@inproceedings{lee-etal-2024-instruction-matters,
title = "Instruction Matters: A Simple yet Effective Task Selection for Optimized Instruction Tuning of Specific Tasks",
author = "Lee, Changho and
Han, Janghoon and
Ye, Seonghyeon and
Choi, Stanley Jungkyu and
Lee, Honglak and
Bae, Kyunghoon",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1036",
pages = "18620--18642",
abstract = "Instruction tuning has been proven effective in enhancing zero-shot generalization across various tasks and in improving the performance of specific tasks. For task-specific improvements, strategically selecting and training on related tasks that provide meaningful supervision is crucial, as this approach enhances efficiency and prevents performance degradation from learning irrelevant tasks. In this light, we introduce a simple yet effective task selection method that leverages instruction information alone to identify relevant tasks, optimizing instruction tuning for specific tasks. Our method is significantly more efficient than traditional approaches, which require complex measurements of pairwise transferability between tasks or the creation of data samples for the target task. Additionally, by aligning the model with the unique instructional template style of the meta-dataset, we enhance its ability to granularly discern relevant tasks, leading to improved overall performance. Experimental results demonstrate that training on a small set of tasks, chosen solely based on the instructions, results in substantial improvements in performance on benchmarks such as P3, Big-Bench, NIV2, and Big-Bench Hard. Significantly, these improvements surpass those achieved by prior task selection methods, highlighting the superiority of our approach.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2024-instruction-matters">
<titleInfo>
<title>Instruction Matters: A Simple yet Effective Task Selection for Optimized Instruction Tuning of Specific Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Changho</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Janghoon</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seonghyeon</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stanley</namePart>
<namePart type="given">Jungkyu</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Honglak</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyunghoon</namePart>
<namePart type="family">Bae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Instruction tuning has been proven effective in enhancing zero-shot generalization across various tasks and in improving the performance of specific tasks. For task-specific improvements, strategically selecting and training on related tasks that provide meaningful supervision is crucial, as this approach enhances efficiency and prevents performance degradation from learning irrelevant tasks. In this light, we introduce a simple yet effective task selection method that leverages instruction information alone to identify relevant tasks, optimizing instruction tuning for specific tasks. Our method is significantly more efficient than traditional approaches, which require complex measurements of pairwise transferability between tasks or the creation of data samples for the target task. Additionally, by aligning the model with the unique instructional template style of the meta-dataset, we enhance its ability to granularly discern relevant tasks, leading to improved overall performance. Experimental results demonstrate that training on a small set of tasks, chosen solely based on the instructions, results in substantial improvements in performance on benchmarks such as P3, Big-Bench, NIV2, and Big-Bench Hard. Significantly, these improvements surpass those achieved by prior task selection methods, highlighting the superiority of our approach.</abstract>
<identifier type="citekey">lee-etal-2024-instruction-matters</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1036</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>18620</start>
<end>18642</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Instruction Matters: A Simple yet Effective Task Selection for Optimized Instruction Tuning of Specific Tasks
%A Lee, Changho
%A Han, Janghoon
%A Ye, Seonghyeon
%A Choi, Stanley Jungkyu
%A Lee, Honglak
%A Bae, Kyunghoon
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F lee-etal-2024-instruction-matters
%X Instruction tuning has been proven effective in enhancing zero-shot generalization across various tasks and in improving the performance of specific tasks. For task-specific improvements, strategically selecting and training on related tasks that provide meaningful supervision is crucial, as this approach enhances efficiency and prevents performance degradation from learning irrelevant tasks. In this light, we introduce a simple yet effective task selection method that leverages instruction information alone to identify relevant tasks, optimizing instruction tuning for specific tasks. Our method is significantly more efficient than traditional approaches, which require complex measurements of pairwise transferability between tasks or the creation of data samples for the target task. Additionally, by aligning the model with the unique instructional template style of the meta-dataset, we enhance its ability to granularly discern relevant tasks, leading to improved overall performance. Experimental results demonstrate that training on a small set of tasks, chosen solely based on the instructions, results in substantial improvements in performance on benchmarks such as P3, Big-Bench, NIV2, and Big-Bench Hard. Significantly, these improvements surpass those achieved by prior task selection methods, highlighting the superiority of our approach.
%U https://aclanthology.org/2024.emnlp-main.1036
%P 18620-18642
Markdown (Informal)
[Instruction Matters: A Simple yet Effective Task Selection for Optimized Instruction Tuning of Specific Tasks](https://aclanthology.org/2024.emnlp-main.1036) (Lee et al., EMNLP 2024)
ACL