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Abstract

Text clustering is a fundamental task in natural
language processing with numerous applica-
tions. However, traditional clustering methods
often struggle with domain-specific fine-tuning
and the presence of outliers. To address these
challenges, we introduce LLMEdgeRefine, an
iterative clustering method enhanced by large
language models (LLMs), focusing on edge
points refinement. LLMEdgeRefine enhances
currrent clustering methods by creating super-
points to mitigate outliers and iteratively refin-
ing clusters using LLMs for improved semantic
coherence. Our method demonstrates superior
performance across multiple datasets, outper-
forming state-of-the-art techniques, and offer-
ing robustness, adaptability, and cost-efficiency
for diverse text clustering applications.

1 Introduction

Text clustering is a critical task in various NLP ap-
plications, such as topic modeling and information
retrieval. Effective clustering enables better data
management and more insightful analysis. How-
ever, text clustering presents several challenges,
particularly in handling edge points—data points
that are difficult to assign to clusters due to their
ambiguous or extreme characteristics.

The advent of large language models (LLMs)
offers new solutions to these challenges. LLMs
possess powerful text understanding capabilities
that can significantly improve clustering accuracy.
For instance, IDAS (Raedt et al., 2023) integrates
abstractive summarizations from LLMs directly
into clustering processes, and ClusterLLM (Zhang
et al., 2023) utilizes LLM-predicted sentence rela-
tions to guide clustering.

However, previous LLM-enhanced clustering
methods often require extensive LLM API queries,
lack domain generalization, or are not sufficiently
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effective. In this work, we focus on leveraging
the text understanding and in-context learning ca-
pabilities of LLMs to handle the edge points that
traditional methods struggle with.

Our proposed LLMEdgeRefine text clustering
method consists of a two-stage clustering edge
points refinement processing. Initially, we employ
K-means to initialize clusters. In the first stage,
we identify edge points using a hard threshold and
then form super-points to perform efficient hier-
archical secondary clustering. This approach en-
hances cluster quality by effectively mitigating the
effects of outliers. The formation of super-points
allows for a more granular examination of cluster
boundaries, which is particularly beneficial for ac-
curately delineating ambiguous data points. In the
second stage, we leverage the advanced text under-
standing capabilities of LLMs to refine the cluster
edges. This involves a soft edge points removal and
re-assignment mechanism, where LLMs reassess
and reassign edge points based on their semantic
context. This step capitalizes on LLMs’ ability to
comprehend nuanced text relationships, thereby en-
suring more accurate and reliable clustering results.

We validate our method through extensive ex-
periments on eight diverse datasets. The results
demonstrate that our method consistently outper-
forms baseline approaches in terms of clustering
accuracy. Additionally, our complexity analysis
confirms that our method is more efficient than
state-of-the-art techniques, making it a practical
choice for large-scale applications.

In summary, our contributions are as follows:

• We introduce a novel two-stage clustering
method that effectively refines edge points us-
ing LLMs, enhancing clustering accuracy.

• Our method reduces the need for domain-specific
fine-tuning and minimizes computational ex-
penses, offering a more efficient solution. mo

• Comprehensive experimental results demonstrate
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the superiority of our method in terms of both
accuracy performance and efficiency.

2 Related Work

Clustering, a cornerstone of unsupervised learning,
has seen diverse applications across various data
modalities, including text, images, and graphs (Xu
et al., 2015; Hadifar et al., 2019; Tao et al., 2021;
Yang et al., 2016; Caron et al., 2018; Feng et al.,
2023, 2022). Traditional approaches such as K-
means (Ikotun et al., 2023) and agglomerative clus-
tering (Day and Edelsbrunner, 1984) initially dom-
inated, operating on vector representations to par-
tition data based on similarity measures like Eu-
clidean distance or cosine similarity (Krishna and
Murty, 1999; Murtagh and Contreras, 2012).

Recent years have witnessed a paradigm shift
towards deep clustering, leveraging deep neural
networks to enhance clustering. Zhou et al. (2022)
categorizes deep clustering into multi-stage (Huang
et al., 2014; Tao et al., 2021), iterative (Yang et al.,
2016; Caron et al., 2018; Niu et al., 2020), genera-
tive (Dilokthanakul et al., 2016), and simultaneous
methods (Xie et al., 2016; Zhang et al., 2021).

More recent research has also explored LLM-
enhanced clustering. Wang et al. (2023) expands
clustering applications to interpretability and ex-
planation generation tasks. In unsupervised cluster-
ing, IDAS (Raedt et al., 2023) integrates abstractive
summarizations from LLMs directly into clustering
processes, highlighting the trend towards leverag-
ing advanced NLP models for clustering tasks. A
state-of-the-art method, ClusterLLM (Zhang et al.,
2023), utilizes LLM-predicted sentence relations
to guide clustering. However, ClusterLLM re-
quires extensive LLM queries and domain-specific
fine-tuning, limiting efficiency and generalizability.
Semi-supervised approaches, such as (Viswanathan
et al., 2024), require a subset of ground truth labels
or expert feedback, whereas our work focuses on
unsupervised clustering.

3 Our Framework

3.1 Problem Formulation

Text clustering takes an unlabeled corpus D =
{xi}Ni=1 as input, and outputs a clustering assign-
ment Y = {yi}Ni=1 that maps the input texts to
cluster indices. Here, xi represents individual
text instances in the corpus, and yi represents
the cluster index assigned to the text xi. Given

Algorithm 1: Super-Point Enhanced Clustering

Input: Clustering C 0, centroid percentage α, number
of iteration γ.

Output: Refined clustering C ′.
1 t← 1;
2 while t ≤ γ do
3 C t ← split(C t−1, α);
4 C t ← agglomerativeClustering(C t);
5 t = t+ 1;
6 return C ′ ← C t−1;

Figure 1: Super-Point Enhanced Clustering

a pre-defined number of cluster K, denote by
C = {C1, C1, · · · , CK} a clustering of corpus D.

3.2 Our Method

K-means clustering determines cluster centroids
based on the mean, which is highly sensitive to ex-
treme values. As a result, outliers – data points sig-
nificantly different from the majority – can drasti-
cally affect centroid positions. Our method follows
a four-step process to enhance clustering accuracy
by mitigating the effects of outliers and leveraging
large language models for improved cluster assign-
ments.

3.2.1 Step 1: Cluster Initialization
We initialize clusters using the K-means algo-
rithm, which partitions data points into K clus-
ters, each represented by a centroid. Denote by
Y 0 = {y0i }Ni=1 the initial clustering assignment,
where y0i represents the cluster index assigned to
the i-th data point xi. For simplicity, we use xi
to refer to both the individual text instances and
its corresponding embedding representation, with
the same applies for other notations. The objec-
tive function for K-means is to minimize the sum
of squared distances between data points and their
corresponding cluster centroids:

min
Y 0,{µj}Kj=1

N∑

i=1

∥xi − µy0i
∥2,

where µj is the centroid of cluster Cj .

3.2.2 Step 2: Super-Point Formation and
Re-Clustering

K-means, despite its popularity and efficiency, is
known to be sensitive to outliers (Aggarwal et al.,
2001). In contrast, the agglomerative clustering is
often regarded as yielding higher clustering qual-
ity (Steinbach et al., 2000). To enhance clustering
robustness and mitigate the impact of outliers, we
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employ a two-stage process: super-point forma-
tion and iterative re-clustering using agglomerative
clustering.

Definition 1 (Super-point). Let C t =
{Ct

1, C
t
1, · · · , Ct

K} be the clustering at itera-
tion t, with µt

j as the centroid of cluster Ct
j .

For a given percentage α and cluster Ct
j , the

super-point St
j of Ct

j is defined as the set of
the top α% farthest points from µt

j , i.e., St
j =

{xi1 , xi2 , · · · , xim |d(xi, µt
j) is among the largest

α% for xi ∈ Ct
j}, where d(xi, µ

t
j) = ∥xi − µt

j∥2
is the Euclidean distance.

In the super-point formation stage, for each clus-
ter Ct

j ⊂ C t, we select the α% farthest points from
the cluster centroid µt

j to form super-point St
j as

defined in Definition 1. The points in St
j are aggre-

gated and treated as a single super-point, with the
embedding of the super-point being the centroid
of St

j . This approach allows us to mitigate the ef-
fects of outliers by reducing their influence on the
overall cluster centroids.

In the re-clustering stage, we start by splitting C t

into singleton clusters. Each super-point forms its
own cluster, i.e., {St

j |j = 1, · · · ,K}, while each
of the remaining data point is treated as a singleton
cluster, i.e., {{xi}|xi ∈ D \ St}, where St =
∪j∈[K]S

t
j is the set of data points in super-points.

Then, we perform the agglomerative clustering to
refine the cluster boundaries and enhance intra-
cluster homogeneity:

Y t = Cluster({St
j |j = 1, · · · ,K} ∪ {{xi}|xi ∈ D \ St})

The two-stage process of forming super-points and
re-clustering is repeated for γ iterations. By fo-
cusing on the central tendencies of clusters while
disregarding outliers and noise, this approach im-
proves the overall robustness and quality of the
clustering results. The process of Super-Point En-
hanced Clustering (SPEC) is depicted in Alg. 1. In
each iteration of the process, the function split() is
first called to form super-points and singleton clus-
ters, and then agglomerativeClustering() is called
to perform re-clustering. In the next step, we lever-
age LLMs to reassess and reassign the outliers that
are far from the re-fined centroids based on their
semantic context.

3.2.3 Step 3: Cluster Refinement with Large
Language Models

For each reorganized cluster Ct
j ⊂ C t, we further

refine the clustering by leveraging the contextual
understanding of large language models (LLMs).

Algorithm 2: LLM-Assisted Cluster Refinement
Input: Corpus D, prompt percentage β, number of

LACR iterations l, centroid percentage α,
number of SPEC iterations γ.

Output: clusters C .
1 C 0 ← KMeans(D);
2 C 1 ← SecondaryClustering(C 0, α, γ);
3 t← 1;
4 while t < l do
5 V ′ ← ∅, V ← farthestNodes(C t, β);
6 for each xi ∈ V do
7 if LLMAssessor(C , xi) then

V ′ ← V ′ ∪ {xi};
8 t = t+ 1;
9 C t ← re-assign(C t−1, V ′);

10 return C ← C t;

Figure 2: LLM-Assisted Cluster Refinement

Specifically, we identify the farthest β% of points
from the cluster centroid µt

j , denoted as Vj . The
set of all such points across all clusters is V =
{V1, . . . , VK}. These points are then assessed by
LLMs to determine whether they should remain in
their current clusters or be reassigned.

Given a clustering C , for each point xi ∈ V , we
query the LLM, denoted as LLMAssessor(C , xi),
to determine if xi should be removed from its cur-
rent cluster. If LLMAssessor(C , xi) suggests re-
moval, we reassign xi to the nearest cluster based
on its distance to the centroids:

yti =

{
argmin1≤j≤K∥xi − µt−1

j ∥, if removal
yt−1
i , otherwise

Note that the clustering assignment Y and clus-
tering C represent different aspects of clustering
and can be deducted from each other. The pro-
cess will be repeated for l iterations to ensure thor-
ough refinement. The motivation for this step is to
utilize the advanced contextual analysis capabili-
ties of LLMs to identify and correct misclassified
points, thereby improving the overall clustering ac-
curacy. The algorithm of LLM-Assisted Cluster
Refinement (LACR) is illustrated in Alg. 2, and
the demonstration of prompts can be found below.

Prompting Details. For each data point xi ∈ V ,
our method generates a prompt consisting of three
main components. Firstly, an instruction inst is
crafted to guide the selection process, tailored to
the task’s context, such as "Select one classification
of the banking customer utterances that better corre-
sponds with the query in terms of intent". Secondly,
the prompt includes the actual text of the data point
xi itself, forming the core of the query. Finally, our
method incorporates a set of eight demonstrations

18457



Task Name #clusters #data

Intent

CLINC(I) 150 4,500
MTOP(I) 102 4,386

Massive(I) 59 2,974
Emotion GoEmo 27 5,940

Domain
CLINC(D) 10 4,500
MTOP(D) 11 4,386

Massive(D) 18 2,974

Table 1: Dataset statistics.

comprising classification and cluster description
pairs. We set the number of demonstrations be
eight based on the findings of (Raedt et al., 2023;
Min et al., 2022; Lyu et al., 2022). To simplify
the notation, we denote Ct

k as both the k-th nearest
cluster to xi and its description, with the distance
measured by the Euclidean distance between the
embedding of xi and the centroid of each cluster.
The classification and cluster description pairs are
formally defined as {(k,Ct

k) | k = 1, 2, · · · , 8}.
These pairs serve as exemplars to assist in aligning
the data point with the appropriate classification.

Remark. Our method focuses on addressing
edge data points (outliers) that exhibit extreme
characteristics, which are significantly different
from the majority of the data. The rationale be-
hind LLMEdgeRefine is to address the limitations
of previous clustering methods in handling these
edge points and improving cluster cohesion. In
Step 1 (§3.2.1), K-means provides an initial clus-
tering, but outliers and edge points can distort cen-
troids, resulting in lower clustering quality. Step 2
(§3.2.2) introduces super-points to reduce the influ-
ence of outliers by focusing on the most representa-
tive points in each cluster, enhancing the cluster’s
internal homogeneity. Step 3 (§3.2.3) leverages
the contextual understanding of LLMs to further
refine the clusters by removing misclassified points,
thereby improving the overall clustering accuracy.
In addition to K-means, clustering algorithms that
adopt distance metrics and rely on a mean values-
based approach also suffer from the impact of out-
liers. Therefore, our method is portable to these
algorithms as well.

4 Experimental Setup
Datasets and Baselines. In our experimental
evaluation, we assess LLMEdgeRefine across di-
verse datasets, including CLINC(I), MTOP(I), Mas-
sive(I) (FitzGerald et al., 2022), GoEmo (Demszky
et al., 2020), CLINC-Domain, MTOP-Domain,

and Massive-Scenario. These datasets cover intent
classification, topic modeling, emotional cluster-
ing, and domain-specific scenarios. We compare
LLMEdgeRefine against established unsupervised
baselines including IDAS (Raedt et al., 2023) and
ClusterLLM (Zhang et al., 2023). The detailed
statistics of these datasets is listed in Table 1.

Hyper-Parameters and Experimental Settings.
We set parameter K of K-means be the number of
ground truth clusters. We adopt modularity (Blon-
del et al., 2008), a popular metric of the cluster-
ing quality without requiring knowledge of the
ground truth clustering, as objective function. We
automatically determine the values of hyperparam-
eters by conducting a rigorous grid search and
select the values that yields the relatively high-
est modularity score. Besides, our clustering ap-
proach utilizes Instructor embeddings (Su et al.,
2022), and for our experiments, we employ the
ChatGPT (gpt-3.5-turbo-0301), Llama2 (llama-
2-7b-chat), and Mistral (mistral-7B-Instruct-v0.3)
as our LLMs.

5 Experimental Results
5.1 Comparison of Effectiveness

We compare the accuracy (ACC) and normal-
ized mutual information (NMI) scores of our
method with baselines, and report the results in
Table 2. Table 2 demonstrates the effectiveness of
LLMEdgeRefine method across multiple datasets.
LLMEdgeRefine consistently achieves superior ac-
curacy (ACC) and normalized mutual informa-
tion (NMI). The method’s ability to handle edge
points is evident from the significant performance
improvements. Specifically, LLMEdgeRefine
achieves an average ACC improvement of 17.2%,
10.9%, 17.3%, 11.6%, 12.6%, and 11.1% over In-
structor, SCCL-I, Self-supervise-I, ClusterLLM-
I, ClusterLLM, and IDAS, respectively, averag-
ing across all tested datasets. In terms of NMI,
LLMEdgeRefine outperforms the baselines by an
average of 8.4%, 3.8%, 5.4%, 4.3%, 4.8%, and
4.3%, respectively. The ablation study underscores
the critical role of LLM-based Adaptive Cluster Re-
finement (LACR) and Semantic Point Edge Clus-
tering (SPEC) modules, with performance notably
dropping when these are removed.

We conduct an ablation study to quantify the
impact of various LLMs on effectiveness of our
method, and report the results in Table 3. Ta-
ble 3 shows that our LLMEdgeRefine on open-
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Method CLINC(I) MTOP(I) Massive(I) GoEmo CLINC(D) MTOP(D) Massive(S)

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

Instructor 79.29 92.60 33.35 70.63 54.08 73.42 25.19 21.54 52.50 56.87 90.56 87.30 61.81 67.31
SCCL-I 80.85 92.94 34.28 73.52 54.10 73.90 34.33 30.54 54.22 51.08 89.08 84.77 61.34 68.69
Self-supervise-I 80.82 93.88 34.06 72.50 55.07 72.88 24.11 22.05 58.58 60.84 92.12 88.49 53.97 71.53
ClusterLLM-I 82.77 93.88 35.84 73.52 59.89 76.96 27.49 24.78 52.39 54.98 93.53 89.36 61.06 68.62
ClusterLLM 83.80 94.00 35.04 73.83 60.69 77.64 26.75 23.89 51.82 54.81 92.13 89.23 60.85 68.67
IDAS 81.36 92.35 37.30 72.31 63.01 75.74 30.61 25.57 54.18 63.82 87.57 83.70 53.53 63.91
LLMEdgeRefine 86.77 94.86 46.00 72.92 63.42 76.66 34.76 29.74 59.40 61.27 92.89 88.19 63.05 68.67

w/o LACR 85.08 93.71 51.64 73.79 62.21 75.11 25.91 21.19 55.62 57.07 90.57 85.31 60.21 64.87
w/o LACR & SPEC 77.93 92.31 33.91 71.59 57.17 74.54 34.01 29.31 57.26 56.32 76.85 82.74 59.11 66.05

Table 2: Results (in %) on multiple datasets. Underlines (highlights) indicate top (second) scores per column.

Method CLINC(I) MTOP(I) Massive(I) GoEmo CLINC(D) MTOP(D) Massive(S)

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

LLMEdgeRefine - GPT3.5 86.77 94.86 46.00 72.92 63.42 76.66 34.76 29.74 59.40 61.27 92.89 88.19 63.05 68.67
LLMEdgeRefine - Llama2 86.60 94.72 46.04 72.93 62.90 76.31 34.50 29.55 59.26 60.93 92.54 87.78 63.12 68.76
LLMEdgeRefine - Mistral 86.69 94.81 45.88 72.91 63.18 76.48 34.47 29.56 59.48 61.74 92.64 87.84 62.61 68.35

Table 3: Ablation study on clustering quality with various LLMs.

sourced LLMs Llama2 and Mistral also demon-
strates promising results. This indicates that our
method does not purely rely on the powerful text
understanding capabilities of close-sourced LLM
GPT3.5, highlighting its effectiveness across differ-
ent LLMs.

5.2 Comparison of Efficiency
The efficiency of our LLMEdgeRefine method
is highlighted by its significantly reduced query
complexity compared to other models like Cluster-
LLM (Zhang et al., 2023) and IDAS (Raedt et al.,
2023). ClusterLLM requires a fixed number of
1618 prompts for each dataset and additional fine-
tuning efforts, while IDAS scales with the dataset
size, requiring O(N + |C|) prompts where N is
the number of documents and |C| is the number
of clusters. In contrast, LLMEdgeRefine operates
with O(N × β × l) prompts, where β is a small
fraction of N and l is the number of iterations. The
detailed complexity analysis can be found in Ap-
pendix. For our experiments, with β = 0.1 and
l = 3, LLMEdgeRefine demonstrates superior ef-
ficiency, reducing the number of prompts needed
and thereby improving computational performance
without compromising clustering quality.

5.3 Discussion of Hyper-Parameters

We determine the hyper-parameters (i.e., β and l)
used in the LACR module based on the results of
Bank77 (Casanueva et al., 2020) dataset. The sen-
sitivity analysis shows that the clustering quality
of our method is not sensitive to the value of β.
Specifically, when β varies from 0.1 to 0.9 with

a step size of 0.1, the standard deviation of accu-
racy scores is 0.32 only, indicating stability. For
better efficiency, a small β value is sufficient to
achieve satisfied performance. The discussion of
more hyper-parameters can be found in Appendix.

6 Conclusion
In this work, we introduced LLMEdgeRefine, a
novel text clustering method enhanced by LLMs.
Our method effectively addresses the challenges
posed by outlier data points and domain-specific
fine-tuning requirements observed in traditional
clustering approaches. The experimental results
demonstrate not only the effectiveness but also the
efficiency of LLMEdgeRefine.

Limitations

While LLMEdgeRefine demonstrates significant
improvements in text clustering, several limitations
should be noted. Firstly, the method’s performance
relies on the quality and capacity of the underlying
LLMs, which can vary depending on the dataset
and domain specificity. Secondly, LLMEdgeRefine
requires hyper-parameter tuning, such as the thresh-
old for identifying edge points and the number of
iterations, which may not always generalize well
across different datasets.
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A Experimental Setup Details

Datasets The statistics of the used datasets are
shown in Table 1.

Baselines Apart from SOTA mothod Cluster-
LLM and IDAS, we compare other baselines listed
in (Zhang et al., 2023).

Hyper-Parameter Selection In Section 5.3, we
discussed the selection of β for LLMEdgeRefine.
Additionally, we performed a sensitivity test on
the Bank77 dataset to determine the optimal num-
ber of iterations l for LLM-Assisted Cluster Re-
finement (LACR), ultimately setting l = 3 due to
stable performance observed after three iterations.
For the hyper-parameters α and k used in Super-
Point Enhanced Clustering (SPEC), we conducted
a dataset-specific sensitivity analysis to optimize
performance across different datasets. Specifically,
we determine the values of hyperparameters by
conducting a rigorous grid search and select the
values that yields the relatively highest modularity
score. This approach allows us to tailor the hyper-
parameters to the unique characteristics of each
dataset, leading to more accurate and meaningful
clustering results. Details of the hyper-parameter
selection process are summarized in Tables 4 and
5.

B Complexity Comparison

Complexity of ClusterLLM. Given a set of unla-
beled corpus D, in the fine-tuning stage, Cluster-
LLM constructs 1024 triplet questions and prompts
the LLMs with each triplet. In the clustering granu-
larity determination stage, ClusterLLM constructs
594 data pairs by sampling from two clusters that
are merged at each step of agglomerative clustering,
then prompts the LLMs with each query. In total,
ClusterLLM takes 1618 prompts, regardless of the
dataset.

Complexity of IDAS. Given a set of unlabeled
corpus D = {xi}Ni=1, in the label generation step,
IDAS first prompt the LLMs to generate a descrip-
tion of each of the |C| clusters. Then, for each cor-
pus in D, IDAS constructs and prompts the LLMs.
In total, IDAS takes O(N + |C|) prompts.

Complexity of LLMEdgeRefine. Given a set of
unlabeled corpus D = {xi}Ni=1 and a parameter β,
at each iteration, our LACR algorithm constructs
N × β queries and prompts the LLMs with each
query, taking O(N ×β) prompts. Over l iterations,

18461

https://doi.org/10.3115/v1/W15-1509
https://doi.org/10.3115/v1/W15-1509
https://doi.org/10.18653/v1/2021.naacl-main.427


Method CLINC(I) MTOP(I) Massive(I) GoEmo CLINC(D) MTOP(D) Selected α
ACC MOD ACC MOD ACC MOD ACC MOD ACC MOD ACC MOD

CLINC(I) 85.1 91.4 83.4 90.7 82.4 90.0 81.0 89.7 80.1 89.2 80.1 89.4 0.1
MTOP(I) 35.6 72.0 48.1 72.5 47.1 72.3 49.0 72.2 51.7 73.7 51.6 73.7 0.6
Massive(I) 62.6 76.9 63.0 77.0 62.5 77.6 61.1 77.1 63.1 77.8 61.2 77.3 0.3
GoEmo 25.9 50.2 24.9 46.5 27.9 43.5 27.4 40.7 31.3 42.4 30.3 37.6 0.1
CLINC(D) 55.6 78.9 54.4 75.8 47.6 69.9 50.7 72.6 44.1 67.0 40.4 64.3 0.1
MTOP(D) 90.7 83.9 90.2 83.0 89.8 82.6 89.1 82.0 88.2 81.4 85.4 81.6 0.1
Massive(S) 61.0 78.5 60.7 78.0 62.7 77.2 60.9 76.8 58.2 74.9 57.5 75.8 0.1

Table 4: Sensitivity test on α, α varies from 0.1 to 0.6 measured by accuracy (ACC) and modularity (MOD).

Method 1 2 3 4 5 6 7

ACC MOD ACC MOD ACC MOD ACC MOD ACC MOD ACC MOD ACC MOD

CLINC(I) 85.08 91.4 84.8 91.2 85.2 91.1 85.3 91.2 85.3 91.2 85.2 91.2 84.9 91.1
MTOP(I) 48.7 64.6 48.1 70.6 45.3 71.1 47.8 72.3 49.9 73.1 51.1 73.5 51.6 73.7
Massive(I) 56.9 70.0 60.0 74.9 60.1 76.1 61.8 76.4 61.0 76.2 60.9 76.2 61.2 76.2
GoEmo 25.9 50.2 27.0 48.3 25.0 45.4 24.6 42.9 25.0 42.7 24.2 40.4 23.5 39.9
CLINC(D) 55.6 77.0 49.7 72.3 49.7 69.9 50.6 69.1 52.0 74.3 52.4 72.0 52.1 72.9
MTOP(D) 85.3 80.6 85.4 80.7 84.7 79.9 87.6 81.7 86.5 81.1 86.3 81.1 90.6 83.8
Massive(S) 59.0 75.7 57.2 73.4 59.7 76.6 59.5 77.8 60.1 78.0 58.8 76.6 60.9 78.5

Method 8 9 10 11 12 13 Selected γ

ACC MOD ACC MOD ACC MOD ACC MOD ACC MOD ACC MOD

CLINC(I) 84.56 91.1 84.9 90.9 84.8 91.0 84.6 90.8 84.6 90.8 84.7 90.8 1
MTOP(I) 51.6 73.7 51.6 73.7 51.6 73.7 51.6 73.7 51.6 73.7 51.6 73.7 7
Massive(I) 60.4 76.7 60.4 76.7 60.4 76.7 61.1 77.0 61.1 77.0 61.1 77.0 5
GoEmo 26.1 40.5 26.3 41.8 26.8 41.1 27.5 40.7 27.7 41.4 27.0 40.0 1
CLINC(D) 47.3 70.1 47.2 71.8 50.7 75.1 50.9 74.9 48.9 74.0 49.0 74.2 1
MTOP(D) 90.5 83.7 90.7 83.8 90.6 83.7 90.6 83.7 90.6 83.7 90.1 83.4 7
Massive(S) 60.7 78.2 60.8 78.2 60.7 78.2 60.5 77.7 59.8 77.4 60.0 76.8 5

Table 5: Accuracy scores for different values of γ from 1 to 13 across various datasets.

our LACR takes O(N ×β× l) prompts in total. In
our experiments, we set β = 0.1 and l = 3.
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