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Abstract

Event causality identification (ECI), a process
that extracts causal relations between events
from text, is crucial for distinguishing causa-
tion from correlation. Traditional approaches
to ECI have primarily utilized linguistic pat-
terns and multi-hop relational inference, risk-
ing false causality identification due to infor-
mal usage of causality and specious graphi-
cal inference. In this paper, we adopt the Ru-
bin Causal Model to identify event causality:
given two temporally ordered events, we see
the first event as the treatment and the second
one as the observed outcome. Determining
their causality involves manipulating the treat-
ment and estimating the resultant change in the
likelihood of the outcome. Given that it is only
possible to implement manipulation conceptu-
ally in the text domain, as a work-around, we
try to find a ‘twin’ for the protagonist from ex-
isting corpora. This ‘twin’ should have identi-
cal life experiences with the protagonist before
the treatment but undergoes an intervention of
treatment. However, the practical difficulty of
locating such a match limits its feasibility. Ad-
dressing this issue, we use the synthetic con-
trol method to generate such a ‘twin’ from
relevant historical data, leveraging text embed-
ding synthesis and inversion techniques. This
approach allows us to identify causal relations
more robustly than previous methods, includ-
ing GPT-4, which is demonstrated on a causal-
ity benchmark, COPES-hard.

1 Introduction

Previous endeavours in event causality identifica-
tion in text have, to a large extent, depended on
feature-based approaches where linguistic patterns
serve as a crucial role (Beamer and Girju, 2009;
Do et al., 2011; Hidey and McKeown, 2016; Lai
et al., 2022). These patterns can roughly indicate
causal relations in that causal language is widely

*Work done during internship at Allen Institute for AI.

used in an informal way in everyday life (Imbens
and Rubin, 2015). Without proper manipulation
of the potential cause, and comparison between
the observed outcome and the intervened outcome,
these approaches often identify specious causal re-
lations. For example, “because” is often consid-
ered as a causal indicator (Hidey and McKeown,
2016), yet it might not be rigorous as in the case
of “She got a nice job because she graduated from
one of the top universities.” It is very possible
that the employer paid more attention to the candi-
date’s ability, rather than just the educational back-
ground in offering a job. Regardless of how these
linguistic features are obtained - whether extracted
from causal keywords and semantic indications,
or obtained from language models - any feature-
based approach may be predisposed to bias due
to their unreliable causality foundations. Thus,
highly sophisticated methods that rely on multi-
hop reasoning on graphs for ECI (Cao et al., 2021;
Chen et al., 2022; Liu et al., 2023; Chen et al.,
2023; Pu et al., 2024), also risk being fundamen-
tally flawed in their conclusions.

If we want to reliably discover event causal-
ity, say whether there exists a causal relation be-
tween a pair of temporally ordered events (e1, e2),
we need to manipulate e1 and see if e2 still hap-
pens in a ‘parallel universe’ in which e1 does not
happen. In other words, we want to find a ‘twin’
for the protagonist p in the events, who has iden-
tical life experiences with p (i.e., a sequence of
events) up to the point when e1 takes place, but
instead undergoes an intervention of e1. How-
ever, it is almost impossible to implement this idea
in the text domain (e.g., stories, narratives, and
news reports): for any event in text, it is very
rare that its protagonist has ‘twins’ that satisfy the
aforementioned requirements. In this work, as a
workaround, we attempt to synthesize ‘twins’ by
merging relevant event sequences retrieved from
a corpus, inspired by a causal inference method,

1725



Figure 1: An example illustrating the temporal ordering of treatment event e1, observed outcome e2, and pretreat-
ment events e−1, e0 (covariates) on a time axis. To figure out if e1 causes e2, we come up with an intervention of
e1, ¬e1, and find that it does not affect the likelihood of e2. And thus, e1 is not the cause of e2.

called synthetic control, used in economics and
social sciences (Abadie and Gardeazabal, 2003;
Abadie et al., 2010; Abadie, 2021). Such event
sequence merging is also seen in recent effort in
event schema induction in information extraction
studies (Li et al., 2020; Wen et al., 2021; Du et al.,
2022; Dror et al., 2023).

Specifically, our approach 1 consists of three
components: (1) noncontemporary control group
retrieval, (2) control unit synthesis, and (3) treat-
ment effect estimation. Given a pair of events with
certain context, the first component retrieves rele-
vant event sequences from historical data that can
be leveraged to synthesize ‘twins’ via text embed-
ding and inversion techniques (Morris et al., 2023,
2024) in the second component. And this is fol-
lowed by the third component which calculates a
causal estimand to determine whether there exists
a causal relation between the two events.

The proposed methodology fundamentally
shifts from conventional ECI methods by intro-
ducing the concept of synthetic control to the text
domain. This allows the inherent linguistic bias
which is prevalent in data-driven ECI approaches
to be significantly mitigated. Moreover, by
introducing full-context matching in a continuous
space, we overcome the limitation of discrete tem-
poral propensity matching proposed in previous
attempts (Zhang et al., 2022; Wang et al., 2023)
of solving ECI with the potential-outcome frame-
work. Our approach demonstrates significantly
improved results on the COPES-hard dataset, a
commonly used causality benchmark, by at least
9% (relatively) over existing methods and GPT-4.
The contribution of this paper is threefold:

• Synthetic control method is introduced to

1Our code is available at: http://cogcomp.org/
page/publication_view/1043.

solve ECI in text for the first time.

• Full-context matching is proposed to synthe-
size control units with the help of recent lan-
guage modeling techniques.

• Experimental results on the COPES-hard
dataset demonstrate the effectiveness and ro-
bustness of counterfactual reasoning in text.

2 Preliminaries

In this section, we present the fundamentals of our
method, which is grounded on the Rubin Causal
Model (Rubin, 1974) and discuss its previous ap-
plication to the problem of event causality identifi-
cation in the text domain. And then we discuss the
limitation of previous attempts and introduce why
we adopt synthetic control in this work.

2.1 Rubin Causal Model

The Rubin Causal Model (RCM) is one of the cor-
nerstones of causal inference. To illustrate this
framework in the text domain, let us consider two
temporally ordered events (e1, e2) in an article.
They involve a common protagonist, or study unit,
p, and we want to estimate whether e1 causes e2,
with a context that can be modeled as a tempo-
rally ordered sequence of event mentions in text:
e−t, e−t+1, · · · , e0 (see Figure 1 as an example).
Following Zhang et al. (2022)’s formulation of
ECI, we see the first event e1 as the treatment,
and second event e2 as the observed outcome. To
measure the treatment effect, we need to compare
the study unit with a control group within which
the control units did not undergo event e1, and es-
timate the change of the likelihood of e2 had e1
been intervened:

∆ = P(e1 ≺ e2)− P(¬e1 ≺ e2). (1)

1726

http://cogcomp.org/page/publication_view/1043
http://cogcomp.org/page/publication_view/1043


Here we use ≺ to indicate that e1 occurs before e2,
and ¬e1 to denote a manipulation of e1, which can
only be conceptual or imaginary.

2.2 Temporal Propensity Matching
The most significant challenge in formulating
ECI as described above is the spurious corre-
lations introduced by pervasive confounding co-
occurrences. They need to be eliminated for an
unbiased estimation of the causal estimand in-
troduced in Equation (1). This can be done
by balancing events that precede e1, or covari-
ates. Several techniques for balancing covariates
(Cochran and Chambers, 1965; Rosenbaum and
Rubin, 1983; Pearl, 1995) have been proposed,
e.g., sub-classification, matched sampling, covari-
ance adjustment, and propensity score. Zhang
et al. (2022) propose to use temporal propsensi-
ties for covariate balancing in text. To this end,
Equation (1) can be rewritten as

∆ = Ex [P(e1 ≺ e2|x)− P(¬e1 ≺ e2|x)] , (2)

and here the treatment assignment is strongly
ignorable with respect to the covariates x =
[e−t, e−t+1, · · · , e0]. The propensity score,

p(x) = P(e1|x), (3)

is the probability of e1 occurring at time 1 condi-
tioning on the covariates being x at time equal to
or less than 0 (prior to the time e1 happens). To
incorporate the context of e1, Wang et al. (2023)
design a mechanism to sample diversified covari-
ates from multiple timestamps and also use tempo-
ral propensity for balancing. Yet they merge co-
variates to construct the final covariate set which
would lose the temporal interaction within the se-
quence of context events.

2.3 Better Context Modeling with Synthetic
Control

Synthetic control is a widely-used method in
econometrics and social sciences for policy eval-
uation and causal inference in observational stud-
ies (Abadie and Gardeazabal, 2003; Abadie et al.,
2010). It addresses the challenge of having to
estimate the counterfactual, a critical aspect in
the study of causality. The method involves con-
structing an artificial control unit – a synthetic
control – as a weighted combination of potential
control units, rather than relying on just a single
control unit. This synthetic control then acts as

Figure 2: After the outbreak of terrorism in the late
1960’s, per capita GDP in the Basque Country declined
about 10 percentage points relative to a synthetic con-
trol region without terrorism. Figure from Abadie and
Gardeazabal (2003).

the counterfactual, representing what would have
happened in the absence of the treatment. The
causal effect is subsequently estimated by com-
paring the study unit and the synthetic control
unit. This technique allows for robust treatments
of causal effects where finding an event sequence
that perfectly mirrors the treated case is imprac-
tical. As illustrated in Figure 2, this method in-
volves creating a synthetic control group from a
weighted combination of multiple untreated units
that closely mimic the pre-intervention charac-
teristics and trends of the treated unit. In this
case, the solid line represents the actual per capita
GDP of the Basque Country, which experienced
the impact of terrorism in the late 1960’s, while
the dashed line represents the synthetic per capita
GDP constructed from adjacent regions unaffected
by terrorism. By comparing the actual GDP with
the synthetic GDP after the onset of terrorism, the
graph visually depicts the negative economic im-
pact of terrorism on the Basque Country. This gap
between the lines highlights the divergence from
what the economic trajectory might have been in
the absence of terrorism, thereby demonstrating
the usefulness of the synthetic control method in
assessing causal effects.

With the synthetic control method, we can
model longer context in the RCM framework
while maintaining the temporal structure of the
original event sequence. Yet in the text domain, it
is harder to find contemporary control group like
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those GDP curves of adjacent regions. In the fol-
lowing sections, we further discuss how we per-
form the synthetic control method in the context of
event causality identification in text, by retrieving
noncontemporary control groups and synthesizing
control units from them.

3 Method

For a pair of events e1 and e2 mentioned in some
context that we consider as the study unit, we want
to (1) find relevant stories (event sequences) from
historical data that can be considered as noncon-
temporary control group, and (2) merge them to
create a synthetic control unit, and then (3) calcu-
late the causal estimand.

3.1 Noncontemporary Control Group
Retrieval

Since it is very rare that ‘twins’ of the protagonist
exist in some existing corpus, we turn to noncon-
temporary articles of the same topic that happen
not necessarily at the same time as the study unit.
Even though these articles do not form a perfect
control group, we can filter and obtain the most
relevant ones and merge them as a synthetic con-
trol unit (see Section 3.2).

As a preprocessing step, we first use
gpt-3.5-turbo2 to anonymize the entire
event sequence so it does not contain any specific
entities3. For example, in the event description,
we blur the entities: we convert “Timmy” to
“a boy;” “Mary” into “a girl.” The reason this
operation is 1) our focus is event. 2) we admit
that arguments, especially people, play important
roles in the progress of an event. But it is also
the actions that define a person’s character. Too
much information about the arguments might
mislead the retrieval process and subsequently
the creation of synthetic control. However, we
do not use abstraction4 when we determine the
similarity of sentences using gpt-3.5-turbo.
Then we use BM25 (Robertson et al., 2009)
to retrieve n relevant documents from a large
corpus that has a good amount of topic coverage,
given these event descriptions from the study

2https://platform.openai.com/docs/
models

3See Appendix A.3 for detailed prompt.
4This insight comes from our experiments where the

performance worsens as the level of abstraction increases,
e.g. from best to worst, in terms of performance of
gpt-3.5-turbo, ‘Tom’ > ‘a boy’ > ‘a person’.

unit. Yet not all of these documents satisfies
our requirements: (1) we need the pretreatment
events of the study unit and the control group
to be as close as possible; (2) the units in the
control group cannot contain the treatment event,
but intervention of treatment instead. We do the
same preprocessing procedure with the retrieved
documents and use gpt-3.5-turbo to sum-
marize5 the retrieved documents (Zhang et al.,
2023). These pieces of text are embedded into
vectors using text-embedding-ada-0026.
Leveraging the embeddings, we keep those
documents with pretreatment events whose co-
sine distance is higher than a certain threshold.
However, measuring event similarity with cosine
similarity can be rather arbitrary at times (Steck
et al., 2024). For example, “A person loves food”
and “A person does not love food” can have a
cosine similarity of > 0.9, depending on the
specific embedding model used. As such, cosine
similarity is only used as a first round of filtering
and we subsequently examine the similarity of
kept documents7 using gpt-3.5-turbo.

There are three key parts of event similarity
that we check using gpt-3.5-turbo: (1)
Pretreatments of the kept documents vs. treatment
of the study unit. This is done to ensure that
the treatment of the study unit does not take
place in the pretreatments, which will affect our
assessment of the causal estimand. (2) Inter-
ventions of the kept documents vs. treatment
of the study unit. Due to the arbitrary nature of
the cosine similarity measure, we have to ensure
that the interventions and treatment are in fact
dissimilar. (3) Outcomes of the kept documents
vs. treatment of the study unit. Similar to (1),
having an intervention similar to the treatment
will make our estimates inaccurate. To do this, we
independently prompt gpt-3.5-turbo with
two slightly different questions:

Ignoring the specific characters, ["does a similar
event to event B take place in event A", "is
event B a subset of event A"]?

In this step, the unanonymized texts for both the
study unit and the retrieved documents are pro-
vided to gpt-3.5-turbo for comparison, since

5See Appendix A.1 for detailed prompt.
6https://platform.openai.com/docs/

guides/embeddings
7See Appendix A.2 for detailed prompt.
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Figure 3: An illustration of how our approach works. The first row shows the event sequence of the study unit,
followed by nontemporary control group below (Unit 1, Unit 2, · · · ) retrieved from a large corpus. These units are
then merged in the embedding space to create a synthetic control unit shown in the last row.

we observe less robust performance as the level
of abstraction increases. In the prompt above,
ordering of the two input sentences are crucial.
Segments from retrieved documents are labeled
as event A, and treatment of the study unit is la-
beled as event B. Instead of asking if the two
events are similar, we intentionally phrase the
prompt in such a way to look for any indication
of event B within event A. For example, there
might be many subevents in the pretreatments of
a retrieved document, but we only need to make
sure that there is no subevent that is similar to
the treatment of the study unit. One drawback
of this measure, however, is the hallucination of
gpt-3.5-turbo even when temperature has
been set to zero. For example, when event A=“A
loyal dog named Buddy played in the mud and
got very dirty.” and event B=“Timmy got in the
tub and his mom bathed him.”, the two questions
above output true with the reasoning being “They
both involve getting clean by taking a bath”, likely
due to co-occurrence bias (Kang and Choi, 2023).
However, this prompting approach still gives the
desired result for this step, which is high recall on
detecting events similar to the original treatment.
Therefore, we obtain the responses r1 and r2 and
output the final similarity as (r1 ∨ r2).

We require the number of kept documents to be
≥ 2 in order to proceed to synthesizing the control
unit, otherwise, our approach outputs “indetermi-
nate” due to the limited size of the corpus.

3.2 Merging Control Group
After we find the relevant control group
[U1, U2, · · · , UJ ] as shown in Figure 3, we embed
the anonymized pretreatments of the study unit
and the control units using embedding function
ϕ = text-embedding-ada-002 and obtain
text embeddings ustudy and [u1, u2, · · · , uJ ],
respectively. If the treatment being tested is
the first sentence in the sequence, we prompt
gpt-3.5-turbo to generate an augmented
context as the “pretreatment”. We then apply
ridge regression to find some optimal weights
w1, w2, · · · , wJ such that

(ustudy − ΣJ
j=0wj · uj)2 + λΣJ

j=1w
2
j (4)

is minimized. The L2 regularization is added to
prevent overfitting to any single retrieved docu-
ment. The same set of weights is then applied to
the outcomes of the retained documents to produce
a single embedding vector.

3.3 Control Unit Synthesis
The linearly combined embedding vector

usynthetic = ΣJ
j=0wj · uj (5)

is then inverted to generate the synthetic poten-
tial outcome in a textual format using a Vec2Text
function. The state-of-the-art Vec2Text function
proposed by Morris et al. (2023) is built to iter-
atively reconstruct text from its embeddings by

1729



treating the inversion problem as controlled gener-
ation. It refines an initial text hypothesis through
repeated corrections, using the differences be-
tween the target embedding and the hypothesis
embedding to guide these updates, achieving high
accuracy in recovering the original text from dense
embeddings. With such function ϕ−1, we obtain
the inverted text as the synthetic control unit in its
textual format:

inverted text = ϕ−1(usynthetic) (6)

3.4 Causal Estimand

The similarity of the synthesized outcome (Event
A) and the original outcome (Event B) are as-
sessed with gpt-3.5-turbo using the same
prompt as the filtering process8. Since the output
of the Vec2Text inversion captures only a vague
idea of all the outcomes of the top retrieved docu-
ments, our prompt encourages gpt-3.5-turbo
to “fill in the blanks” and evaluate whether e2 is
present in the synthetic outcome. For example,
when Event A (synthetic outcome) is “The mom
and dad drank a cup of coffee. The little mouse
was tired, and the mom sat down. They greeted
each other, and enjoyed the coffee together. The
parents were happy, and the little mouse sat down.
The mom sipped a cup of coffee, and the child felt
better”; Event B (observed outcome e2) is “After
i was done, i felt much better”, our prompt outputs
true since both Events A and B involve someone
feeling better. And this is a scenario where halluci-
nation of Large Language Models (LLMs) (Rawte
et al., 2023; McKenna et al., 2023) is helpful in
reasoning, since the text recovered from embed-
ding is sometimes incomprehensible for human
beings but comprehensible for LLMs themselves.

4 Experiments

We conduct experiments to demonstrate the effec-
tiveness of our proposed approach.

4.1 Dataset

For our evaluation of event causality identifica-
tion in text, we leveraged the Choice of Plausi-
ble Event in Sequence (COPES) dataset (Wang
et al., 2023), one of the event causality identifi-
cation benchmarks. The COPES dataset was as-
sembled via Amazon Mechanical Turk and in-
cludes event sequences extracted from ROCSto-

8See Appendix A.2 for detailed prompt.

ries (Mostafazadeh et al., 2016), where each se-
quence holds five chronologically ordered events.
The annotators were tasked to identify whether a
given event was causal to the final event in the
sequence. COPES, with its emphasis on causal-
ity and chronological event sequencing, serves as
an ideal testbed for our focus - integrating the po-
tential outcome framework and synthetic control
method into the realm of textual ECI.

Although LLMs have shown relatively strong
performance at many causal reasoning tasks, many
have argued that LLMs are just “causal parrots”
(Zečević et al., 2023) and lack a genuine com-
prehension of the causal framework (Ashwani
et al., 2024). Therefore, our focus is on a sub-
set of the COPES data whose causal relation-
ships are difficult for LLMs to grasp in a zero-
shot setting. Specifically, out of the 340 sam-
ples from the COPES dataset, there are 70 sam-
ples in total which show ≥ 3 false positives when
gpt-4-turbo is prompted to identify the possi-
ble cause(s) in a zero-shot setting. One of the 70
samples is shown below:
Events: ‘Denise loved playing pokemon go.’,
‘She decided to take a walk so she could play.’,
‘While she was crossing the street, denise saw a
pokemon on her screen.’, ‘Denise was almost hit
by a car as she walked into traffic.’, ‘She decided
to only play on the sidewalk from now on.’
Outcome: ‘She decided to only play on the side-
walk from now on.’
Cause: ‘Denise was almost hit by a car as she
walked into traffic.’

In the example shown above and under a zero-
shot setting, gpt-4-turbo identifies all four
event sequences that preceed the observed out-
come to be causes. While all four sequences might
co-occur frequently with the observed outcome,
narrowing down to the one true cause requires a
more robust framework. The goal of our approach
is to improve the precision without too much de-
terioration in recall, thereby achieving an increase
in the F1-score.

4.2 Baseline Methods

• Direct prompting: given the five
chronologically ordered events, we ask
gpt-4-turbo to select event(s) from the
first four that cause(s) the fifth event.

• Prompting with counterfactual thinking:
One by one, we ask gpt-4-turbo if the
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fifth event would still happen, had each of the
first four events not happened9.

• ROCK: A RCM based causal inference
framework (Zhang et al., 2022) that generates
interventions and balances covariates with
temporal propensity matching.

• COLA: A RCM based causal inference
framework (Wang et al., 2023) that generates
interventions and balances covariates from
multiple timestamps so as to take context in-
formation into account.

4.3 Experimental Setup

Since the COPES dataset consists of primarily
children’s stories, we use TinyStories (Eldan and
Li, 2023) which resembles the content of the sam-
ples as our corpus. The choice of TinyStories as
the corpus for retrieval is mostly as a result of the
nature of our test dataset, but the approach of syn-
thesizing control units from a large corpus also ap-
plies to identifying causal relationships from real
life events based on retrieval from narratives and
news corpus, among other genres.

During experimentation, we set the corpus re-
trieval size n to be 100. The maximum number of
documents kept for inversion is 5, and the mini-
mum is 2, i.e. if we are unable to find at least 2
documents that satisfy our criteria, the algorithm
outputs “indeterminate” for the event pair. The
cosine similarity threshold is set to 0.8 for both
pretreatment similarity and treatment dissimilar-
ity. For ridge regression, we set the parameter λ
to 1.0. When we apply Vec2Text to generate the
synthetic potential outcome, we set the number of
steps to 10 with a beam width of 4.

4.4 Results

Table 1 below summarizes the performance of our
algorithm compared against two previous RCM
based methods and zero-shot performance of
gpt-4-turbo and gpt-4-turbo with coun-
terfactual thinking.

Our Synthetic Control approach delivers a re-
markable precision of 0.2663, marking a sig-
nificant rise of 29.8%, or roughly six percent-
age points, over the precision achieved by direct
prompting gpt-4-turbo. It also shows a re-
markable improvement over other models such

9See Appendix A.4 for detailed prompt.

Precision Recall F1
gpt-4-turbo 0.2052 0.8462 0.3303
Counterfactual 0.1566 0.9013 0.2668

ROCK 0.2239 0.6960 0.3388
COLA 0.2437 0.8643 0.3802

Synthetic Control 0.2663 0.75 0.3930

Table 1: Comparison of model performances on the
COPES-hard dataset.

as ROCK (0.2239) and COLA (0.2437), rein-
forcing the accuracy of our method in distin-
guishing true causal relationships and reducing
false positives. Moreover, this approach reflects
a 19.0% enhancement in the F1-score compared
to gpt-4-turbo, thus highlighting a more bal-
anced performance between precision and re-
call. Notably, our results indicate that less com-
pute and parameter-intensive models, such as
gpt-3.5-turbo, can outmatch larger models
in discerning causal relationships within text. This
underscores that the efficiency of a model in han-
dling causality-related tasks is not strictly depen-
dent on its size or complexity.

In conclusion, our synthetic control approach
provides a robust method for event causality iden-
tification in the text, underscoring broad-ranging
improvements across standard performance met-
rics relative to existing approaches, and demon-
strating the potential superiority of leaner models.

5 Related Work

5.1 Causal Inference
Causal inference has been a pivotal area of study
in both statistics and artificial intelligence. Two
dominant frameworks have emerged in this field:
the Rubin Causal Model (RCM) and Pearl’s do-
calculus. The Rubin Causal Model, also known
as the potential outcomes framework, was de-
veloped by Neyman (1923), Rubin (1974), and
Holland (1986) and is grounded in the idea of
counterfactuals. In this model, causality is es-
tablished by comparing potential outcomes—what
would happen both with and without the treat-
ment. This approach relies heavily on randomized
controlled trials (RCTs) to estimate causal effects,
providing a clear mechanism to distinguish causa-
tion from correlation. Key methodologies within
this framework include propensity score matching
(Rosenbaum and Rubin, 1983; Ho et al., 2007) and
synthetic control methods (Abadie et al., 2010;
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Billmeier and Nannicini, 2013; Saunders et al.,
2015), which are particularly useful in observa-
tional studies where randomization is not feasible.

Different from the potential outcome frame-
work, Pearl (1995)’s do-calculus is rooted in struc-
tural causal models (SCMs) and utilizes directed
acyclic graphs (DAGs) to represent causal rela-
tionships. The do-calculus provides a formal lan-
guage to express and manipulate these relation-
ships, offering tools to calculate causal effects
from observational data by simulating interven-
tions (Pearl, 2009). This framework has been
instrumental in formalizing causal inference, es-
pecially in scenarios where RCTs are not possi-
ble, and has broad applications across various do-
mains, including epidemiology, social sciences,
and artificial intelligence.

5.2 ECI in NLP
Event causality identification in natural language
processing (NLP) has traditionally relied on
feature-based approaches, where linguistic pat-
terns are key indicators of causal relations. Early
works focused on extracting causal relationships
using predefined causal markers such as “be-
cause,” “therefore,” and “due to” (Beamer and
Girju, 2009; Hidey and McKeown, 2016). How-
ever, these approaches often fall short in distin-
guishing causation from correlation, as causal lan-
guage in everyday text can be used informally
and ambiguously (Imbens and Rubin, 2015). Re-
cent advancements have shifted towards lever-
aging deep learning and graph-based methods
to improve ECI. Multi-hop reasoning on graphs
and the integration of external knowledge bases
have shown promise in enhancing the accuracy of
causality extraction (Cao et al., 2021; Chen et al.,
2022). Despite these improvements, these meth-
ods still face challenges related to bias and the re-
liability of inferred causal relations, particularly
when relying heavily on linguistic patterns with-
out robust causal foundations.

Two recent work, ROCK (Zhang et al., 2022)
and COLA (Wang et al., 2023), mitigate the afore-
mentioned bias by applying the potential outcome
framework to ECI. ROCK introduces temporal
propensity matching to construct intervention of
treatments, whereas COLA improves upon ROCK
by considering the context of events at the same
time. Yet COLA is still limited by its coarse mod-
eling of context events, i.e., ultimately merging co-
variates to construct a covariate set, which would

lose the temporal interaction and sequential in-
formation within the context events. Moreover,
both methods adopt intervention generation with
language models which is somewhat problematic
given the prevalent hallucination issue (McKenna
et al., 2023; Rawte et al., 2023) in LLM genera-
tion. In contrast, our approach not only models
the context with text embedding in the continuous
space, but also retrieves from reliable sources in-
stead of relying on LLM generation.

5.3 Embedding to Text

The process of recovering text from language
model (LM) embeddings (Adolphs et al., 2022;
Ram et al., 2023), also known as LM inversion,
has gained significant attention with the rise of
deep learning and transformer-based models in
NLP. Text embeddings, such as those produced
by BERT (Devlin et al., 2019), GPT-2 (Radford
et al., 2019), and other transformer models, encap-
sulate semantic information in dense vector repre-
sentations. These embeddings are instrumental in
a variety of NLP tasks, including text classifica-
tion, machine translation, and question answering.
However, the challenge of reversing these embed-
dings back into human-readable text, or LM in-
version, is crucial for interpretability and for ap-
plications like counterfactual generation in causal-
ity studies. Recent research has explored vari-
ous techniques for this inversion process. For in-
stance, Morris et al. (2023, 2024) leverage neural
networks to decode or generate text from its em-
beddings, ensuring that the generated text closely
matches the original semantic meaning. In text-
based causal inference tasks, embeddings can be
used to generate synthetic control units by con-
structing ‘twins’ for protagonists of events. By
synthesizing events and contexts that are statisti-
cally similar to those experienced by a protagonist,
we can estimate causal effects in scenarios where
direct manipulation is impractical.

6 Conclusion

Our work shows that creating counterfactuals with
synthetic control, a concept that has been widely
adopted in other disciplines such as economics,
can be effectively applied to event causality iden-
tification under zero-shot settings. This retrieval-
based method instills more confidence in the re-
sult, offering more robust performance in tasks at
which state-of-the-art LLMs might fail. Our re-
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sults also open up opporunities for research with
more complex datasets and causal relationships.

Limitations

Our research has made significant advancements
in event causality identification in text using the
synthetic control method. However, it is essential
to acknowledge the limitations.

The first significant limitation of our approach
hinges on the quality and relevance of the retrieved
control units. The synthetic control method’s ac-
curacy highly depends on the available pool of
control units drawn from historical data. If the
data lacks adequate and suitable counterparts for
the treatment group or is biased towards certain
types of sequences or events, it may hamper the
function and outcomes of the model.

The time complexity of our method could be
another limitation. The process of retrieving rel-
evant control units, synthesizing synthetic con-
trols, and estimating causal effects can be com-
putationally intensive and time-consuming, espe-
cially when dealing with large datasets. The scal-
ability of the method is a factor that needs fur-
ther considerations to make it feasible for larger-
scale applications. Our method also relies heav-
ily on text embeddings for the synthesis of con-
trol units. Despite their proficiency at capturing
semantic information from text, the embeddings
generated by language models are not perfect and
could inadvertently introduce a level of seman-
tic loss or distortion. The process of recovering
the text from the embeddings, also mentioned as
model inversion, is also prone to error and could
affect the quality of the generated ’twins’. Our ap-
proach currently assumes that the event sequences
are independent and identically distributed, which
might not hold in many real-world scenarios. For
instance, in a narrative, events usually have depen-
dencies, and ignoring relationships between se-
quences can lead to misleading conclusions.

While these limitations present challenges, they
also provide directions for future work to enhance
our understanding of the application of synthetic
control method in identifying event causality in
text and scale this approach for broader usage
within the field.

Ethics Statement

Our work involves leveraging machine learning al-
gorithms to enhance the identification of causal re-

lationships in textual data, specifically focusing on
event causality. Our primary source of data is the
publicly available COPES dataset, which does not
involve data of a personal or sensitive nature.

While the development and application of our
approach do not involve immediate ethical con-
cerns, there could arise potential implications in
its broader applications. Event causality identifi-
cation in text could be used in various scenarios,
such as content generation, recommender systems,
and even legal contexts. It is important to out-
line possible misuse. Firstly, the algorithm can be-
come a tool for spreading misinformation or gen-
erating biased content if the causal inferences it
draws from the input text are incorrect or mislead-
ing. Stringent validation methods and unbiased,
accurate control units are essential to mitigate such
concerns. Secondly, it is critical to be aware of
potential biases in the historical data used for re-
trieving control units. This could impact the de-
velopment of synthetic controls and subsequently
skew the interpretation of causality. Lastly, pri-
vacy concerns could arise if the method is applied
to text that holds private or sensitive information.
As researchers, we ought to uphold the privacy and
anonymity of any subjects used in such data.

Broader Impact

In this work, we propose a novel approach to event
causality identification in text, combining the po-
tential outcome framework and synthetic control
method. This research contributes noteworthy ad-
vancements in Natural Language Processing and
has the potential for substantial broader impacts in
various domains.

Our method provides a scientifically rigorous
approach to understanding causality in narratives.
It opens avenues for greater exploration and under-
standing in the domain of causal inference from
text, which can be critical for fields like social sci-
ences, psychology, law, and many more. The ap-
plication of our method could also greatly enhance
the development of AI and machine learning mod-
els that require proficiency in understanding, fig-
uring out and interpreting event causality. This
includes recommendation systems, chatbots, vir-
tual assistants, and AI narrative generation. More-
over, our synthetic control approach can signifi-
cantly benefit information retrieval systems, text
summarization, text simplification, and informa-
tion extraction applications. Better understanding
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of textual event causality could enhance the rele-
vance and quality of queried information.

While there are significant benefits, some po-
tential negative impacts also warrant attention.
Causality identification in text can be used to in-
fer sensitive information in adversarial settings,
which can pose privacy concerns. Furthermore,
the algorithm can unintentionally propagate or in-
tensify existing bias in the data, leading to ethical
and social implications in decision-making sys-
tems. The true broader impact of our research
will heavily depend on the contexts and domains
within which it is applied. Adopting a respon-
sible, ethical, and fair use perspective is vital to
maximize the potential benefits while minimizing
harm. We encourage future applications to con-
sider these aspects while exploiting this method.
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A Example Appendix

A.1 Prompt for summarization
You will be given a short story. Please help to
summarize the key events in the text to 5 or fewer
sentences of less than 15 words each. The events
should be in chronological order, and the events
should capture the key actors, location, causes,
and effects of the event being described. Return
your answer in JSON as a array of strings in the
key ‘result‘.

Here is an example: Text: “‘ Once upon a time,
there was an ugly frog. The ugly frog lived in a
small pond. The frog liked to get things. He would
get things from the bottom of the pond. One day,
he saw a shiny weight. The ugly frog wanted the
shiny weight. He tried to get it, but it was too
heavy. He tried and tried, but he could not get
it. The ugly frog was sad. He wanted the shiny
weight so much. Then, a big fish came. The big
fish saw the ugly frog and the shiny weight. The
big fish wanted to help. The big fish and the ugly
frog worked together to get the shiny weight. They
were happy to have the shiny weight. They be-
came good friends. “‘
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Answer: “‘ "result": [ "An ugly frog who liked
to get things lived in a small pond.", "One day, the
ugly frog saw a shiny weight, and wanted to get
it, but could not.", "A big fish came, and the fish
wanted to help the ugly frog get the shiny weight.",
"The big fish worked together with the ugly frog to
get the shiny weight.", "The fish and the frog were
happy to get the weight and became good friends."
] “‘

Now your turn: Text: "text"

A.2 Prompt for measuring similarity
Given two separate events:

—— Event A: "event" —— Event B:
"test_event" ——

Ignoring the specific characters, question?
Provide your answer in JSON with the keys
‘is_similar‘ and ‘reasoning‘.

A.3 Prompt for anonymization
You will be given a story. Your job is to anonymize
the names of persons, and replace them with a
generic term. If there is nothing to anonymize, re-
turn the story as is.

For example, "Mary" should be replaced by "a
girl", and "Tim" should be replaced by "a boy".

Return your result as a string in the key ‘result‘
of a JSON object.

Now your turn: Story: event

A.4 Prompt for counterfactual thinking
Here is a story with five events: {story}.

Your task is to tell if the {i}-th event {event 1}
is the cause of the fifth event {event 2}.

Please think step-by-step. You need to imagine
a scenario where the {i}-th event {event 1} is in-
tervened by some other event and then determine
if the fifth event {event 2} would still happen. If
the fifth event would still happen, then answer no;
else answer yes.

Now tell me if there exists a causal relation be-
tween the two events.
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