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Abstract

Hallucinated translations pose significant
threats and safety concerns when it comes to
practical deployment of machine translation
systems. Previous research works have identi-
fied that detectors exhibit complementary per-
formance — different detectors excel at detect-
ing different types of hallucinations. In this
paper, we propose to address the limitations
of individual detectors by combining them and
introducing a straightforward method for aggre-
gating multiple detectors. Our results demon-
strate the efficacy of our aggregated detector,
providing a promising step towards evermore
reliable machine translation systems.

1 Introduction

Neural Machine Translation (NMT) has become
the dominant methodology for real-world machine
translation applications and production systems.
As these systems are deployed in-the-wild for real-
world usage, it is ever more important to ensure
that they are highly reliable. While NMT sys-
tems are known to suffer from various patholo-
gies (Koehn and Knowles, 2017), the most severe
among them is the generation of translations that
are detached from the source content, typically
known as hallucinations (Raunak et al., 2021; Guer-
reiro et al., 2022b). Although rare, particularly in
high-resource settings, these translations can have
dramatic impact on user trust (Perez et al., 2022).
As such, researchers have worked on (i) methods to
reduce hallucinations either during training-time or
even inference time (Xiao and Wang, 2021; Guer-
reiro et al., 2022b; Dale et al., 2022; Sennrich
et al., 2024), and alternatively, (ii) the development
of highly effective on-the-fly hallucination detec-
tors (Guerreiro et al., 2022b,a; Dale et al., 2022) to
flag these translations before they reach end-users.
In this paper, we will focus on the latter.

One immediate way to approach the problem of
hallucination detection is to explore high-quality ex-

ternal models that can serve as proxies to measure
detachment from the source content, e.g., quality
estimation (QE) models such as CometKiwi (Rei
et al., 2022), or cross-lingual sentence similar-
ity models like LASER (Artetxe and Schwenk,
2019) and LaBSE (Feng et al., 2022). Intuitively,
extremely low-quality translations or translations
that are very dissimilar from the source are more
likely to be hallucinations. And, indeed, these de-
tectors can perform very effectively as hallucina-
tion detectors (Guerreiro et al., 2022b; Dale et al.,
2022). Alternatively, another effective approach is
to leverage internal model features such as atten-
tion maps and sequence log-probability (Guerreiro
et al., 2022b,a; Dale et al., 2022). The assumption
here is that when translation models generate hal-
lucinations, they may reveal anomalous internal
patterns that can be highly predictive and useful for
detection, e.g., lack of contribution from the source
sentence tokens to the generation of the transla-
tion (Ferrando et al., 2022). Most importantly, dif-
ferent detectors exhibit complementary properties.
For instance, oscillatory hallucinations — trans-
lations with anomalous repetitions of phrases or
n-grams (Raunak et al., 2021) — are readily iden-
tified by CometKiwi, while detectors based on low
source contribution or sentence dissimilarity strug-
gle in this regard. Therefore, there is an inherent
trade-off stemming from the diverse anomalies dif-
ferent detectors excel at.

In this paper, we address this trade-off by propos-
ing a simple yet highly effective method to aggre-
gate different detectors to leverage their comple-
mentary strengths. Through experimentation in
the two most widely used hallucination detection
benchmarks, we show that our method consistently
improves detection performance.
Key contributions are as follows:

• We propose STARE, an unsupervised Simple
deTectors AggREgation method that achieves
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state-of-the-art performance well on two hal-
lucination detection benchmarks.

• We demonstrate that our consolidated detector
can outperform single-based detectors with as
much as aggregating two complementary de-
tectors. Interestingly, our results suggest that
internal detectors, which typically lag behind
external detectors, can be combined in such a
way that they outperform the latter.

We release our code and scores to support future
research and ensure reproducibility.1

2 Detectors Aggregation Method

2.1 Problem Statement
Preliminaries. Consider a vocabulary Ω and let
(X,Y ) be a random variable taking values in X×Y ,
where X ⊆ Ω∗ represents translations and Y =
{0, 1} denotes labels indicating whether a transla-
tion is a hallucination (Y = 1) or not (Y = 0). The
joint probability distribution of (X,Y ) is PXY .

Hallucination detection. The goal of halluci-
nation detection is to classify a given translation
x ∈ X as either an expected translation from
the distribution PX|Y=0 or as a hallucination from
PX|Y=1. This classification is achieved by a binary
decision function g : X → 0, 1, which applies a
threshold γ ∈ R to a hallucination score function
s : X → R. The decision function is defined as:

g(x) =

{
1 if s(x) > γ,
0 otherwise.

The objective is to create an hallucination score
function s that effectively distinguishes halluci-
nated translations from other translations.

Aggregation. Assume that we have several hal-
lucination score detectors2. When evaluating a
specific translation x′, our goal is to combine the
scores from the single detectors into a single, more
reliable score that outperforms any of the individual
detectors alone. Formally, this aggregation method,
denoted as Agg, is defined as follows:

Agg : RK → R

{sk(x′)}Kk=1 → Agg

(
{sk}Kk=1

)
.

1Code is available here:
https://github.com/AnasHimmi/
Hallucination-Detection-Score-Aggregation.

2We use the notation {sk}Kk=1 to represent a set consisting
of K hallucination detectors, where each sk is a function
mapping from X to R.

2.2 Proposed Aggregation Method
We start with the assumption that we have access
to K hallucination scores and aim to construct an
improved hallucination detector using these scores.
The primary challenge in aggregating these scores
arises from the fact that they are generated in an
unconstrained setting, meaning that each score
may be measured on a different scale. Conse-
quently, the initial step is to devise a method for
standardizing these scores to enable their aggre-
gation. The normalization is performed using the
min-max normalization based on the entire training
dataset Dn = {x1, . . . , xn}. Formally, for a given
score sk, the normalized score s′k is computed as
follows:

s′k =
sk(x

′)− min
z∈Dn

sk(z)

max
z∈Dn

sk(z)− min
z∈Dn

sk(z)
.

Using these normalized scores, we construct a hal-
lucination detector by summing them.

Agg(x′) =
K∑

k=1

s′k. (1)

We denote this method as STARE.

3 Experimental Setup

3.1 Datasets
In our experiments, we utilize the human-annotated
datasets released in Guerreiro et al. (2022b) and
Dale et al. (2023). Both datasets include detection
scores — both for internal and external detectors
— for each individual translation:

LFAN-HALL. A dataset of 3415 translations
for WMT18 German→English news translation
data (Bojar et al., 2018) with annotations on critical
errors and hallucinations (Guerreiro et al., 2022b).
This dataset contains a mixture of oscillatory hal-
lucinations and fluent but detached hallucinations.
We provide examples of such translations in Ap-
pendix A. For each translation, there are six differ-
ent detector scores: three are from external mod-
els (scores from COMET-QE and CometKiwi,
two quality estimation models, and sentence sim-
ilarity from LaBSE, a cross-lingual embedding
model), and three are from internal methods
(length-normalized sequence log-probability, Seq-
Logprob; contribution of the source sentence for
the generated translation according to ALTI+ (Fer-
rando et al., 2022), and WASS-COMBO, an Optimal
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DETECTOR AUROC ↑ FPR ↓
Individual Detectors

External
COMET-QE 70.15 57.24
CometKiwi 86.96 35.15
LaBSE 91.72 5 26.86 5

Model-based
Seq-Logprob 83.40 58.99
ALTI+ 84.24 66.19
Wass-Combo 87.02 48.38

Aggregated Detectors

External Only (gap to best single External)
Isolation Forest 92.61 ↑0.89 19.08 ↓7.78
Max-Norm 92.43 ↑0.71 22.09 ↓4.77
STARE 93.32 ↑1.60 20.67 ↓6.19

Model-based Only (gap to best single Model-based)
Isolation Forest 88.19 ↑1.17 36.63 ↓11.8
Max-Norm 83.81 ↓3.21 62.94 ↑14.6
STARE 89.07 ↑2.05 42.50 ↓5.88

All (gap to best overall)
Isolation Forest 92.84 ↑1.12 23.90 ↓2.96
Max-Norm 91.60 ↓0.12 26.38 ↓0.48
STARE 94.12 ↑2.40 17.06 ↓9.80

(a) Results on LFAN-HALL.

DETECTOR AUROC ↑ FPR ↓
Individual Detectors

External
COMET-QE 84.24 42.30
LASER 82.57 40.35
XNLI 82.67 36.70
LaBSE 90.57 5 28.03 5

Model-based
Seq-Logprob 88.88 26.32
ALTI+ 87.08 46.20
Wass-Combo 67.51 83.84

Aggregation Detectors

External Only (gap to best single External)
Isolation Forest 72.94 ↓17.6 59.20 ↑31.2
Max-Norm 90.01 ↓0.56 32.60 ↑4.57
STARE 91.14 ↑0.57 28.50 ↑0.47

Model-based Only (gap to best single Model-based)
Isolation Forest 79.61 ↓9.27 59.64 ↑33.3
Max-Norm 76.09 ↓12.8 72.74 ↑46.4
STARE 92.49 ↑3.61 19.71 ↓6.61

All (gap to best overall)
Isolation Forest 79.65 ↓10.9 50.49 ↑24.2
Max-Norm 84.32 ↓6.25 43.41 ↑17.1
STARE 92.83 ↑2.26 22.61 ↓3.71

(b) Results on HALOMI.

Table 1: Performance, according to AUROC and FPR, of all single detectors available and aggregation methods via
combination of external detectors, model-based detectors, or both simultaneously. We represent with 5 the best
overall single detector and underline the best detectors for each class, according to our primary metric AUROC.

Transport inspired method that relies on the aggre-
gation of attention maps).

HALOMI. A dataset with human-annotated hal-
lucination in various translation directions. We test
translations into and out of English, pairing En-
glish with five other languages — Arabic, German,
Russian, Spanish, and Chinese, consisting of over
3000 sentences across the ten different language
pairs. Importantly, this dataset has two important
properties that differ from LFAN-HALL: (i) it has
a much bigger proportion of fluent but detached
hallucinations (oscillatory hallucinations were not
considered as a separate category), and (ii) nearly
35% of the translations are deemed hallucinations,
as opposed to about 8% for LFAN-HALL.3 For
each translation, there are seven different detec-
tion scores: the same internal detection scores as
LFAN-HALL, and four different detector scores:
COMET-QE, LASER, XNLI and LaBSE.

We provide more details on both datasets in Ap-
pendix A.

3Given the rarity of hallucinations in practical translation
scenarios (Guerreiro et al., 2023), LFAN-HALL offers a more
realistic simulation of detection performance.

Aggregation Baselines. The closest related work
is Darrin et al. (2023) on out-of-distribution de-
tection methods, using an Isolation Forest (IF; Liu
et al., 2008) for per-class anomaly scores. We adapt
their method, employing a single Isolation Forest,
and designate it as our baseline. Alternatively, we
also consider a different way to use the individual
scores and normalization weights in Equation 1:
instead of performing a sum over the weighted
scores, we take the maximum score. We denote
this baseline as Max-Norm.

Evaluation method. Following Guerreiro et al.
(2022a), we report Area Under the Receiver Oper-
ating Characteristic curve (AUROC) as our primary
metric, and False Positive Rate at 90% True Posi-
tive Rate (FPR@90TPR) as a secondary metric.

Implementation details. For LFAN-HALL, we
normalize the metrics by leveraging the held-out
set released with the dataset consisting of 100,000
non-annotated in-domain scores. In the case of
HALOMI, however, no held-out set was released.
As such, we rely on sampling random splits that
consist of 10% of the dataset for calibration. We

18575



repeat the process 10 different times. We report
average scores over those different runs. We also
report the performance variance in the Appendix.
Following the HalOmi methodology, we compute
the AUC separatly for each language pair before
taking the average.

3.2 Performances Analysis
Results on hallucination detection performance on
LFAN-HALL and HalOmi are reported in Table 1.

Global Analysis. STARE aggregation method
consistently outperforms (i) single detectors’ per-
formance, and (ii) other aggregation baselines.
Moreover, we find that the combination of all de-
tectors — both model-based and external-based de-
tectors — yields the best overall results, improving
over the STARE method based on either internal
or external models only. Importantly, these trends,
contrary to other alternative aggregation strategies,
hold across both datasets.

Aggregation of External Detectors. STARE
demonstrates robust performance when aggregat-
ing external detectors on both LFAN-HALL and
HALOMI: improvements in AUROC (over a point)
and in FPR (between two to six points). Interest-
ingly, we also observe that the best overall perfor-
mance obtained exclusively with external models
lags behind that of the overall aggregation. This
suggests that internal models features — directly
obtained via the generation process — contribute
with complementary information to that captured
by external models.

Aggregation of Internal Detectors. Aggrega-
tion of internal detectors, can achieve higher AU-
ROC scores than the best single external detector
on HALOMI. This results highlights how model-
based features — such as attention and sequence
log-probability — that are readily and efficiently
obtained as a by-product of the generation can,
when aggregated effectively, outperform more com-
putationally expensive external solutions.

3.3 Ablation Studies
In this section, our focus is two-fold: (i) exploring
optimal selections of detectors, and (ii) understand-
ing the relevance of the reference set’s size.

Optimal Choice of detectors. We report the
performance of the optimal combination of N -
detectors on both datasets in Table 2.4 We note

4We report the optimal combinations in Appendix C.

Figure 1: Impact of reference set size on LFAN-HALL.

that including all detectors yields comparable per-
formance to the best mix of detectors. Interest-
ingly, aggregation always brings improvement,
even when only combining two detectors. As ex-
pected, the best mixture of detectors leverages in-
formation from different signals: contribution of
source contribution, low-quality translations, and
dissimilarity between source and translation. In
Table 2, "STARE" represents the selection of all
available detectors—6 detectors for LFAN-HALL
and 7 detectors for HALOMI. This accounts for the
total number of detectors reported. The best combi-
nation is determined through brute-force evaluation
of all possible combinations of detectors.

LFAN-HALL HALOMI

N AUROC FPR@90 AUROC FPR@90

LaBSE 91.72 26.86 90.57 28.03
2 93.32 20.67 93.24 20.32
3 94.11 17.27 93.51 21.00
4 94.45 13.69 93.27 20.35
5 94.12 17.06 93.43 22.68
6 — — 93.04 23.81

STARE 94.12 17.06 92.83 22.61

Table 2: Ablation Study on the Optimal Choice of De-
tectors when using STARE.

Impact of the size of the references set. The
calibration of scores relies on a reference set. Here,
we examine the impact of the calibration set size
on performance, by ablating on the held-out set
LFAN-HALL, which comprises of 100k sentences.
Figure 1 shows that the ISOLATION FOREST re-
quires a larger calibration set to achieve similar
performance. This phenomenon might explain the
drop in performance observed on HALOMI (Ta-
ble 1). Interestingly, the performance improvement
for STARE, particularly in FPR, plateaus when the
reference set exceeds 1,000 samples, which sug-
gests that STARE can adapt to different domains
with a rather small reference set.
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4 Summary of Key Findings from
Additional Experiments

The appendix presents several key findings from
our additional experiments. Firstly, STARE consis-
tently outperforms individual detectors and other
aggregation techniques, despite some variance be-
tween different runs on the HalOmi dataset. Sec-
ondly, we show that quantile transformation offers
a robust alternative to min-max normalization by
mitigating the impact of outliers and maintaining a
uniform distribution, with Quantile-STARE show-
ing competitive performance to STARE. Addition-
ally, our comparison with the majority vote base-
line, focusing on F1 scores, highlights STARE’s
superior performance. Lastly, we analyze the con-
tribution of different metrics to STARE’s decisions,
revealing that external detectors are the most dis-
criminative and significantly enhance performance
across both benchmarks.

5 Conclusion & Future Perspectives

We propose a simple aggregation method to com-
bine hallucination detectors to exploit complemen-
tary benefits from each individual detector. We
show that our method can bring consistent improve-
ments over previous detection approaches in two
human-annotated datasets across different language
pairs. We are also releasing our code and detection
scores to support future research on this topic.

6 Limitations

Our methods are evaluated in a limited setup due to
the limited availability of translation datasets with
annotation of hallucinations. Moreover, in this
study, we have not yet studied compute-optimal
aggregation of detectors — we assume that we
already have access to multiple different detection
scores.
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A Model and Data Details

A.1 LFAN-HALL dataset

NMT Model. The model used in Guerreiro et al.
(2022b) is a Transformer base model (Vaswani
et al., 2017) (hidden size of 512, feedforward size
of 2048, 6 encoder and 6 decoder layers, 8 atten-
tion heads). The model has approximately 77M
parameters. It was trained on WMT18 DE-EN data:
the authors randomly choose 2/3 of the dataset for
training and use the remaining 1/3 as a held-out set
for analysis. We use a section of that same held-out
set in this work.

Dataset Stats. The dataset consists of 3415 trans-
lations from WMT18 DE-EN data. Overall, there
are 218 translations annotated as detached halluci-
nations (fully and strongly detached — see more
details in Guerreiro et al. (2022b)), and 86 as oscil-
latory hallucinations.5 The other translations are
either incorrect (1073) or correct (2048). We show
examples of hallucinations for each category in
Table 4.6

A.2 HALOMI dataset

NMT model. Translations on this dataset come
from 600M distilled NLLB model (NLLB Team
et al., 2022).

B Variance of performance on the
HALOMI dataset

We report in Table 3 the average performance as
well as the standard deviation across the differ-
ent ten runs on different calibration sets. Despite
variance between different runs, the STARE aggre-
gation method consistently outperforms individual
detectors and other aggregation techniques.

C Optimal Combination of Detectors via
STARE

LFAN-HALL. The optimal set of detectors for
various values of N is:

• for N = 1: LaBSE

• for N = 2: CometKiwi, LaBSE

5Some strongly detached hallucinations have also been
annotated as oscillatory hallucinations. In these cases, we
follow Guerreiro et al. (2022a) and consider them to be oscil-
latory.

6All data used in this paper is licensed under a MIT Li-
cense.

DETECTOR AUROC ↑ FPR@90TPR ↓
Individual Detectors

External
COMET-QE 82.22 ± 0.28 47.40 ± 0.82
LASER 81.11 ± 0.21 47.04 ± 0.78
XNLI 82.44 ± 0.18 33.20 ± 0.63
LaBSE 88.77 ± 0.21 34.96 ± 0.72

Model-based
Seq-Logprob 86.72 ± 0.22 28.86 ± 0.64
ALTI+ 82.26 ± 0.28 58.40 ± 0.54
Wass-Combo 64.82 ± 0.20 84.62 ± 0.52

Aggregated Detectors

External Only
Isolation Forest 71.35 ± 1.62 57.75 ± 4.55
Max-Norm 88.57 ± 0.38 32.59 ± 0.60
STARE 89.76 ± 0.19 32.74 ± 0.50

Model-based Only
Isolation Forest 75.35 ± 2.32 69.71 ± 5.01
Max-Norm 67.70 ± 1.31 83.83 ± 1.40
STARE 89.92 ± 0.20 30.37 ± 1.84

All
Isolation Forest 76.25 ± 2.16 56.28 ± 6.29
Max-Norm 80.67 ± 1.37 41.52 ± 5.87
STARE 91.18 ± 0.20 28.85 ± 0.89

Table 3: Performance of individual and aggregated hal-
lucination detectors on the HALOMI dataset, including
average performance and standard deviations across ten
different calibration sets.

• for N = 3: Wass_Combo, CometKiwi,
LaBSE

• for N = 4: ALTI+, Wass_Combo,
CometKiwi, LaBSE

• for N = 5: ALTI+, SeqLogprob,
Wass_Combo, CometKiwi, LaBSE

HALOMI. The optimal set of detectors for vari-
ous values of N is:

• for N = 2: ALTI+, SeqLogprob

• for N = 3: ALTI+, SeqLogprob, LaBSE

• for N = 4: ALTI+, SeqLogprob, LaBSE,
COMET-QE

• for N = 5: ALTI+, SeqLogprob, LaBSE,
COMET-QE, XNLI

• for N = 6: ALTI+, SeqLogprob, LaBSE,
COMET-QE, XNLI, Laser

• for N = 7: ALTI+, SeqLogprob, LaBSE,
COMET-QE, XNLI, Laser, Wass-Combo
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Category Source Sentence Reference Translation Hallucination

Oscillatory
Als Maß hierfür wird meist der sogenannte Pearl
Index benutzt (so benannt nach einem Statistiker,
der diese Berechnungsformel einführte).

As a measure of this, the so-called Pearl Index
is usually used (so named after a statistician
who introduced this calculation formula).

The term "Pearl Index" refers to the term
"Pearl Index" (or "Pearl Index") used to
refer to the term "Pearl Index" (or "Pearl
Index").

Strongly
Detached Fraktion der Grünen / Freie Europäische Allianz The Group of the Greens/European Free Al-

liance

Independence and Democracy Group (in-
cludes 10 UKIP MEPs and one indepen-
dent MEP from Ireland)

Fully
Detached

Die Zimmer beziehen, die Fenster mit Aussicht
öffnen, tief durchatmen, staunen.

Head up to the rooms, open up the windows
and savour the view, breathe deeply, marvel. The staff were very friendly and helpful.

Table 4: Examples of hallucination types. Hallucinated content is shown shaded.

D Quantile transformation instead of
min-max normalization

One drawback of min-max scaling is its vulner-
ability to outliers, as a single outlier can distort
the entire distribution. We compare in this sec-
tion STARE with a quantile transformation which
maps all values into the [0, 1] range in a mono-
tonic fashion and also makes the distribution of the
resulting values approximately uniform. The re-
sults in Tables 5 and 6 show that Quantile-STARE
demonstrates competitiveness STARE.

DETECTOR AUROC ↑ FPR@90TPR ↓
External Only
STARE 93.32 20.67
Quantile-STARE 93.09 16.03

Model-based Only
STARE 89.07 42.50
Quantile-STARE 90.30 33.92

All
STARE 94.12 17.06
Quantile-STARE 94.00 20.46

Table 5: Comparison of STARE with Quantile-STARE
on LFAN-Hall

DETECTOR AUROC ↑ FPR@90TPR ↓
External Only
STARE 89.76 ± 0.19 32.74 ± 0.50
Quantile-STARE 90.06 ± 0.20 31.73 ± 0.44

Model-based Only
STARE 89.92 ± 0.28 30.37 ± 1.84
Quantile-STARE 90.15 ± 0.14 28.09 ± 0.60

All
STARE 91.18 ± 0.20 28.85 ± 0.89
Quantile-STARE 91.79 ± 0.18 29.39 ± 0.43

Table 6: Comparison of STARE with Quantile-STARE
on HalOmi

E Comparision with the majority vote

Below (Table 7) are the results (F1 score) for the
majority vote baseline as it is not possible to define
the AUROC or FPR.

LFAN-Hall HalOmi

Majority vote 0.74 0.78 ± 0.01
STARE 0.78 0.82 ± 0.03

Table 7: f1 scores of majority vote and STARE on the
two datasets

F Contribution of metrics in the decision
of STARE

To better understand the strength of STARE, we
compare the mean of normalized scores for halluci-
nation and non-hallucination. Tables 8 and 9 show
that External detectors are the most discriminative
and contribute the most to both benchmarks

METRIC No Hallucinations Hallucinations

ALTI+ 0.62 0.27
Seq-Logprob 0.57 0.23
Wass-Combo -0.05 -0.43
CometKiwi 0.75 0.34
LaBSE 0.79 0.36

Table 8: Contribution of metrics in the decision of
STARE on LFAN-Hall

METRIC No Hallucinations Hallucinations

Seq-Logprob 0.76 ± 0.02 0.41 ± 0.05
ALTI+ 0.76 ± 0.02 0.42 ± 0.04
COMET-QE 0.71 ± 0.03 0.39 ± 0.05
LaBSE 0.83 ± 0.01 0.41 ± 0.04
LASER 0.78 ± 0.01 0.50 ± 0.03
XNLI 0.74 ± 0.00 0.17 ± 0.00
Wass-Combo 0.84 ± 0.03 0.61 ± 0.08

Table 9: Contribution of metrics in the decision of
STARE on HalOmi
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G Translation Examples Highlighting
Method Performance

Below are two examples from LFAN-HALL where
STARE accurately predicts a hallucination that
LaBSE does not:

• Example 1:

– Source Sentence: Viel Freude und auf
ein baldiges ......

– Translation Hypothesis: We are looking
forward to seeing you soon...

• Example 2:

– Source Sentence: An die kommt man
auch nicht mehr ran.

– Translation Hypothesis: You don’t have
to wait for them anymore.

H Additional results on other
hallucination categories

DETECTOR AUROC ↑ FPR@90TPR ↑

Individual Detectors

External
CometKiwi 91.36 27.17
LaBSE 81.19 53.72

Model-based
Seq-Logprob 68.26 74.65
ALTI+ 71.39 76.63
Wass-Combo 82.07 44.28

Aggregated Detectors

External Only
Isolation Forest 88.78 36.53
Max-Norm 88.18 33.16
STARE 89.86 29.02

Model-based Only
Isolation Forest 68.15 81.14
Max-Norm 70.46 75.51
STARE 78.71 55.84

All
Isolation Forest 86.60 32.17
Max-Norm 87.16 31.87
STARE 88.02 26.81

Table 10: LFAN-HALL, oscillations

DETECTOR AUROC ↑ FPR@90TPR ↑

Individual Detectors

External
CometKiwi 85.30 37.02
LaBSE 98.05 2.13

Model-based
Seq-Logprob 94.22 6.84
ALTI+ 98.21 2.15
Wass-Combo 95.54 5.52

Aggregated Detectors

External Only
Isolation Forest 94.48 13.83
Max-Norm 94.71 16.41
STARE 96.56 7.53

Model-based Only
Isolation Forest 97.49 2.14
Max-Norm 97.09 1.70
STARE 98.23 1.97

All
Isolation Forest 97.63 4.99
Max-Norm 95.11 14.53
STARE 98.34 2.21

Table 11: LFAN-HALL, fully detached

DETECTOR AUROC ↑ FPR@90TPR ↑

Individual Detectors

External
CometKiwi 78.90 46.37
LaBSE 85.80 32.53

Model-based
Seq-Logprob 77.85 66.95
ALTI+ 73.76 89.43
Wass-Combo 75.69 68.91

Aggregated Detectors

External Only
Isolation Forest 86.82 30.41
Max-Norm 85.81 34.04
STARE 85.01 30.86

Model-based Only
Isolation Forest 79.96 60.54
Max-Norm 74.45 83.14
STARE 80.70 69.87

All
Isolation Forest 88.05 29.71
Max-Norm 84.06 43.87
STARE 86.65 35.04

Table 12: LFAN-HALL, strongly detached
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DETECTOR AUROC ↑ FPR@90TPR ↓

Individual Detectors

External
score_comet_qe 73.41 ± 0.07 64.58 ± 0.14
score_labse 85.68 ± 0.05 35.28 ± 0.16
score_laser 76.22 ± 0.07 50.15 ± 0.14
score_xnli 83.58 ± 0.05 49.30 ± 0.17

Model-based
score_log_loss 78.83 ± 0.06 53.67 ± 0.16
score_alti_mean 71.54 ± 0.06 75.34 ± 0.13
score_attn_ot 74.55 ± 0.06 73.44 ± 0.13

Aggregated Detectors

External Only
Isolation Forest 66.01 ± 0.48 68.80 ± 0.79
Max-Norm 85.48 ± 0.10 43.19 ± 0.37
Sum-Norm 85.86 ± 0.07 36.44 ± 0.24

Model-based Only
Isolation Forest 67.60 ± 0.36 83.38 ± 0.45
Max-Norm 78.71 ± 0.15 64.76 ± 0.44
Sum-Norm 84.01 ± 0.12 46.93 ± 0.30

All
Isolation Forest 70.20 ± 0.46 69.96 ± 0.69
Max-Norm 85.70 ± 0.14 48.17 ± 0.57
Sum-Norm 86.95 ± 0.07 35.13 ± 0.22

Table 13: HalOmi, High level language pairs, omissions

DETECTOR AUROC ↑ FPR@90TPR ↓

Individual Detectors

External
score_comet_qe 66.68 ± 0.05 73.27 ± 0.18
score_labse 74.45 ± 0.04 62.19 ± 0.13
score_laser 73.04 ± 0.06 63.34 ± 0.19
score_xnli 59.26 ± 0.05 78.24 ± 0.13

Model-based
score_log_loss 77.76 ± 0.05 50.18 ± 0.16
score_alti_mean 80.67 ± 0.05 58.94 ± 0.25
score_attn_ot 70.38 ± 0.07 72.94 ± 0.15

Aggregated Detectors

External Only
Isolation Forest 46.93 ± 0.50 91.08 ± 0.80
Max-Norm 76.88 ± 0.08 63.94 ± 0.32
Sum-Norm 77.85 ± 0.06 61.04 ± 0.22

Model-based Only
Isolation Forest 61.94 ± 0.36 83.12 ± 0.70
Max-Norm 77.52 ± 0.20 62.38 ± 0.50
Sum-Norm 83.90 ± 0.08 46.35 ± 0.18

All
Isolation Forest 54.61 ± 0.44 86.49 ± 0.79
Max-Norm 78.32 ± 0.15 62.91 ± 0.54
Sum-Norm 83.64 ± 0.06 50.67 ± 0.24

Table 14: HalOmi, Low level language pairs, hallucina-
tions

DETECTOR AUROC ↑ FPR@90TPR ↓

Individual Detectors

External
score_comet_qe 65.80 ± 0.07 73.45 ± 0.14
score_labse 75.20 ± 0.05 59.84 ± 0.16
score_laser 73.82 ± 0.07 60.98 ± 0.14
score_xnli 61.00 ± 0.05 76.61 ± 0.17

Model-based
score_log_loss 76.25 ± 0.06 55.13 ± 0.16
score_alti_mean 75.98 ± 0.06 72.06 ± 0.13
score_attn_ot 71.97 ± 0.06 68.78 ± 0.13

Aggregated Detectors

External Only
Isolation Forest 43.78 ± 0.48 92.33 ± 0.79
Max-Norm 77.59 ± 0.10 63.41 ± 0.37
Sum-Norm 78.52 ± 0.07 58.42 ± 0.24

Model-based Only
Isolation Forest 60.96 ± 0.36 84.44 ± 0.45
Max-Norm 76.35 ± 0.15 63.98 ± 0.44
Sum-Norm 81.51 ± 0.12 53.97 ± 0.30

All
Isolation Forest 52.73 ± 0.46 88.49 ± 0.69
Max-Norm 78.48 ± 0.14 63.77 ± 0.57
Sum-Norm 83.12 ± 0.07 51.09 ± 0.22

Table 15: HalOmi, Low level language pairs, omissions

DETECTOR AUROC ↑ FPR@90TPR ↓

Individual Detectors

External
score_comet_qe 77.66 ± 0.05 53.92 ± 0.18
score_labse 84.53 ± 0.04 40.84 ± 0.13
score_laser 79.00 ± 0.06 48.97 ± 0.19
score_xnli 73.89 ± 0.05 52.28 ± 0.13

Model-based
score_log_loss 84.71 ± 0.05 35.27 ± 0.16
score_alti_mean 84.68 ± 0.05 50.97 ± 0.25
score_attn_ot 68.59 ± 0.07 79.75 ± 0.15

Aggregated Detectors

External Only
Isolation Forest 63.10 ± 0.50 71.19 ± 0.80
Max-Norm 85.09 ± 0.08 44.35 ± 0.32
Sum-Norm 86.15 ± 0.06 40.70 ± 0.22

Model-based Only
Isolation Forest 73.06 ± 0.36 68.18 ± 0.70
Max-Norm 76.63 ± 0.20 68.85 ± 0.50
Sum-Norm 89.27 ± 0.08 29.70 ± 0.18

All
Isolation Forest 70.08 ± 0.44 64.25 ± 0.79
Max-Norm 82.07 ± 0.15 50.72 ± 0.54
Sum-Norm 89.38 ± 0.06 33.13 ± 0.24

Table 16: HalOmi, All language pairs, hallucinations
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DETECTOR AUROC ↑ FPR@90TPR ↓

Individual Detectors

External
score_comet_qe 70.56 ± 0.07 67.91 ± 0.14
score_labse 81.75 ± 0.05 44.49 ± 0.16
score_laser 75.32 ± 0.07 54.21 ± 0.14
score_xnli 75.11 ± 0.05 59.54 ± 0.17

Model-based
score_log_loss 77.86 ± 0.06 54.22 ± 0.16
score_alti_mean 73.20 ± 0.06 74.11 ± 0.13
score_attn_ot 73.58 ± 0.06 71.69 ± 0.13

Aggregated Detectors

External Only
Isolation Forest 57.67 ± 0.48 77.63 ± 0.79
Max-Norm 82.52 ± 0.10 50.77 ± 0.37
Sum-Norm 83.11 ± 0.07 44.68 ± 0.24

Model-based Only
Isolation Forest 65.11 ± 0.36 83.78 ± 0.45
Max-Norm 77.83 ± 0.15 64.47 ± 0.44
Sum-Norm 83.07 ± 0.12 49.57 ± 0.30

All
Isolation Forest 63.65 ± 0.46 76.91 ± 0.69
Max-Norm 83.00 ± 0.14 54.02 ± 0.57
Sum-Norm 85.51 ± 0.07 41.12 ± 0.22

Table 17: HalOmi, All language pairs, omissions
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