@inproceedings{himmi-etal-2024-enhanced,
title = "Enhanced Hallucination Detection in Neural Machine Translation through Simple Detector Aggregation",
author = "Himmi, Anas and
Staerman, Guillaume and
Picot, Marine and
Colombo, Pierre and
Guerreiro, Nuno M",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1033/",
doi = "10.18653/v1/2024.emnlp-main.1033",
pages = "18573--18583",
abstract = "Hallucinated translations pose significant threats and safety concerns when it comes to practical deployment of machine translation systems. Previous research works have identified that detectors exhibit complementary performance {---} different detectors excel at detecting different types of hallucinations. In this paper, we propose to address the limitations of individual detectors by combining them and introducing a straightforward method for aggregating multiple detectors. Our results demonstrate the efficacy of our aggregated detector, providing a promising step towards evermore reliable machine translation systems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="himmi-etal-2024-enhanced">
<titleInfo>
<title>Enhanced Hallucination Detection in Neural Machine Translation through Simple Detector Aggregation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anas</namePart>
<namePart type="family">Himmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guillaume</namePart>
<namePart type="family">Staerman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Picot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Colombo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuno</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Guerreiro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hallucinated translations pose significant threats and safety concerns when it comes to practical deployment of machine translation systems. Previous research works have identified that detectors exhibit complementary performance — different detectors excel at detecting different types of hallucinations. In this paper, we propose to address the limitations of individual detectors by combining them and introducing a straightforward method for aggregating multiple detectors. Our results demonstrate the efficacy of our aggregated detector, providing a promising step towards evermore reliable machine translation systems.</abstract>
<identifier type="citekey">himmi-etal-2024-enhanced</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.1033</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1033/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>18573</start>
<end>18583</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhanced Hallucination Detection in Neural Machine Translation through Simple Detector Aggregation
%A Himmi, Anas
%A Staerman, Guillaume
%A Picot, Marine
%A Colombo, Pierre
%A Guerreiro, Nuno M.
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F himmi-etal-2024-enhanced
%X Hallucinated translations pose significant threats and safety concerns when it comes to practical deployment of machine translation systems. Previous research works have identified that detectors exhibit complementary performance — different detectors excel at detecting different types of hallucinations. In this paper, we propose to address the limitations of individual detectors by combining them and introducing a straightforward method for aggregating multiple detectors. Our results demonstrate the efficacy of our aggregated detector, providing a promising step towards evermore reliable machine translation systems.
%R 10.18653/v1/2024.emnlp-main.1033
%U https://aclanthology.org/2024.emnlp-main.1033/
%U https://doi.org/10.18653/v1/2024.emnlp-main.1033
%P 18573-18583
Markdown (Informal)
[Enhanced Hallucination Detection in Neural Machine Translation through Simple Detector Aggregation](https://aclanthology.org/2024.emnlp-main.1033/) (Himmi et al., EMNLP 2024)
ACL