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Abstract

The illustration or visualization of figurative
language, such as linguistic metaphors, is an
emerging challenge for existing Large Lan-
guage Models (LLMs) and multimodal models.
Due to their comparison of seemingly unre-
lated concepts in metaphors, existing LLMs
have a tendency of over-literalization, which
illustrates figurative language solely based
on literal objects, ignoring the underlying
groundings and associations across disparate
metaphorical domains. Furthermore, prior ap-
proaches have ignored the binding process
between visual objects and metaphorical at-
tributes, which further intensifies the infidelity
of visual metaphors. To address the issues
above, we propose GOME (GrOunding-based
MEtaphor Binding), which illustrates linguis-
tic metaphors from the grounding perspective
elaborated through LLMs. GOME consists of
two steps for metaphor illustration, including
grounding-based elaboration and scenario visu-
alization. In the elaboration step, metaphorical
knowledge is integrated into systematic instruc-
tions for LLMs, which employs a CoT prompt-
ing method rooted in rhetoric. This approach
specifies metaphorical devices such as vehicles
and groundings, to ensure accurate and faithful
descriptions consumed by text-to-image mod-
els. In the visualization step, an inference-time
metaphor binding method is realized based on
elaboration outputs, which register attentional
control during the diffusion process, and cap-
tures the underlying attributes from the abstract
metaphorical domain. Comprehensive evalua-
tions using multiple downstream tasks confirm
that, GOME is superior to isolated LLMs, dif-
fusion models, or their direct collaboration.

1 Introduction

Figurative language, such as metaphors, is a rhetor-
ical device that describes an object or concepts in a

*These authors contributed equally to this work
†Corresponding Author

Figure 1: For the illustration of ‘a blanket of snow cov-
ered the streets’, we are expecting some metaphorical
attributes, such as pervasive or encompassing, to be
adapted from ‘blanket’ (source domain) to ‘snow’ (tar-
get domain), instead of a real blanket to be presented
(over-literalization).

non-literal manner to elucidate an idea or facilitate
a comparison (LAKOFF, 1993). For example, in
the famous saying ‘books are the ladder of human
progress’, books are described as ladders, which
highlights the role of books in facilitating intellec-
tual and societal advancement. Visualizing such fig-
ures of speech is exceedingly beneficial to express
creative ideas in a more intuitive way (Schwering
et al., 2009), which facilitates the understanding
of both perceptible objects and implicit concepts
or emotions, and has been leveraged as persuasive
tools to evoke attitudes (Jahameh and Zibin, 2023).

Due to the non-literal juxtaposition in figurative
expressions (Zhang et al., 2024), metaphors can not
be visualized directly through large diffusion-based
text-to-image models, which can only work con-
ditioned on descriptive texts with literal captions
(Rombach et al., 2022; Saharia et al., 2022). Recent
works primarily deal with this issue through object-
based visual elaboration (Chilton et al., 2019;
Chakrabarty et al., 2023), which is a query rewrit-
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ing method with Large Language Models (LLMs)
focusing on the objects to be represented. For in-
stance, the metaphorical statement ‘A blanket of
snow coverd the streets’, can be elaborated into a
descriptive caption, like ‘An illustration of a blan-
ket with snowflakes falling on it and the streets
below’, which identifies the objects of ‘blanket’,
‘snowflake’, and then consumed by diffusion-based
models for illustration, as shown in Figure 1 (a).

Despite their inspiring exploration, we’ve found
two main problems in the entire process, includ-
ing over-literalization and metaphorical attribute-
object binding. (1) Over-literalization means that,
when depicting a linguistic metaphor as an image
with LLMs, objects within the metaphor are ex-
cessively detailed, especially for the objects in the
source domain for evoking abstract concepts, lead-
ing to a cluttered or diverted representation from
the metaphor’s original intent (Black et al., 1979).
Still take Figure 1 as the example, ‘blanket’ in
the statement is used for reflecting the pervasive
or encompassing nature of ‘snow’, rather than a
referential object to be depicted. Such excessive
concretization may diminish the metaphor’s orig-
inal grounding, becoming overly straightforward
and singular (Davidson, 1984). (2) Attribute Bind-
ing is the task of binding the attributes to the cor-
rect objects (Rombach et al., 2022; Saharia et al.,
2022), which is particularly challenging for fig-
ures of speech because, the attributes is metaphor-
ically entailed across different metaphorical do-
mains (source domain and target domain), which
impulses extra burden to diffusion models.

To address the issues above, we propose GOME
(GrOunding-based MEtaphor Binding), which il-
lustrates linguistic metaphors from the grounding
perspective to avoid over-literalization in LLM
elaborations. The core idea of GOME is to un-
fold the non-literal expressions through a tex-
tual description from a rhetorical perspective, in-
cluding tenor, vehicle, and pragmatic groundings,
which are further leveraged for metaphor bind-
ing to preserve provoking attributes, instead of
referential objects. GOME involves three main
stages, firstly, following (Chakrabarty et al., 2023),
we compile a collection of linguistic metaphors
from six sets as a rich source of figurative lan-
guage, which is post-filtered by LLM for visualiz-
able metaphors. Secondly, we construct grounding-
based visual elaboration with a CoT prompting
method from a rhetoric perspective, which gener-
ates fine-grained metaphorical elements, as well as

visual elaborations for subsequent depiction. Fi-
nally, an inference-time binding method is con-
ducted through cross-attention controlling, which
realizes compelling and faithful metaphor illustra-
tion by integrating objects and figurative attributes.

Overall, our contributions are the following: (1)
The problem of over-literalization is firstly no-
ticed in LLM elaborations for metaphors, which
is then analyzed by a grounding-based depiction
method to avoid excessive concretization. (2) A
publicly available dataset 1 is introduced with 1351
visual elaborations of metaphors, together with
the fine-grained metaphorical elements, includ-
ing tenor, vehicle, and groundings for compre-
hensive metaphor illustration. (3) We propose a
metaphorical attribute-object binding approach at
an inference-time speed, which realizes attentional
registration in the text-to-image process. (4) Com-
prehensive experiments verify the high robustness
and fidelity of our method, which paves the way for
figurative language visualization, as well as other
downstream applications.

2 Related Work

2.1 Text-to-Image Generation

In recent years, advancements in text-to-image syn-
thesis have been remarkable, with diffusion-based
models surpassing earlier techniques like Varia-
tional Autoencoders (VAE) (Razavi et al., 2019)
and Generative Adversarial Networks (Bao et al.,
2017). Prominent models in this field include
DALL·E 2 (Ramesh et al., 2022), Stable Diffusion
(Rombach et al., 2022), MidJourney, and Craiyon.
Despite their success in generating vivid and ap-
pealing imagery, there remain areas where they fail
to capture accurate depictions (Leivada et al., 2022).
For instance, recent studies (Kleinlein et al., 2022)
have demonstrated that while diffusion models may
struggle with the abstraction required for figurative
language. Recent work (Liu et al., 2022b, 2023a;
Wang et al., 2023) has explored cutting-edge sys-
tems showcasing the power of large language mod-
els and text-to-image models.

Extensive research has been conducted on tex-
tual figurative language, encompassing areas such
as metaphor generation (Yu and Wan, 2019;
Chakrabarty et al., 2020), idiom generation and
paraphrasing (Liu and Hwa, 2016; Zhou et al.,
2021), and simile recognition and interpretation

1our code and data at https://github.com/EMNLP-2024-
Submission/GOME.git
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(Zeng et al., 2020; He et al., 2022a). In contrast, the
visualization of figurative language has garnered
comparatively less attention. Existing methodolo-
gies (Chakrabarty et al., 2023) have predominantly
focused on the creation of datasets that include im-
ages and annotations for metaphors, similes, and
idioms (Yosef et al., 2023; Akula et al., 2023).
However, these datasets tend to focus more on the
inclusion of objects in metaphors. For instance,
(Chakrabarty et al., 2023) generated visual descrip-
tions based on objects and synthetic images for
1,540 linguistic metaphors. (Yosef et al., 2023)
compiled a dataset containing about 3,000 figura-
tive expressions paired with ground truth images
through human annotations. (Akula et al., 2023)
collected 5,061 metaphorical advertisement images
using a simple annotation format of "A is as B as
C" (e.g., "this pencil is as red as a firetruck"). Al-
though these researches offer valuable resources,
they do not facilitate an intrinsic process for the
faithful depiction of metaphors.

3 Methodology

We present GOME, a collaboration of large lan-
guage models and text-to-image models designed
to generate visual elaborations and pictures from
metaphorical text inputs. The development of
GOME comprises three main stages, including data
collection and the other two depiction steps illus-
trated in Figure 3. Firstly, we perform data col-
lection by preprocessing a collection of metaphors
sourced from previous researches. Secondly, we
utilize a large language model (LLM) to generate
visual elaborations for the metaphors by appropri-
ate CoT prompt design with rhetoric knowledge
in the system role. Finally, the paired data of
metaphors and generated visual elaborations are
fed into a diffusion model to realize metaphor de-
piction. Although previous research used DALL·E
(Ramesh et al., 2022) to generate images, we uti-
lize Stable Diffusion for a transparent and repro-
ducible approach, and more importantly, a novel
method to explore metaphorical attribute-object
binding through attentional control. Concretely,
The diffusion process is enriched with metaphorical
object-attribute binding, using an inference-time
optimization with a loss over cross-attention maps.
The primary goal of GOME is to generate detailed
textual descriptions of visual scenes (visual elabo-
rations) to convey the intended meaning of the rich
figurative phrases in metaphors.

Figure 2: Gounding-based LLM elaboration for figura-
tive language. Outputs of the test sample are used for
subsequent metaphor binding and image generation.

3.1 Visual Elaboration

Following previous research, (Chakrabarty et al.,
2023; Shahmohammadi et al., 2023), we take ‘vi-
sual elaboration’ as a mention, which refers to the
process of transforming or expanding figurative
contents into visualizable textual descriptions. We
generate synthetic visual elaborations using GPT-4.
Synthetic data produced by LLMs (Thoppilan et al.,
2022; Brown et al., 2020; Liu et al., 2023b) offer
substantial benefits and demonstrate competitive,
and in certain instances, superior performance com-
pared to human-annotated data (He et al., 2022b;
Wang et al., 2021; Hu et al., 2022). To decipher lin-
guistic metaphors demanding proficiency in rhetor-
ical devices, we ask the large language model
(LLM) to act as an expert in metaphors, by in-
tegrating systematic domain knowledge, including
the definition and characteristics of tenor, vehicle,
groundings, etc, as well as examples into carefully
designed instructions in its system role.

Unlike previous prompts focused on all the pos-
sible objects, we propose to elaborate metaphors
with less provocative objects from vehicles, but
consider more on the underlying groundings. For
example, given the original metaphor ‘love is like
a gust of wind’, if the grounding is perceived as
‘love is gentle’, then the original metaphor could be
converted into a visual description like: ‘two lovers
embracing each other in a sunny field, their hair
and clothes gently blown by a soft breeze’. Other-
wise, if the grounding is ‘love is a brief passage’,
then the metaphor should be depicted as: ‘In a park
with fallen leaves during autumn, a couple broke
up. The woman left, and a man reached out his arm
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Figure 3: The overall workflow of our method. Firstly, the input metaphor is elaborated based on an LLM according
to Figure 2. Secondly, the elaboration outputs, including the groundings, as well as the visual descriptions, undergo
a syntactic analysis process to extract the binding pairs. Finally, elaboration outputs serve as the text inputs of a
diffusion model, together with the metaphor binding objective based on results from syntactic analysis.

to grab her hand.’ Specifically, we queried LLMs
in the way of CoT prompting from a rhetorical per-
spective, together with the rhetorical knowledge
integrated into the System Role.

3.2 Cross Domain Linguistic Binding

Different from previous metaphor visualization
methods, which struggles to depict abstract con-
cepts solely based on API calling, we conduct
a metaphorical attribute-object binding process
through attentional registration during the diffu-
sion process. Our approach, which we call GOME,
builds on the key idea that, vehicles can be in-
ternalized in the final scenario by metaphorical
attribute-object binding, which blends metaphori-
cal attributes from vehicles in the source domain
to tenor objects in the target domain. Such cross-
domain bindings, which consist of object nouns and
attribute modifiers, can be analyzed based on the
syntactic structure of natural language visual elab-
oration enhanced by metaphor groundings. More-
over, inspired by (Rassin et al., 2023), these bind-
ings can be adhered to by designing an appropriate
loss over the cross-attention maps of the diffusion
model, and finally steer the generation of visual
metaphors.

Given a pair of an object-noun from tenor and
attribute modifiers from the vehicle, it is expected
that the cross-attention map of the attribute sig-
nificantly overlaps with that of the object, while
remaining mostly distinct from the maps of other
objects and attributes. To enforce these spatial re-
lations within the attention maps, a specifically de-
signed loss function is employed to operate across

all cross-attention maps. This loss is then utilized
during the inference phase with a pretrained diffu-
sion model. The noised latents are optimized by
performing a gradient step aimed at minimizing
this loss. Detailed illustrations of the entire process
are included in Figure 3.
Object-Attribute Pairs: Considering an enhanced
visual elaboration sentence Sv with N tokens,
which is obtained by concatenating the origi-
nal elaboration sentence with the perceived natu-
ral grounding sentence, we first need to specify
the objects and attributes to be attached across
different domains (source and target domains).
Let SMB denote the sets containing k cross-
domain pairs of objects and attributes SMB =
{(o1, a1), (o2, a2), . . . , (ok, ak)}, where (oi, ai) is
the i-th pair of tokens between the tenor object
oi and attribute modifiers ai. For instance, the
set for ‘now is pervasive and encompassing’ in-
cludes two pairs: (‘snow’, ‘pervasive’) and (‘snow’,
‘encompassing’). To identify the object-attribute
sets, we parse the enhanced visual elaboration
Sv using spaCy’s transformer-based dependency
parser (Honnibal and Montani, 2017) and identify
all object-nouns (either proper-nouns or common-
nouns) that are not serving as direct modifiers of
other nouns, and more importantly, presented as ob-
jects to be included in the visual elaborations. We
then recursively collect all modifiers of the noun
into the metaphor binding set SMB:

SMB = {(o1, a1), (o2, a2), . . . , (ok, ak)}
= ParserDP (Sv);

(1)

Where ParserDP denotes the dependency parser
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Figure 4: Evolution of cross-attention maps along denoising steps. The attention maps of objects-attribute pairs
are initially unrelated, and gradually become intertwined adhering to the expected binding. While in the right part
without a binding process, the attention maps remain unrelated.

(Honnibal and Montani, 2017). It is worth noting
that, the set of attributes includes a range of syntac-
tic relations, such as adjectival modification (amod;
‘the broken heart’), compounds (compound; ‘the
history wheels’), adjectival complement (acomp;
‘Her words were as sharp as a knife’), and coordi-
nation between modifiers (conj; ‘Her voice was a
melody, sweet and haunting’).
Metaphorical Binding: Let A1, A2, . . . , AN rep-
resent the attention maps of all N tokens in the
enhanced visual prompt Sv, and let Mdis(Ai, Aj)
signify a measure of distance, indicating the lack
of overlap, between the attention maps Ai and Aj .
Our first loss aims to minimize that distance (maxi-
mize the overlap) over pairs of entity modifiers and
their corresponding object attributes (o, a):

Lpos(A,Sv) =
∑

(o,a)∈SMB

1

2
Mdis(Ao, Aa). (2)

For a measure of distance Mdis(Ai, Aj) between
attention maps, we use a symmetric Kullback-
Leibler divergence:

Mdis(Ai, Aj) = K(Ai||Aj) +K(Aj ||Ai); (3)

K(Ai||Aj) =
∑

pixels

Ailog(Ai/Aj); (4)

where Ai, Ai are attention maps normalized to a
sum of 1, i and j are generic indices.

We also construct a loss that compares pairs
of modifiers and entity nouns with the remaining
words in the prompt, which are grammatically un-
related to these pairs. This loss is defined between
words within the (object-nouns, attribute-modifiers)
set and words outside of it. Formally, let Uv repre-
sent the set of unmatched words obtained by exclud-
ing the words in SMB from the full set of words.
Au is the corresponding attention map for a given
unrelated word u. The following loss encourages
moving apart the correlations between grammati-
cally unrelated pairs of words:

Lneg = −
∑

(o,a)∈SMB

1

4|Uv|
∑

u∈Uv

D(o, a, u); (5)

D(o, a, u) =
∑

u∈Uv

[d(Ao, Au) + d(Au, Aa)]; (6)

where d(Ao, Au) is the abbreviation of
Mdis(Ai, Aj) defined in Equation 3 and 4.
Our final loss combines the two loss terms:

L = αp ∗ Lpos + αn ∗ Lneg. (7)

Our inference-time optimization approach is in-
spired by the work of (Chefer et al., 2023; Rassin
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Figure 5: Fine-grained evaluation results on different
categories of the Fig-QA dataset. GOME outperforms
other models across all categories with a more pro-
nounced gap in the visual category.

et al., 2023), which defined a loss over the cross
attention maps to update the latents at generation
time. However, their loss aims to strengthen the
activations of a set of selected tokens or the rela-
tions of general entity modifiers, while our loss
depends on pairwise relations of metaphorically
related words, especially for objects in tenors and
attributes in vehicles. Our method aims to align the
diffusion process to the underlying groundings of
the visual elaborations.

4 Evaluation

Evaluating the visualization of figurative language
presents a significant challenge due to its inherently
subjective nature. Additionally, current evaluation
methodologies vary widely, encompassing image
recognition (Yosef et al., 2023), visual entailment
(Chakrabarty et al., 2023), as well as retrieval and
localization (Akula et al., 2023). Consequently, to
thoroughly assess the robustness of GOME, we ad-
vocate for an evaluation complemented by diverse
automated metrics, together with human evalua-
tions applied at multiple levels of granularity.

4.1 Intrinsic Evaluation
In this section, we evaluate the general figurative
language understanding of GOME using the Fig-
QA dataset (Liu et al., 2022a). It contains 12k
figurative phrases with correct and incorrect inter-
pretations in the Winograd style. For instance, the
figurative sentence ‘Her word had the strength of
a wine glass’, is paired with both ‘Her promises
can be believed’ and ‘Her promises cannot be
trusted’. This benchmark covers various themes,
including common-sense object knowledge, visual
metaphors, common-sense social understanding,

Settings Model ZS L-Tuned XL-Tuned

Supervised
GPT-2 54.57 57.13 64.00
ViPE-S 58.50 61.42 67.28

GOME-G 59.47 63.02 68.44

Few-shot
GPT-3.5 69.24 - -
GOME 74.33 - -

Table 1: Zero-shot and fine-tuned evaluation results us-
ing Fig-QA. L and XL denote the large and X-large vari-
ations of the dataset. Our model, GOME-G, which uses
GPT-2 as the elaborating model for fair comparisons,
demonstrates enhanced comprehension of figurative lan-
guage compared to other supervised models.

and cultural metaphors. We employed their evalua-
tion framework for GPT-2 and evaluated the small
version trained with the context size of one. Ta-
ble 1 presents a comparison between the results
of GOME and other baselines, as reported by (Liu
et al., 2022a), in both zero-shot and fine-tuned con-
texts. The findings underscore the superiority of
GOME over the pre-trained GPT-2 in both sce-
narios, demonstrating its advanced comprehension.
Subsequently, we assess GOME on fine-grained
categories within the Fig-QA dataset (Liu et al.,
2022a). As illustrated in Figure 5, GOME ex-
hibits a comprehensive understanding across all
categories. The significant improvement observed
in the visual categories aligns with producing de-
scriptions for metaphors suitable for visualization.

Besides, we also conduct a qualitative experi-
ment to illustrate the effect of metaphor binding
in Figure 4. Specifically, we visualize the weights
of cross-attention maps mapped to tokens over the
denoising steps. The left column displays three
pairs of object-attributes to be coupled, including
(street, empty), (lights, dimmed), and (snow, perva-
sive). At the beginning, their weights of aggregated
attention maps are initialized based on textual rep-
resentations from CLIP encoders, as well as the la-
tent image representations. It can be observed that
the attention maps of three object-attribute pairs
are unrelated regardless of the expected binding,
but gradually become intertwined alongside the
denoising steps with the proposed modification.

4.2 Extrinsic Evaluation

For a comprehensive end-to-end evaluation, image-
to-text and text-to-image retrieval tasks are con-
ducted using the HAIVMet dataset (Chakrabarty
et al., 2023). The HAIVMet dataset comprises lin-
guistic metaphors and corresponding visual elabo-
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Setting
Metaphor Elaboration Grounding

IR↑ TR↑ Rank↓ IR↑ TR↑ Rank↓ IR↑ TR↑ Rank↓

SD & GPT-3.5
zero-shot 46.34 34.13 3.24 72.65 59.32 2.87 73.13 61.31 2.74
fine-tuned 48.45 34.84 3.11 75.62 61.34 2.71 78.12 62.53 2.63

ViPE
zero-shot 48.23 36.39 3.18 74.72 66.23 2.54 79.72 67.81 2.38
fine-tuned 52.34 53.17 3.04 80.32 68.44 2.37 81.42 69.61 2.21

HAIVMet
zero-shot 54.23 43.62 3.07 74.25 65.25 2.62 78.27 65.76 2.42
fine-tuned 56.92 51.23 2.88 81.32 69.75 2.24 80.54 67.22 2.38

GOME
zero-shot 51.43 42.31 3.13 75.23 69.45 2.37 81.12 72.35 2.31
fine-tuned 54.25 52.73 2.93 82.55 71.22 2.21 84.37 73.78 2.17

For IR and TR, larger values (↑) are better. For Rank, lower values (↓) are better.

Table 2: A comparative report on image-text and text-image retrieval using corpora generated by GPT-3.5, GOME,
and human experts (HAIVMet dataset) in zero-shot (zs) and fine-tuned (ft) settings. TR and IR denote the mean
image-to-text and text-to-image retrieval scores respectively. We load a BLIP check- point trained on COCO,
initialized on ViT-B and BERT-base to complete the retrieval tasks. GOME outperforms GPT-3.5 and shows
competitive understanding to human experts.

rations, which have been reviewed by experts. Pairs
of metaphors and visual elaborations, as well as
visual elaborations and images, were created for
evaluation purposes. Specifically, one positive im-
age was generated based on visual elaborations,
followed by the generation of four negative im-
ages per metaphor using Stable Diffusion (Ramesh
et al., 2022). Given that HAIVMet includes ground
truth visual elaborations, only the negative samples
required generation. The negative samples were
produced using two methods (Akula et al., 2023):
(a) Negative Tenor, which replaces the tenor in the
metaphor statement with one from another state-
ment; (b) Negative Vehicle, which replaces the
vehicle in the metaphor statement with one from
another statement.

After acquiring the relevant images from GPT-
3.5, ViPE, HAIVMet, and our own GOME, we ap-
plied the fine-tuned version of BLIP (Li et al., 2022)
on the COCO (Lin et al., 2014) retrieval dataset.
BLIP demonstrates superior performance on vision-
language benchmarks by effectively leveraging a
multimodal encoder-decoder mixture model, ren-
dering it highly suitable for retrieval evaluation.
Our experiments utilized BLIP in both zero-shot
and fine-tuned configurations. In the zero-shot set-
ting, the entire retrieval dataset served as the test
set, whereas in the fine-tuned setting, 80% of the
data was allocated for fine-tuning, with the remain-
ing 20% split equally for validation and evalua-
tion. The mean recall scores across the top-1, top-
5, and top-10 retrieval results, as well as the rank
of searching images based on text, are presented

in Table 2. GOME surpasses GPT-3.5, ViPE, and
HAIVMet in image-metaphor retrieval (the first TR
column in the table). However, despite its advan-
tage over other baselines, GOME slightly under-
performs compared to human experts in metaphor
retrieval from images (the first IR column in the
table). This discrepancy may stem from the over-
specification, with which human experts describe
metaphorical images (Chakrabarty et al., 2023)
based more on objects, resulting in a more discrete
feature space that BLIP can interpret more easily.
Furthermore, we conducted similar evaluations on
pairs of images and visual elaborations, as well
as groundings, instead of metaphors, to evaluate
the alignment between the elaborations and their
corresponding images, similar to image-metaphor
retrieval. As illustrated in the right columns of Ta-
ble 2, GOME surpasses SD & GPT-3.5 and human
experts in both zero-shot and fine-tuned scenarios.
Notably, while ViPE demonstrates lower perfor-
mance, it still exhibits superior results to humans
in image-grounding retrieval. This observation im-
plies that HAIVMet emphasizes the visualizabil-
ity of its generated elaborations with a robust link
to the objects instead of underlying groundings.
Conversely, GOME not only achieves comparable
or even superior evaluations in image-metaphor
and image-elaboration related tasks compared to
HAIVMet, but also produces more compelling vi-
sual elaborations faithful to original meanings, as
indicated by its high average recall and ranking
scores in the tasks of image-grounding retrieval.
(The rightest three columns in Table 2).
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Figure 6: Examples of metaphor illustration through different methods. Previous methods focused on objects to be
included in the metaphor, while our method focuses more on the underlying groundings. It can be observed that
excessive cretization of objects, especially for thought-provoking vehicles in the source domain, may diminish the
metaphor’s original meaning, becoming overly straightforward.

4.3 Human Evaluation

To realize a comprehensive evaluation, a study
was undertaken involving three participants, aged
20 to 30, who were experts in metaphor analy-
sis. From the HAIVMet dataset, one hundred
metaphors were randomly selected. Visual elab-
orations for each metaphor were produced using
ChatGPT and GOME, alongside additional elabo-
rations from human experts within the HAIVMet
dataset. Subsequently, these visual elaborations
were utilized to generate corresponding images us-
ing Stable Diffusion. The experiment presented
participants with a metaphor alongside three im-
ages generated from prompts by human experts
(HAIVMet dataset), ChatGPT, and GOME.

The participants are instructed to complete two
missions: (a) select the image that best reflects the

metaphor’s literal meaning based on objects; (b)
select the image that best reflects the metaphor’s
underlying meaning based on groundings. Accord
to the results of Task (a), participants preferred vi-
sual metaphors from human experts 37.82% of the
time, followed by those from GOME at 31.32%,
and ChatGPT at 30.86%. While in the case of Task
(b), which accesses visualizations based on ground-
ings, participants preferred images from GOME
at 36.43% of the time, followed by those from hu-
man experts at 35.15%, and ChatGPT at 28.42%.
Based on results from multiple perspectives, it can
be confirmed that GOME has superiority over the
direct collaboration of Stable Diffusion and Chat-
GPT, and demonstrates competitive performance
relative to human experts, especially for faithfully
depicting the underlying groundings of metaphors.
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In Figure 6, we show examples of visualization
generated using linguistic metaphors or their vi-
sual elaborations as prompts for the text-to-image
model. We observe that our method, where CoT
prompting based on groundings is involved, is
of higher quality. For instance, a good visual
metaphor for the metaphorical expression ‘After
10 minutes your head becomes like spinning cot-
ton candy’ would reflect the underlying meanings,
which indicates a feeling of confusion or over-
whelmed by taking ‘spinning cotton candy’ as the
vehicle in the original textual statements. Other
methods just simply stack multiple objects together,
such as people, heads, and spinning cotton candy,
neglecting the true meaning of confusion or being
overwhelmed. While in our method, the genuine
underlying meaning is captured with CoT prompt-
ing and systematic knowledge, which transform the
abstract object or concept into a specific scenario,
in which a student is surrounded by flying papers,
with a frustrated emotion on her face to show the
overwhelmed feeling.

The observations are similar to the metaphors
in other samples, such as transforming the ‘lion’
into a brave soldier, and ‘floating whale’ into an
‘overly large man’. Obviously, we are not expect-
ing a real lion or whale presented in visual illus-
trations. These vehicles play the role of secondary
objects, emphasizing some attributes of primary
objects. The implicit meaning in metaphors is well
captured by our model, and depicted in the final
picture. We also discover some cases hard to vi-
sualize, such as metaphors with extreme subject
feelings, or abstract attributes blended in verbal
expressions.

5 Conclusion

In this paper, we introduced GOME, the first model
with linguistic binding for visualizing metaphors
from the grounding perspective. Our research
notices the problem of over-literalization for the
first time, and solves this issue through conceptual
elaborations for binding implicit metaphorical at-
tributes, rather than their presentation. Overall, our
contributions are the following: firstly, a grounding-
based depiction method is proposed for accu-
rately binding metaphorical attributes. Secondly, a
dataset with conceptual elaborations of metaphors
is introduced, encompassing fine-grained metaphor-
ical elements such as tenor, vehicle, and ground-
ings. Finally, extensive experiments validate the

fidelity of our method in capturing the underlying
meaning of metaphors. In future work, we plan to
employ GOME with knowledge from other related
fields, such as cognitive science.

6 Limitations

While we offer evidence of GOME’s effectiveness
and understanding of figurative language across
various benchmarks, we have to acknowledge po-
tential limitations. There is still room for improve-
ment in LLM elaboration by training a domain-
specific LLM for figurative language, which is a
common challenge in metaphor analysis, and not
fully solved in this work, due to the limited compu-
tational and data resources. Additionally, the selec-
tion of evaluations, including metrics, and datasets
chosen for assessment may not comprehensively
capture the subtleties inherent in human figurative
languages. For example, the cultural variations in
the creation, and the subjectivity in interpreting
figurative phrases, pose a significant consideration.
Further investigation and comparative analysis uti-
lizing a broader range of tasks, measurements, and
datasets, may enhance the ability of GOME.
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