseline - base-
line scrambled) in language regions across participants.
Here we display the average percentage gain across
models, as well as the standard deviation. We include
only voxels with estimated noise ceiling values >0.05.
Results for the single models are reported in Appendix
Figures 12, 18, 24.

search on disentangling the contributions of differ-
ent types of information to the alignment between
brain recordings and language models. Toneva
et al. (2022a) present an approach to disentangle
supra-word meaning from lexical meaning show-
ing that the supra-word meaning is predictive of
fMRI recordings in two language regions (Ante-
rior and Posterior Temporal Lobes), which was fur-
ther adapted by Oota et al. (2024a) and Oota et al.
(2024b) to disentangling effects of other linguistic
properties. Caucheteux et al. (2021) and Reddy
and Wehbe (2021) aim to disentangle alignment
due to syntactic and semantic processing. Toneva
et al. (2022b) examine whether representations ob-
tained from a language model align with different
language processing regions in similar or different
ways. Kauf et al. (2023) investigate the contribu-
tion of word-level semantics to the brain alignment
of language models, showing that syntactic pertur-
bations have a lesser impact on brain alignment
compared to semantic perturbations. Gauthier and
Levy (2019) demonstrate that fine-tuning language
models on scrambled data has been shown to be
beneficial for brain decoding. Our experiments
reveal that the scrambling perturbation influences
brain alignment. Despite this, when sentences are
scrambled at inference time, the model retains the
capability to predict brain responses in regions as-
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sociated with language processing. However, the
aim of our work is not to directly evaluate the sig-
nificance of semantics or syntax, but rather to inves-
tigate the effects on brain alignment when informa-
tion relevant to next word prediction is controlled
for. Therefore, our proposed perturbations are com-
plementary to these previous works and may yield
additional insights if combined.

Other studies have used perturbations related
to word order to investigate some properties of
language models. Pandia and Ettinger (2021) in-
troduced distracting content to test how robustly
language models retain and use that information
for prediction, showing that language models are
particularly susceptible to semantic similarity and
word position. Papadimitriou et al. (2022) applied
a perturbation (scrambling method) to investigate
where the semantic and syntactic processing is tak-
ing place in BERT, revealing that early layers care
more about the lexicon, while the latter layer care
more about word order. Our current work con-
tributes to this research direction by examining the
effects of scrambling on both brain alignment and
language modeling.

Finally, a work by Aw and Toneva (2023) fine-
tunes language models to summarize narratives
and finds improved brain alignment, despite a lack
of improvement in next-word prediction. While
this finding suggests a similar conclusion to the
one from our work–that next-word prediction per-
formance is not necessary for improved brain
alignment–the perturbation approach in our work
allows additional control over the language model
representations and is complementary to this previ-
ous work.

5 Discussion

We showed that the perturbation that we termed
stimulus-tuning (i.e., finetuning a pretrained model
on a validation stimulus text) can increase the align-
ment with brain recordings that correspond to a
heldout text, particularly in several language pro-
cessing brain areas. We quantified this improve-
ment by comparing the stimulus-tuned model and
the baseline in these brain areas. Stimulus-tuning
may improve brain alignment due to improved abil-
ity to represent the next word, previously seen in-
dividual words, or multi-word information that are
specific to the stimulus narrative.

Using the perturbation that we termed input
scrambling, we showed that the improved next-

word prediction capabilities of the stimulus-tuned
model is not the only reason for improved brain
alignment. We showed that leveraging a contrast
that controls for word-level information and next-
word prediction, we still obtain a residual brain
alignment. Specifically, we show that, across multi-
ple GPT-2 models, improvements in alignment with
brain recordings in two language regions—Inferior
Frontal Gyrus (IFG), Angular Gyrus (AG)—(see
Figure 5) are due to more than improvements in
next-word prediction and word-level information.

One possible reason for this improvement in
brain alignment is improved capabilities to rep-
resent multi-word information that are specific to
the stimulus text. This hypothesis aligns with previ-
ous work that has found the Inferior Frontal Gyrus
(IFG) to be sensitive to syntax (Friederici et al.,
2003; Friederici, 2012) and the Angular Gyrus
(AG) to multi-word event structure (Ramanan et al.,
2018; Humphreys et al., 2021). Note that the fact
that we do not find strong effects in other language
regions does not necessarily mean that they do not
process multi-word information.

6 Conclusion

This work aims to deepen our understanding of the
existing alignment between language models and
brain recordings. We proposed two perturbations
to pretrained language models that, when used to-
gether, can control for the effects of next-word
prediction and word-level information on the align-
ment with brain recordings. Using these controls,
we show that improvements in brain alignment are
due to more than improvements in next-word pre-
diction and word-level information. Our findings
are relevant for both cognitive neuroscientists as
well as natural language processing researchers.

The findings are relevant for cognitive neurosci-
entists because they suggest that accurate predic-
tion of the next word is not a necessary condition
for brain alignment. It is possible that learning to
accurately predict the next word is sufficient for
inducing other properties in the language model
representations that are necessary for brain align-
ment, such as multi-word information, and future
work can further examine this hypothesis.

Our findings are also relevant to NLP researchers
who examine what language models can learn from
only text. We show that finetuning a language
model with small amounts of text can increase its
alignment with never-before-seen brain recordings,
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and that this improvement in brain alignment is not
purely due to next-word prediction or word-level
information. This finding suggests that training
a language model with little additional text can
improve its representations of multi-word informa-
tion in a brain-relevant way. We note that while
our methodology controls for next-word prediction
ability at inference time, it still relies on the next-
word prediction objective during training. How-
ever future work can investigate alternative training
objectives, that may improve their ability to repre-
sent multi-word information in other ways. One
example is work by Aw and Toneva (2023) that
shows that finetuning a language model using a
summarization objective can further improve brain
alignment.

7 Limitations

We have attempted to address potential limitations
in our research design, however, it is important to
acknowledge the inherent limitations of our study.
Firstly, we use GPT-2 based models to compare
with previous work using the same model family.
However, analyzing additional language models,
such as larger language models, or ones trained
with a masked language modeling objective, is an
important next step for insights that can be gener-
alized to larger families of models, even if previ-
ous work has suggested that larger language mod-
els could diverge from human-like representations
(Oh and Schuler, 2023). Moreover, in our highly
controlled setting, stimulus-tuning larger language
models could lead to a smaller increase in next-
word prediction and brain alignment, given the rela-
tively small amount of data available for finetuning.
This is visible when comparing the stimulus-tuning
improvements of GPT-2-distilled and GPT-2-small
with GPT-2-medium: as the model size increases,
the effect of stimulus tuning and the residual effect
after the contrast decreases.

Secondly, our experiments were conducted with
one fMRI dataset. Even though the dataset we
chose is a well studied dataset, is one of the largest
ones available, and care was taken to test the gen-
eralization performance to never-before-seen brain
data, the effects we observe may still be specific
to this dataset. Testing datasets that differ in text
genre (we use only a narrative dataset) and lan-
guage (our conclusions are drawn for English text
only) would be particularly interesting.

Thirdly, our findings are based on some experi-

mental choices, such as the scrambling method. For
instance, Mollica et al. (2020) showed that fMRI
activity in humans reading scrambled sentences
remains relatively stable under certain perturba-
tions. Therefore, further investigation into different
scrambling methods and their effects could pro-
vide additional insights. Furthermore, despite the
presence of a strong positive correlation between
next-word prediction and brain alignment reported
by Schrimpf et al. (2021) and our experiments (0.61
Pearson correlation, see Appendix E), this relation-
ship is not perfectly linear so it is possible that
the subtraction that we employ does not perfectly
control for the effect of the next-word prediction
capabilities.

Fourthly, our results are based on observing
changes in NWP on a held-out stimulus test set.
However, changes in next-word prediction can be
influenced by multiple factors. The model could ac-
quire general English knowledge or knowledge spe-
cific to the Harry Potter chapter. Since we are us-
ing a language model heavily pretrained on general
English knowledge, we believe that the improve-
ment in next-word prediction ability is primarily
due to learning about the specific domain we are
fine-tuning for. However, investigating further the
causes behind the increase in next-word prediction
performance could be an insightful next step.

8 Ethics and Broader Impact

Our research impact is closely related to its poten-
tial social implications. We propose a method to
analyze language models, with the aim of gaining a
better understanding of the differences and similar-
ities between the human brain and neural networks.
This understanding can serve two key purposes:
firstly, shedding light on the reasons behind the
impressive power of neural networks; secondly,
enhancing our comprehension of the underlying
mechanisms governing brain functions. A deeper
understanding of both artificial neural networks and
biological neural networks can significantly benefit
society, especially considering the prevalence of
black-box artificial intelligence systems. By lever-
aging insights from the human brain, we can strive
to integrate these systems more consciously into
human activities. This integration is essential for
ensuring transparency, interpretability, and ethical
use of AI, thereby fostering a positive and respon-
sible impact on society.
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A Prediction head

Similarly to previous work, to predict the fMRI recordings corresponding to a given TR, we use a
prediction head that maps from the model representation to the fMRI space. We parameterize this function
as a linear function, regularized using the ridge penalty. We train this function in a cross-validated way
and test its performance on the data that was heldout during training. We select the ridge parameter via
nested cross-validation. For each participant, we train four functions, each one using three of the four runs
in the fMRI recordings, and reserve the remaining run for testing. To generate the models representation
we average the embeddings corresponding to each fMRI image (i.e., TR) and uses a concatenation of the
previous 5 averaged TR embeddings. The averaging is done in order to down-sample the word embeddings
(words presented at 0.5 seconds) to the TR rate (2 seconds). The features of the words presented in the
previous TRs are included to account for the lag in the hemodynamic response that fMRI records. Because
the response measured by fMRI is an indirect consequence of brain activity that peaks about 6 seconds
after stimulus onset, predictive methods commonly include preceding time points (Nishimoto et al., 2011;
Wehbe et al., 2014a; Huth et al., 2016). This allows for a data-driven estimation of the hemodynamic
response functions (HRFs) for each voxel, which is preferable to assuming one because different voxels
may exhibit different HRFs.

B Training hyperparameters

To perform the stimulus-tuning, we select training samples that consist of non-overlapping sequences
of 80 consecutive words. We train the models with a batch size of 32 and for 2 epochs and we saved
checkpoints of the models for each batch. The stimulus text is divided into 4 consecutive sections to enable
cross-validation. For each GPT-2-based models we stimulus-tuned four models, one for each held-out
run. We train the models using the default hyperparameters provided by Huggingface. As mentioned in
Section 2.5 we selected the checkpoint for the stimulus-tuned model that best satisfies δstim ≈ δbase.

C List of ROI related to language processing and word semantics

These regions include: Middle Frontal Gyrus (MFG), Inferior Frontal Gyrus (IFG), Inferior Frontal
Gyrus par Orbitalis (IFGorb), Anterior Temporal Lobe (AntTemp), Posterior Temporal Lobe (PostTemp),
Angural Gyrus (AG), Posterior Cingulate Cortex (pCingulate), Dorsomedial Prefrontal Cortex (dmPFC)
(see Figure 2B).

D Significance testing and Participants variability

We designed the experiments to compare different models and their perturbations, testing their capabilities
in brain alignment and displaying the percentage gain of one model over another. For each comparison,
we conducted significance testing using ROI-level Wilcoxon signed-rank tests with p < 0.05 and Holm-
Bonferroni correction (Holm, 1979). For the final contrast the significance test revealed statistically
significant residual alignment in the IFG (pvalue of 0.027). After correcting for multiple comparisons
across ROI, this pvalue was no longer statistically significant at a threshold of 0.05. Similarly for the
baseline vs stimulus-tuned contrast the results are not significative. Given the high variability across
subjects and the number of subjects in our setting, obtaining statistically significant results is challenging.
Moreover, due to our controlled experimental design, we only finetuned the baseline model using
the stimulus text, that is composed by few samples, which could result in a minimal effect from this
perturbation. Still, positive residual alignment in the IFG and AG is observed across three different
models: GPT-2-distill, GPT-2-small, and GPT-2-medium. Despite these challenges, we believe that our
results are informative and are strengthened by the analysis across three different models.

E Linear relation brain alignment and cross-entropy loss

Schrimpf et al. (2021) shows a linear relationship between brain alignment and the next-word prediction
capability of language models. Specifically, to test this relationship, they used Pearson correlation
(normalized using estimated noise ceiling) for brain alignment and the exponentiated cross-entropy, i.e.,
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perplexity, to evaluate next-word prediction capability. However, language models are typically fine-tuned
using cross-entropy loss, and our experiments during fine-tuning showed that it is not feasible to achieve a
similar difference in perplexity between (stimulus-tuned and stimulus-tuned scrambled) and (baseline and
baseline scrambled) models. Therefore, in our final contrast, we employed the difference in cross-entropy
between models. Although Schrimpf et al. (2021) suggested a linear relationship between perplexity and
brain alignment, this does not guarantee a linear relationship between cross-entropy and brain alignment,
even if the two metrics are related. For this reason, we tested whether the linear relationship also holds
for cross-entropy loss. We demonstrate in Figure 6 that there is indeed a linear relationship between
cross-entropy and brain alignment (0.61), albeit slightly lower than the one between brain alignment and
perplexity (0.67). More experiments with additional models and datasets are necessary to verify if this
relation holds in general, but for our analysis, it is sufficient to apply the subtraction explained in Section
2.5.

Figure 6: Correlation between the brain predictions capability of GPT-2-small, GPT-2-medium and GPT-2-distilled
(on a held-out test set) and their cross-entropy loss. The correlation between these two measures is 0.61, similar to
the correlation between the brain predictions capability and the perplexity 0.67.
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F Cross perturbation contrast illustration

Figure 7: Illustration of the contrast (baseline - baseline scrambled) vs (stimulus-tuned - stimulus-tuned scrambled).
Any observed effect of this contrast is controlled for word-level information information. Additionally, if the
next-word prediction differences are equal then the contrast control also for next-word prediction. Therefore any
observed effect would then be due to more than next-word prediction and word-level information information. An
example of other source of information is the multi-word information.

G Noise Ceiling estimation

The noise ceiling estimation is employed to assess the signal quality of fMRI data. fMRI data are inherently
noisy, and the noise ceiling estimation provides an estimate of the variance that can be explained by an
ideal data-generating model. The method relies on predicting the fMRI activity of a target participant
using linear models trained on data from another participant. Linear encoding models are utilized. For
a more detailed explanation, refer to (Schrimpf et al., 2021). We employed this approach because our
method relies on contrasts between different models aimed at predicting the brain activity of each subject,
necessitating a consistent set of voxels for each encoding model.
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Figure 8: Voxel-wise estimated noise ceiling values. To exclude noisy voxels, we selected, for each participant,
those with noise ceiling estimates above 0.05.
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H GPT-2-small

Figure 9: Performances of the GPT-2-small baseline and perturbed models of all participants at the brain alignment
task. Stimulus-tuning improves the brain alignment (stimulus-tuned in (.b) vs baseline in (.a)) for almost all
participants. In contrast, scrambling reduces the brain alignment (baseline in (.a) vs baseline scrambled in (.c)).
Despite the reduction in alignment due to the scrambling perturbation, all four models (.a,.b,.c,.d) exhibit alignment
in language processing regions.
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Figure 10: Median difference in brain alignment between GPT-2-small stimulus-tuned and baseline models. We
display the median difference in language and non-language regions and the median absolute deviation across the 8
participants.

Figure 11: Impact of the stimulus-tuning perturbation on the brain alignment of the GPT-2-small baseline model.
We show the median percentage gain as well as the median absolute deviation across participants. We include only
voxels with estimated noise ceiling values >0.05.

Figure 12: Impact of the scrambling perturbation on the stimulus-tuned model versus its impact on the baseline
model for GPT-2-small model. We show the median percentage gain as well as the median absolute deviation
across participants by (stimulus-tuned - stimulus-tuned scrambled) over (baseline - baseline scrambled) in language
regions. We include only voxels with estimated noise ceiling values >0.05.
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Figure 13: Voxel-wise brain alignment for each participant from contrast that controls for the effect of next-word
prediction and word-level information on brain alignment: (stimulus-tuned - stimulus-tuned scrambled) vs (baseline
- baseline scrambled). Voxels that appear in red are better predicted by the stimulus-tuned model, even when
accounting for next-word prediction and word-level information. Voxels that appear in blue are better predicted by
the baseline model. Despite some variation across participants, several language regions appear in red. We quantify
these observations in Figure 12.

I GPT-2-Distilled

Figure 14: Performances of the GPT-2-distilled baseline and perturbed models at next-word prediction averaged
across runs with standard deviation.
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Figure 15: Performances of the GPT-2-distilled baseline and perturbed models of all participants at the brain
alignment task. Stimulus-tuning improves the brain alignment (stimulus-tuned in (.b) vs baseline in (.a)) for almost
all participants. In contrast, scrambling reduces the brain alignment (baseline in (.a) vs baseline scrambled in (.c)).
Despite the reduction in alignment due to the scrambling perturbation, all four models (.a,.b,.c,.d) exhibit alignment
in language processing regions.
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Figure 16: Median difference in brain alignment between GPT-2-distilled stimulus-tuned and baseline models. We
display the median difference in language and non-language regions and the median absolute deviation across the 8
participants.

Figure 17: Impact of the stimulus-tuning perturbation on the brain alignment of the GPT-2-distilled baseline model.
We show the median percentage gain as well as the median absolute deviation across participants. We include only
voxels with estimated noise ceiling values >0.05.

Figure 18: Impact of the scrambling perturbation on the stimulus-tuned model versus its impact on the baseline
model for GPT-2-distilled model. We show the median percentage gain by (stimulus-tuned - stimulus-tuned
scrambled) over (baseline - baseline scrambled) as well as the median absolute deviation across participants in
language regions. We include only voxels with estimated noise ceiling values >0.05.
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Figure 19: Voxel-wise brain alignment for each participant from contrast that controls for the effect of next-word
prediction and word-level information on brain alignment: (stimulus-tuned - stimulus-tuned scrambled) vs (baseline
- baseline scrambled) for GPT-2-distill. Voxels that appear in red are better predicted by the stimulus-tuned model,
even when accounting for next-word prediction and word-level information. Voxels that appear in blue are better
predicted by the baseline model. Despite some variation across participants, several language regions appear in red.
We quantify these observations in Figure 18.

J GPT-2-Medium

Figure 20: Performances of the GPT-2-medium baseline and perturbed models at next-word prediction averaged
across runs with standard deviation.
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Figure 21: Performances of the GPT-2-medium baseline and perturbed models of all participants at the brain
alignment task. Stimulus-tuning improves the brain alignment (stimulus-tuned in (.b) vs baseline in (.a)) for almost
all participants. In contrast, scrambling reduces the brain alignment (baseline in (.a) vs baseline scrambled in (.c)).
Despite the reduction in alignment due to the scrambling perturbation, all four models (.a,.b,.c,.d) exhibit significant
alignment in language processing regions.
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Figure 22: Median difference in brain alignment between GPT-2-median stimulus-tuned and baseline models. We
display the median difference in language and non-language regions and the median absolute deviation across the 8
participants.

Figure 23: Impact of the stimulus-tuning perturbation on the brain alignment of the GPT-2-medium baseline model.
We show the median percentage gain as well as the median absolute deviation across participants. We include only
voxels with estimated noise ceiling values >0.05.

Figure 24: Impact of the scrambling perturbation on the stimulus-tuned model versus its impact on the baseline
model for GPT-2-medium model. We show the median percentage gain by (stimulus-tuned - stimulus-tuned
scrambled) over (baseline - baseline scrambled) as well as the median absolute deviation across participants in
language regions. We include only voxels with estimated noise ceiling values >0.05.
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Figure 25: Voxel-wise brain alignment for each participant from contrast that controls for the effect of next-word
prediction and word-level information on brain alignment: (stimulus-tuned - stimulus-tuned scrambled) vs (baseline
- baseline scrambled) for GPT-2-medium. Voxels that appear in red are better predicted by the stimulus-tuned model,
even when accounting for next-word prediction and word-level information. Voxels that appear in blue are better
predicted by the baseline model. Despite some variation across participants, several language regions appear in red.
We quantify these observations in Figure 24.

18454


