
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 18643–18657
November 12-16, 2024 ©2024 Association for Computational Linguistics

Recurrent Alignment with Hard Attention for Hierarchical Text Rating

Chenxi Lin1,2, Jiayu Ren1, Guoxiu He1,3*, Zhuoren Jiang2, Haiyan Yu1 and Xiaomin Zhu4

1School of Economics and Management, East China Normal University
2School of Public Affairs, Zhejiang University

3National Experiment Base for Intelligent Evaluation and Governance, Fudan University
4Strategic Assessments and Consultation Institute, AMS

{cxlin,jyren}@stu.ecnu.edu.cn, gxhe@fem.ecnu.edu.cn, jiangzhuoren@zju.edu.cn,
hywei@infor.ecnu.edu.cn, xmzhu@nudt.edu.cn

Abstract

While large language models (LLMs) excel at
understanding and generating plain text, they
are not tailored to handle hierarchical text struc-
tures or directly predict task-specific proper-
ties such as text rating. In fact, selectively
and repeatedly grasping the hierarchical struc-
ture of large-scale text is pivotal for decipher-
ing its essence. To this end, we propose a
novel framework for hierarchical text rating
utilizing LLMs, which incorporates Recurrent
Alignment with Hard Attention (RAHA). Par-
ticularly, hard attention mechanism prompts
a frozen LLM to selectively focus on perti-
nent leaf texts associated with the root text and
generate symbolic representations of their re-
lationships. Inspired by the gradual stabiliza-
tion of the Markov Chain, recurrent alignment
strategy involves feeding predicted ratings iter-
atively back into the prompts of another train-
able LLM, aligning it to progressively approx-
imate the desired target. Experimental results
demonstrate that RAHA outperforms existing
state-of-the-art methods on three hierarchical
text rating datasets. Theoretical and empirical
analysis confirms RAHA’s ability to gradually
converge towards the underlying target through
multiple inferences. Additional experiments on
plain text rating datasets verify the effective-
ness of this Markov-like alignment. Our data
and code can be available in https://github.
com/ECNU-Text-Computing/Markov-LLM.

1 Introduction

Scaling up LLMs yields significant advances in
their ability to mimic human-like text compre-
hension and generation (Ouyang et al., 2022;
Zeng et al., 2023; Touvron et al., 2023; OpenAI,
2023). They demonstrate remarkable aptitude for
in-context learning (ICL) (Brown et al., 2020; Min
et al., 2022; Kojima et al., 2022) across various
natural language processing (NLP) tasks (Qi et al.,
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Figure 1: A comparison between a typical LLM and
our RAHA in processing hierarchical text rating task.
While a typical LLM treats the input as plain text, our
RAHA captures hierarchical structures and can straight-
forwardly provide task-specific rating score.

2023; Chen et al., 2023a; Wen et al., 2023; Du et al.,
2023). In particular, employing chain of thought
(CoT) prompts can stimulate the reasoning capabil-
ities of LLMs, enabling them to adeptly navigate
and conquer complex downstream tasks (Wei et al.,
2022; Wang et al., 2023a).

However, LLMs face a dual challenge. From the
perspective of input, mainstream LLMs encounter
limitations when confronted with extensive and
structured textual inputs. While it is possible to ex-
tend the input length of LLM (Chen et al., 2023b),
this poses additional challenges and complications.
For example, excessively long inputs may hinder
the attention mechanism of LLM from effectively
encompassing the entire context (Liu et al., 2023a).
Moreover, a significant proportion of real-world
texts (e.g., academic papers, social posts) exhibit
hierarchical structures rather than strictly adhering
to a linear textual order (Zhao and Feng, 2022; Sun
et al., 2023). Figure 1 illustrates an exemplary task
to identify groundbreaking score of an academic
paper. Placing both the paper and its references
within a prompt would result in excessive length
and compromise the inherent structural relation-
ship. It is a common approach to model hierarchi-
cal text information with a tree structure instead of
a plain sequence structure. This involves analyzing
the relationship between the root and each leaf indi-
vidually. However, aggregating all leaf information
without proper filtering can introduce noise while
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also being resource-intensive and time-consuming.
Therefore, it is crucial to selectively understand
and integrate valuable relationships.

From the perspective of output, while LLMs ex-
cel at completing NLP tasks by generating textual
responses, practical applications often necessitate
directly providing task-required predictions, such
as text rating task. While the potential of generative
LLMs to improve performance seems promising,
existing research indicates a surprising insensitivity
to numerical values. A notable example is their in-
ability to accurately compare figures like 9.11 and
9.8. This difficulty arises because LLMs are pri-
marily optimized for discrete text generation rather
than precise numerical output, leading to potential
inaccuracies and inconsistencies in rating predic-
tions. Despite various methodologies enhancing
the generative capabilities of large language mod-
els (LLMs), such as parameter-efficient fine-tuning
(PEFT) and in-context learning (ICL), challenges
in rating tasks requiring continuous numerical pre-
dictions remain. While PEFT outperforms ICL in
speed and performance in few-shot scenarios (Liu
et al., 2022), LLMs still struggle with precise out-
put requirements.

To this end, this study proposes a novel frame-
work, named Recurrent Alignment with Hard
Attention (RAHA) based on LLMs. Firstly, RAHA
employs a frozen LLM to manage message passing
within the hierarchical structure of the input. For
each pair of root and its respective leaf nodes, the
LLM discerns and generates symbolic comparative
relationships between them. This paired input pre-
serves the structural information of the root and
leaf nodes and is much shorter than putting all leaf
texts in one prompt. Here, the evaluation guides
the LLM to determine whether a particular leaf re-
quires further scrutiny. This decision functions as
the hard attention mechanism, effectively reducing
the computational load on the LLM and filtering
out irrelevant lower-level details. Then, RAHA
leverages another trainable LLM to aggregate all
selected symbolic relationships that are considered
relevant to the root. This LLM is equipped with
a trainable adapter followed by a fully connected
layer, enabling it to directly predict text ratings.
This targeted aggregation supports more effective
prediction.

Moreover, inspired by the gradual stabilization
seen in Markov Chains, we develop a recurrent
alignment strategy to enhance task-specific align-
ment for the trainable LLM. During the training

phase, we introduce a special prompt that incorpo-
rates the downstream task score predicted by the
trainable LLM. Initially, this value is set to None
and is subsequently updated with the prediction
from the previous training iteration. This dynamic
updating allows the trainable parameters to progres-
sively learn and refine the alignment from the cur-
rently predicted score to the desired target. Further-
more, consistent with this training methodology,
during testing, the trainable LLM performs mul-
tiple iterative inferences on the same input. This
approach ensures that the predictions become in-
creasingly accurate and aligned with the intended
outcomes over successive iterations.

We conduct extensive experiments across three
hierarchical text rating benchmarks. Our findings
demonstrate that the proposed RAHA outperforms
existing state-of-the-art methods in predicting task-
specific properties. Furthermore, theoretical and
empirical analysis highlights its capacity to in-
crementally approach the most accurate results
through iterative inference processes. Finally, we
successfully validate the soundness of our approach
on other general rating regression datasets.

The main contributions of this study are summa-
rized as follows:

• We propose a hard attention mechanism to
enable LLMs to effectively and efficiently
capture hierarchical relationships, thereby ad-
dressing the neglect of content structure in
long plain text input.

• Drawing inspiration from Markov Chains, we
design a recurrent alignment strategy, theoret-
ically and empirically proven to significantly
improve the alignment of LLM towards the
target value through multiple iterations.

• RAHA exhibits superior performance in un-
derstanding hierarchical text input to predict
rating score, overcoming the limitations of
LLMs in continuous numerical tasks.

2 Related Work

The essence of human intelligence is characterized
by the ability to understand abstract concepts, en-
gage in logical reasoning, and make advanced pre-
dictions based on existing knowledge (Sternberg
et al., 1982; Yu et al., 2023; Huang and Chang,
2022). However, in the era of natural language
processing (NLP), despite impressive representa-
tion and learning capabilities of neural networks,
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it is still difficult for them to infer and deduce in-
formation from contexts (Duan et al., 2020; Wang
et al., 2022). This landscape has been dramatically
reshaped with the evolution of large language mod-
els (LLMs) (Brown et al., 2020; Workshop et al.,
2022), driven by significant upscaling in parame-
ters, data, and computational resources (Ouyang
et al., 2022; Zeng et al., 2023; Touvron et al., 2023;
OpenAI, 2023). They exhibit exceptional profi-
ciency for in-context learning (ICL) (Brown et al.,
2020; Min et al., 2022; Kojima et al., 2022) across
a wide range of NLP tasks (Qi et al., 2023; Chen
et al., 2023a; Wen et al., 2023; Du et al., 2023).
One of the key advancements in LLMs is the in-
corporation of strategies like Chain of Thought
(CoT) prompting, which empowers these models
to generate reasoning steps and tackle more com-
plex downstream application (Liu et al., 2023b;
Wei et al., 2022; Wang et al., 2023a).

Notwithstanding the progress made in CoT rea-
soning (Wei et al., 2022; Wang et al., 2023b; Ko-
jima et al., 2022), there remains a notable defi-
ciency in current methodologies regarding the pro-
cessing of hierarchical structures within long text.
Numerous studies have focused on identifying and
correcting specific thought units where the reason-
ing process may deviate or require additional infor-
mation, aiming to produce desired outcomes (Yao
et al., 2023; Ling et al., 2023; Yang et al., 2023;
Wang et al., 2023a). This prevailing research pre-
dominantly concentrates on purely textual content,
neglecting the intrinsic hierarchical nature of cer-
tain text formats (Zhao and Feng, 2022; Sun et al.,
2023). In our work, we propose a hard attention
mechanism to redress this shortfall by introducing
a novel paradigm for enhancing the processing of
structured text within CoT reasoning.

The escalation in the scale and adaptability of
LLMs has been accompanied by significant ad-
vancements in model fine-tuning and adaptation,
exemplified by the introduction of various adapter
architectures (Houlsby et al., 2019; Pfeiffer et al.,
2020; Zaken et al., 2022; Hu et al., 2022). How-
ever, these adaptations have primarily focused on
enhancing the model’s generation capabilities and
have not addressed the limitations of LLMs in di-
rectly generating continuous prediction values like
text rating. While the prediction of structured con-
tinuous numerical values has begun to be explored
in some studies (He et al., 2024), there remains a
notable gap in experimentation with large language
models in this area. Concurrently, recent research

within LLMs has increasingly focused on recurrent
alignment, primarily through prompting techniques
and iterative refinement processes (Huang et al.,
2023; Zelikman et al., 2022). Yet, these methodolo-
gies have not sufficiently capitalized on employing
the properties from predictive tasks as feedback
mechanisms for iterative refinement. Our contribu-
tion in this regard is the formulation of a Markov-
like recurrent alignment strategy. It represents a
novel approach in harnessing the model’s output
for successive iterative enhancements, thereby aug-
menting the predictive precision and versatility of
LLMs.

3 Methodology

The proposed framework, RAHA, is depicted in
Figure 2. It includes a tree-based hard attention
mechanism that enhances the ability of LLMs to
effectively capture hierarchical structures. In addi-
tion, a trainable LLM is employed to output hier-
archical text rating score. Moreover, we employ a
Markov-like recurrent alignment strategy to enable
the RAHA to iteratively align with the ground truth
of the downstream task.

3.1 Problem Formulation
For each sample in our data collection, we represent
its hierarchical structure as a tree, which is denote
as ⟨ri, Li⟩. This structure consists of a textual root
ri and a set of m leaves Li = {l(i)1 , l

(i)
2 , · · · , l(i)m }.

Each leaf l(i)j serves as the textual root of its own
tree and can have its own associated leaves.

Our framework aims to accomplish an objective
with the input ⟨ri, Li⟩, which is to estimate the text
rating yi. By analyzing the hierarchical structure
of the data, RAHA can filter meaningful insights
and make accurate predictions according to the
recurrent alignment strategy.

3.2 Hard Attention Mechanism
RAHA framework integrates a tree-based hard at-
tention mechanism to facilitate message passing
within a tree structure. It eliminates the necessity
for LLMs to grasp the intricate interplay between
root and individual leaves within extensive plain
texts.

To accomplish this goal, this mechanism firstly
utilizes a frozen LLM to figure out the comparative
relationship between the root ri and its j-th leaf
l
(i)
j . This process is facilitated by constructing a

prompt p(i)j , which contains the following informa-
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Figure 2: The overview of RAHA architecture. A frozen LLM determines connections and generates updates with
hard attention scores to filter noise. RAHA incorporates an adapter and fully connected layer within a trainable
LLM to predict text rating scores after aggregating updates. During training and testing, the predicted score is fed
back into the trainable LLM prompt, refining predictions over multiple iterations.

tion. Firstly, it provides a clear task description,
such as identifying disruptions in papers or predict-
ing potential popularity in social posts. Next, the
prompt includes the root text and leaf text along
with their respective meta-information. Finally, a
well-crafted question is included to extract the nec-
essary features of the root and each leaf that are
essential for the task. For a more comprehensive
understanding, please refer to the Appendix D.1
for specific formulation and illustrative examples.

With the provided prompt p(i)j , the LLM can
derive two critical pieces of information for each
pair of root and child (ri, l

(i)
j ), which are the hard

attention score a
(i)
j and a tailored symbolic repre-

sentation d
(i)
j :

p
(i)
j = f (1)

p (ri, l
(i)
j )

a
(i)
j , d

(i)
j = F(p(i)j )

(1)

where f
(1)
p represents the heuristics function for

constructing the prompt and F denotes the frozen
LLM.

Here, the hard attention score a
(i)
j ∈ {0, 1} is a

binary value, that determines whether the leaf l(i)j

deserves further aggregation for the root ri. The
symbolic representation d

(i)
j serves as an update for

the root ri and provides valuable task-oriented in-
sights. This information captures essential aspects

such as the integration, correlation, or distinction
between the root ri and its j-th leaf l(i)j .

Given updates Di = [d
(i)
1 , d

(i)
2 , · · · , d(i)m ] of the

root relative to all leaves, the utilization of hard
attention scores Ai = [a

(i)
1 , a

(i)
2 , · · · , a(i)m ] helps

filter out potential noise, leading to a reduction in
computational consumption:

D∗
i = Ai ⊗Di

= [a
(i)
1 ⊗ d

(i)
1 , a

(i)
2 ⊗ d

(i)
2 , · · · , a(i)m ⊗ d(i)m ]

(2)

where ⊗ denotes the selection operator and D∗
i

keeps m′ symbolic updates after selection, where
m′ ≤ m. The valuable updates D∗

i will be aggre-
gated by the subsequent model.

3.3 Parameter-Efficient Fine-Tuning
We employ a trainable LLM to complete aggrega-
tion of the updates within a tree structure. This
LLM is enhanced with Parameter-Efficient Fine-
Tuning (PEFT) techniques, which improve its
alignment with downstream tasks (Houlsby et al.,
2019). We integrate trainable parameters ∆W as
an adapter into the original LLM parameters W0

(Hu et al., 2022; Liu et al., 2022). It is represented
as:

Wx = W0x+∆Wx = W0x+BAx (3)
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where B and A are both trainable low-rank matri-
ces. In addition, we incorporate a fully connected
layer following the hidden representation h from
the last layer of the LLM.

y = W1h (4)

where the W1 is a trainable matrix. This layer
facilitates direct prediction of property value for
the downstream task. For simplicity, we denote this
trainable LLM as F∗.

The prompt for facilitating aggregation of this
trainable LLM consists of three key components.
Firstly, it includes details about the root ri of
the tree. Secondly, it incorporates the previously
filtered updates D∗

i . Next, inspired by Markov
Chains, it provides the predicted rating score y∗i of
the text required for the task. Finally, we include
the task-related question in the prompt. We aim
to iteratively bring the predicted value closer to
the true value through prior states. It is important
to note that at the initial stage, the model has not
started the inference yet. As a result, there is no
available predicted value, and therefore, this value
is set to None in the prompt. The prompt can be
represented as pi:

pi = f (2)
p ([ri, D

∗
i , y

∗
i ]) (5)

where f (2)
p denotes heuristic approach for construct-

ing the prompt pi and the y∗i is initialized to None,
denoted as ϕ. Please refer to the Appendix D.2 for
specific formulation and illustrative examples.

3.4 Recurrent Alignment Strategy

Many existing studies typically conclude once they
complete the previous step. However, we are now
considering the possibility of leveraging LLMs to
enhance their understanding of inputs based on
their previous outputs. Inspired by the principle
of Markov Chains, where each state depends on
the previous one and converges to a stationary dis-
tribution, we propose a recurrent alignment strat-
egy to enhance the learning and inference process
of RAHA. Specifically, given the root ri and fil-
tered updates D∗

i , we perform inference multiple
times using trainable LLM F∗. The difference of
each step is that we update this rating value y∗i in
the prompt function f

(2)
p with the model predic-

tion from the previous step. The formulations are

shown as follows:



y
(1)
i = F∗(f (2)

p (ri, D
∗
i , ϕ))

y
(2)
i = F∗(f (2)

p (ri, D
∗
i , y

(1)
i ))

· · ·
y
(k)
i = F∗(f (2)

p (ri, D
∗
i , y

(k−1)
i ))

(6)

In this context, each iteration can be viewed as
a transition in a Markov Chain, progressively re-
fining the state towards convergence. This strategy
offers significant benefits to the model’s learning
process during the training stage. Since the target
output of each iteration is considered the ground
truth in the downstream task data, the model grad-
ually approaches the true value based on existing
assessments.

During the testing phase, we conduct multiple
iterations of the model to perform inference on
the same input. This iterative approach allows the
model to begin with naive information, advanc-
ing step by step towards an accurate hidden rep-
resentation and progressively aligning itself to the
true value. This process is analogous to a Markov
Chain reaching its steady-state distribution. Since
the model parameters remain unchanged during the
testing phase, the process can be considered equiv-
alent to the transition matrix of a Markov Chain.
The final predicted value can be expressed as:

y
(k)
i = P (F ∗⊞F ∗2⊞F ∗3⊞· · ·⊞F ∗(k−1))⊞y

(0)
i F ∗k

(7)
Generally the spectral radius of the neural net-

work parameter matrix F ∗ is less than 1 (Blundell
et al., 2015), so the value can eventually converge
to:

lim
t→∞

y
(k)
i = P (I − F ∗)−1 (8)

The detailed theoretical proof is in appendix B.

3.5 Training
Our proposed RAHA integrates two LLMs. The pa-
rameters of the first LLM F remain frozen through-
out the process. As for the second LLM F∗, we
keep its main parameters W0 fixed. We solely
employ training data from downstream tasks to
optimize its trainable parameters ∆W and W1 to-
gether, which correspond to the adapter and the
fully connected layer, respectively. Specifically,
since reasoning si has no ground truth, we utilize
the property values yi required by the task to build
the mean squared error (MSE) as the objective func-
tion:

L =
1

2M

M∑

i=1

(y
(k)
i − yi)

2 (9)
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where M is the number of training samples and
y
(k)
i represent the predicted value for the i-the sam-

ple in the k-th iteration. We conduct a total of K
iterations. After each prediction, we will update
the prompts for the next iteration. The target value
in each round of loss function is the ground truth
of the training data. Appendix C provides detailed
steps for RAHA.

4 Experiments

4.1 Datasets and Evaluation Metrics

To assess the efficacy of RAHA, we employed five
datasets, three of which are hierarchical (DBLP,
PubMed, and PatentsView) and two of which are
non-hierarchical (ASAP and Splunk). See the Ap-
pendix A for detailed introduction. In the three hi-
erarchical dataset, each is characterized by citation
relationships and their respective textual content.
Considering the extensive size of these datasets, we
randomly select a subset of nearly 10,000 samples
from each dataset and allocate 15% of them for val-
idating and 15% for testing purposes. The primary
metric we emphasize is the disruption index (Funk
and Owen-Smith, 2017; Wu et al., 2019), a con-
tinuum indicator from -1 to 1 designed to assess
the potential of a paper or a patent to transform
its respective field. We use Mean Squared Error
(MSE) and Mean Absolute Error (MAE) as the
main evaluation metrics.

4.2 Baselines

We compare RAHA with five baselines. (1) SciB-
ERT (Beltagy et al., 2019) is a pre-trained language
model within the scientific domain. (2) RoBERTa
(Liu, 2019) is a robustly optimized BERT. (3)
BLOOM-7B (Workshop et al., 2022) exemplifies
advancements in large-scale multi-language pro-
cessing. (4) LLama3 (Dubey et al., 2024) repre-
sents the latest iteration in the Llama series of large
language models. (5) GLM3-6B-32K (Zeng et al.,
2023) is a generative language model based on au-
toregressive blank Infilling. They’re all publicly
accessible. For all baselines, we simply add a fully
connected layer after their last hidden states for
property prediction. Here, we don’t compare GPT4
since it lacks the ability to map the input to our
numerical target.

4.3 Experiment Setup

We implement experiments via PyTorch on a single
NVIDIA A800 GPU. Our core experiments, such

as ablation test and experiment analysis, are based
on GLM3. Optimization of the models is achieved
using AdamW optimizer (Loshchilov and Hutter,
2019), with the learning rate set to 1e-5 and the
gradient clipping value fixed to 0.2. We set the
model to accommodate a maximum input length of
2560. The batch size is set to 4. The low rank of
the adapter in the second LLM is 64. We use the
PEFT package to insert the adapter in attention or
forward part for the last layer of LLM (Mangrulkar
et al., 2022). The analysis experiment is based on a
reasonable analysis of the forward part. The num-
ber of training and testing iterations K of RAHA
are set to 3 and 5, respectively. The number of
epochs is set to 3 for other baselines. The optimal
model checkpoint is selected based on performance
metrics obtained from the development set.

4.4 Main Results
We report the main results on DBLP, PubMed, and
PatentView in Table 1. Overall, we can observe
that our framework RAHA achieves the best MSE
and MAE in three datasets. LLMs generally outper-
form PLMs, and the RAHA framework enhances
performance across almost all PLMs and LLMs.

The first section of the Table 1 clearly demon-
strates that, across the three datasets, the predic-
tive capabilities of large language models gener-
ally surpass those of pretrained language models,
although some exceptions exist. Notably, within
our framework, the incorporation of RAHA consis-
tently results in substantial improvements in the
performance of large language models, as well
as in the majority of pre-trained language mod-
els. Specifically, on the DBLP dataset, RAHA
on GLM3 demonstrates superior accuracy, reduc-
ing MSE and MAE by 0.021 compared to GLM3.
In the PubMed and PatentView datasets, RAHA
maintains its leadership, affirming its robustness
and adaptability. This improvement underscores
RAHA’s precision and consistency in interpreting
complex academic metadata.

The framework’s efficacy in these domains can
be attributed to its innovative use of a tree-based
hard attention mechanism, which methodically nav-
igates through hierarchical data structures, ensuring
that significant informational cues are captured and
emphasized. Moreover, RAHA’s recurrent align-
ment strategy enhances its ability to discern and
interpret the nuanced linguistic and semantic vari-
ations that are critical in fields like biomedical re-
search and patent descriptions.
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Model DBLP PubMed PatentsView Average

MSE MAE MSE MAE MSE MAE MSE MAE

SciBERT 0.072 0.119 0.025 0.116 0.069 0.121 0.055 0.119
RoBERTa 0.061 0.094 0.030 0.112 0.069 0.100 0.053 0.102
Bloom-7B 0.062 0.104 0.044 0.129 0.081 0.162 0.062 0.132
LLama3 0.043 0.062 0.027 0.109 0.075 0.162 0.048 0.111
GLM3-6B-32K 0.045 0.091 0.056 0.182 0.042 0.088 0.047 0.120

SciBERT-RAHA 0.043** 0.077** 0.038** 0.119** 0.060* 0.104* 0.047 0.100
RoBERTa-RAHA 0.043** 0.078** 0.028** 0.117** 0.066* 0.091* 0.046 0.095
Bloom-RAHA 0.044** 0.085** 0.041* 0.113** 0.076* 0.144* 0.054 0.114
LLama3-RAHA 0.035** 0.062** 0.025** 0.109* 0.045* 0.090* 0.035 0.087
GLM3-RAHAForward 0.024* 0.070** 0.025* 0.106** 0.022* 0.084* 0.023 0.086
GLM3-RAHAAttention 0.024* 0.078** 0.018* 0.072** 0.020* 0.099* 0.021 0.083

w/o Hard Attention 0.049 0.098 0.035 0.125 0.041 0.089 0.042 0.104
w/o PEFT 0.082 0.101 0.031 0.119 0.034 0.089 0.049 0.103
w/o Recurrent Alignment 0.025 0.085 0.028 0.110 0.023 0.085 0.025 0.093

Table 1: A comparative results of various language models. The performance is measured in terms of MSE and MAE
with lower values indicating better performance. The best results are highlighted in bold and underline denote the
optimal outcomes for each section. We applied our RAHA framework across all baseline models and examined the
effects of PEFT of attention and forward on framework. The ablation studies are based on GLM3-RAHAForward.
Notably, the differences observed are statistically significant, as confirmed by a Student’s t-test, with an asterisk (*)
denoting significant results for the model.

4.5 Ablation Study

To dissect the contributions of the individual com-
ponents in our RAHA framework, we conduct ab-
lation studies, as shown in the lower half of Table
1.

(1) RAHA w/o Tree-based hard attention
mechanism: Excluding the hard-attention mecha-
nism leads to a decline in performance across all
datasets. This mechanism is crucial for RAHA’s
ability to process and relate different parts of tree-
structured data. Without it, RAHA struggles to
pinpoint the most relevant parts of the input text
for decision-making, highlighting the importance
of understanding the information between the root
and leaves.

(2) RAHA w/o Parameter-efficient fine-
tuning: Removing the adapter results in the most
substantial increases in both MAE and MSE. The
adapter enables the second LLM to fine-tune its
parameters based on training data. Without it, the
second LLM struggles to effectively align with
downstream tasks, especially those requiring spe-
cific property values, demonstrating the adapter’s
significance in the architecture.

(3) RAHA w/o Recurrent Alignment: The re-
current alignment strategy iteratively refines out-

puts based on previous predictions, enhancing the
learning process. Without this strategy, there is
a slight increase in errors, indicating its critical
role in maintaining accuracy and performance by
learning from previous predictions.

Furthermore, within the framework of PEFT, we
applied LoRA to two distinct components: the at-
tention module and the feed-forward module of
the final layer of the transformer. While the per-
formance of LoRA varies across datasets due to
its application in different modules, a substantial
overall improvement is observed when compared
to the baseline model. This suggests that the added
modules exhibit a degree of generalizability, as
their impact on performance varies across differ-
ent datasets while still contributing to an overall
enhancement in model effectiveness.

4.6 Predictions over Multiple Iterations
Figure 3 displays the predictions of our RAHA
framework over multiple iterations during the test
stage. It provides evidence to support our hypothe-
sis that the recurrent alignment strategy allows the
fine-tuned LLM to progressively approximate more
accurate properties. We use different initialization
values in the prompt (see equation 5) to provide
broader perspectives for investigating the recurrent
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Figure 3: Comparison of predictions over multiple itera-
tions during recurrent alignment across three datasets.
Figures (a), (c), and (e) show outcomes with the initial
prompt set to None. Figures (b), (d), and (f) show re-
sults with the initial prompt randomly chosen from -1
to 1.

alignment strategy. The standard initialization in-
volves using None as a value in the prompt. For
comparison, we also utilize random initialization
for the predicted index, with values ranging from
-1 to 1.

As shown in Figure 3a, Figure 3c, and Fig-
ure 3e, despite fluctuations, the decrease in MAE
over gradual iterations demonstrates the ability of
RAHA to refine its understanding of the input. This
trend suggests that RAHA is not merely fitting to
the immediate data but also leveraging its recurrent
alignment component to internalize the original
input and previous understanding. The ability to
improve its performance by iteratively replacing
the predicted value in the prompt proves the effi-
cacy of the recurrent alignment strategy.

In contrast, as shown in Figure 3d and Figure
3f, the result of the recurrent alignment strategy
initialized with random values is manifested in a
random process according to MAE. The lack of
the scratch-to-refinement process we set in place
results in models making predictions by guessing
rather than reasoning from prior knowledge. This
random initialization hampers interpretability as

the predictions are not based on any discernible
pattern or learning process.

Overall, the recurrent alignment strategy is piv-
otal in aligning RAHA with the downstream task,
and predictions cannot be made using unreasonable
values from initial randomization. By replacing the
predicted value from the previous round to con-
struct the prompt, this approach allows the model
to evolve its knowledge in a logical and transparent
manner, which is particularly valuable for applica-
tions that require reliability and trustworthiness.
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(c) KL of Patents

Figure 4: A detailed analysis based on the Kullback-
Leibler (KL) divergence over testing iterations across
three datasets. It highlights the narrowing gap between
the representation of the fine-tuned LLM and the target
representation during the recurrent alignment process.

4.7 Model Representation after Recurrent
Alignment

We provide further insight into the role of the re-
current alignment strategy in driving dynamics of
model representation. Since our strategy can enable
the trainable LLM to learn the alignment capabili-
ties from scratch to pierce, we assume that directly
incorporating the task-desired target truth within
the prompt (see equation 5) enables the fine-tuned
LLM to derive the target’s true representation, facil-
itating subsequent comparisons with the predicted
representation. This simulates a situation where
the result obtained through previous understanding
is completely correct. We employ the Kullback-
Leibler (KL) divergence as a metric to gauge the
disparity between the predicted representation ex-
tracted by the LLM at each iteration and the target
representation. Figure 4 illustrates the trajecto-
ries of KL divergence between the target truth and
predicted representations over five test iterations
across three datasets. Despite occasional fluctu-
ations, the downward trend suggests that RAHA
progressively refines its approximation of the target
representation. This highlights the effectiveness of
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the recurrent alignment process. When integrated
with the specific predictions from the preceding
step, the fine-tuned large language model can better
align with downstream tasks by effectively assimi-
lating and aggregating updates. This trend provides
a static snapshot of model performance while em-
phasizing the importance of recurrent alignment
iterations.

4.8 Experiment on Rating Data without
Hierarchical Structure

Model ASAP Splunk

MSE ↓ MAE ↓ MSE ↓ MAE ↓
SciBERT 0.396 0.517 0.208 0.363
Bloom-7b 0.256 0.446 0.214 0.384
GLM3 0.252 0.439 0.214 0.361

RAHA 0.249 0.421 0.212 0.358

Table 2: The performance of various language models
on two text rating datasets, ASAP and Splunk, using
Mean Squared Error (MSE) and Mean Absolute Error
(MAE) as metrics. The best-performing results are em-
phasized in bold, while underlined values represent the
optimal outcomes within each section. It is noteworthy
that RAHA, built upon GLM3, leverages PEFT in the
forward module to achieve these results.

To enhance the assessment of the generalization
of recurrent alignment, we conduct experiments on
two plain text rating datasets. Detailed information
of the dataset can be found in Appendix A.

The Table 2 presents a performance compari-
son of various models on these datasets, using
MSE and MAE as evaluation metrics. Overall,
RAHA demonstrates superior performance across
both datasets, particularly excelling in terms of
MAE and achieving near-best results in MSE. This
highlights RAHA’s robustness and suitability for
tasks involving text rating, as well as its ability to
effectively capture the nuances in non-hierarchical
data. The consistent improvement across these
metrics further underscores the significance of the
recurrent alignment process in refining model pre-
dictions and enhancing task-specific performance.

5 Conclusion

In this paper, we propose a novel framework called
RAHA, that leverages two LLMs to analyze hier-
archically structured text. RAHA incorporates a
tree-based hard attention mechanism and a recur-
rent alignment strategy. The tree-based attention

enables a frozen LLM to understand the associa-
tions between the root and each leaf separately and
then selectively choose significant updates for ag-
gregation. This results in a reduction of potential
noise in the hierarchical structure and improved
utilization of computing resources. The iterative
recurrent alignment empowers a trainable LLM
to revisit insights gained from previous delibera-
tions, progressively aligning itself with the desired
property for downstream tasks. In evaluations on
three datasets, RAHA outperforms existing base-
lines in text rating estimation. Theoretical and em-
pirical analysis reveals that by repeated iterations
of prompting the results from the preceding step,
RAHA produces hidden representations that grad-
ually approach the optimal representation. This
study enhances the abilities of LLMs in handling
hierarchical text and aligning with specific tasks.

Limitation

We list several limitations in this work that could
be improved in the future.

One limitation of our research is the inference
time associated with RAHA. The hard attention and
iterative recurrent alignment, while beneficial for
progressively refining representations, can lead to
increased computational overhead. Future efforts
should prioritize optimizing the model framework
to reduce inference time, enhancing the broader
applicability of RAHA.

Additionally, further studies are needed to ex-
plore the potential of RAHA in other hierarchical
text analysis domains and to validate its perfor-
mance across a wider range of tasks.

A more rigorous investigation into the principles
underlying the recurrent alignment strategy is nec-
essary. Understanding the theoretical foundations
and the exact mechanisms through which iterative
prompting improves representation alignment can
provide deeper insights and guide future enhance-
ments to the model.

Ethics Statement

We recognize the ethical implications of our work
and the importance of developing and using LLMs
responsibly. LLMs are powerful tools that need
careful monitoring. While our research aims to im-
prove LLMs, these techniques can also be misused
to generate harmful content. We emphasize not
placing excessive trust in generated content until
LLMs are well-regulated.
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Appendix

A Data analysis

In this study, we utilized five diverse datasets to
evaluate the performance of our RAHA: DBLP,
PubMed, PatentsView, ASAP, and Splunk. Each
dataset was split into training, validation, and test
sets to ensure robust evaluation and comparison,
which is shown as Table 3.

DBLP: A dataset contains bibliographic infor-
mation on major computer science journals and pro-
ceedings. https://www.aminer.cn/citation

PubMed: PubMed contains citations and ab-
stracts of biomedical literature from several NLM
literature resources, including MEDLINE—the
largest component of the PubMed database. https:
//pubmed.ncbi.nlm.nih.gov/download/

PatentsView: PatentsView offers publicly ac-
cessible patent research data sets with detailed doc-
umentation, which focusing on technological and
innovation studies. https://patentsview.org/
download/data-download-tables

ASAP: The Automated Student Assessment
Prize (ASAP) dataset, sourced from Kaggle, is used
for evaluating automated essay scoring systems.
https://www.kaggle.com/c/asap-aes/data

Splunk: A Kaggle competition Predict Word-
Press Likes data, is used for operational in-
telligence tasks. https://www.kaggle.com/c/
predict-wordpress-likes/data

Model Train Val Test Total

DBLP 6945 1488 1488 9921
PubMed 6956 1491 1490 9937
PatentsView 3988 855 854 5697

ASAP 3500 750 750 5000
Splunk 5763 1235 1235 8233

Table 3: Dataset Splits for RAHA. The table displays
the number of instances in the training, validation, and
test sets for each dataset (DBLP, PubMed, PatentsView,
ASAP, and Splunk).

B Formal Proof of Markov-like Process

In our model, we employ a recurrent alignment
strategy, analogous to a Markov chain process, by
performing multiple iterations on the same input to
refine inference. This approach allows the model
to start with naive information and progressively
refine towards an accurate representation over time.
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Given that the model parameters remain unchanged
during the testing phase, this iterative process is
equivalent to transitions defined by a Markov Chain
transition matrix. The mathematical justification
proceeds as follows:

B.1 Definitions
• y

(k)
i : State of the model at the k-th iteration.

• P : Fixed matrix representation of prompt.

• F ∗: Represents the fixed parameters of the
model during testing, analogous to a transition
matrix in a Markov chain.

• ⊞: A custom operation defined as follows:
A ⊞ B = (A1M + B1M)∥(A2M + B2M)
Here, A and B are matrices that are split into
sub-blocks A1, A2 and B1, B2, which are then
transformed by matrix M and recombined.

B.2 Iterative Process Expansion
The iterative refinement process can be expanded
recursively as:

y
(k)
i = [P y

(k−1)
i ]F ∗

= PF ∗ ⊞ y
(k−1)
i F ∗

= PF ∗ ⊞ (PF ∗ ⊞ y
(k−2)
i F ∗)F ∗

= PF ∗ ⊞ PF ∗2 ⊞ y
(k−2)
i F ∗2

= . . .

= P (F ∗ ⊞ F ∗2 ⊞ · · ·⊞ F ∗(k−1))⊞ y
(0)
i F ∗k

Define S = F ∗ ⊞ F ∗2 ⊞ · · ·⊞ F ∗(k−1), where ⊞
operates similarly to addition. We can conclude
that limk→∞ S = (I − F ∗)−1 which implies that
y
(k)
i → P (I − F ∗)−1 as k →∞.
The convergence of y(k)i to P (I − F ∗)−1 as k

approaches infinity can be understood through the
lens of stability theory in linear algebra. Since
most weights of the neural network are concen-
trated around zero after training (Blundell et al.,
2015), the spectral radius of F ∗ can be consid-
ered to be less than 1. The spectral radius condi-
tion, ρ(F ∗) < 1, ensures that the effects of F ∗

dampen over successive iterations, leading to the
stabilization of y(k)i . This behavior is analogous to
a Markov chain reaching its steady state, where the
transition matrix F ∗ dictates the evolution of states
such that the influence of the initial state progres-
sively wanes, eventually stabilizing at a distribution

Algorithm 1 RAHA
Input: hierarchical text ⟨ri, Li⟩
Output: task-desired property yi

1: while 1 ≤ k iteration ≤ K do
2: for each root and leaf pair (ri, s

(i)
j ) in

⟨ri, Li⟩ do
3: p

(i)
j ← construct prompt f (1)

p (ri, s
(i)
j )

4: a
(i)
j , d

(i)
j ← conduct inference F(p(i)j )

5: end for
6: Ai ← related hard attentions

[a
(i)
1 , a

(i)
2 , · · · , a(i)m ]

7: Di← all updates [d(i)1 , d
(i)
2 , · · · , d(i)m ]

8: D∗
i ← filter out noise Ai ⊗Di

9: if k = 1 then
10: pi ← construct aggregation prompt

f
(2)
p (ri, D

∗
i , ϕ)

11: else
12: pi← f

(2)
p (ri, D

∗
i , y

(k−1)
i )

13: end if
14: y

(k)
i ← conduct inference F∗(pi)

15: L← compute loss between y
(k)
i and yi

16: ∆W , W1 ← update parameters via
AdamW

17: end while
18: return y

(k)
i

determined by P and (I − F ∗)−1. This stabiliza-
tion is crucial in demonstrating that the iterative
refinement process under fixed parameters behaves
similarly to state transitions in a Markov model,
with F ∗ serving as a transition-like matrix.

C Pseudo Code

The pseudo-code of our framework is shown in
algorithm 1.

D Prompt

In the appendix section, we present a series of de-
tailed tables that outline the prompts used in the var-
ious mechanisms of the RAHA framework. These
tables are crucial for understanding the intricacies
of how the tree-based hard attention mechanism,
parameter-efficient fine-tuning, and recurrent align-
ment strategy are implemented in practice. Each
table provides the structure of prompts used in our
experiments, including examples for academic pa-
pers and patents. For specific tasks, prompts should
be replaced with content that fits the context of the
task.
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Prompt for Tree-based Hard Attention in Aca-
demic Paper Analysis
Task1: Determine whether a reference paper is
important to a focal paper based on the abstract.
Return Import Index is "1" if it is important and
"0" if it is not. Don’t repeat my inputs, just
output the values.

Example 1:
Input:
Focal paper abstract: abstract1
Reference paper abstract: reference1
Output: 0

Input:
Focal paper abstract: {abstract}
Reference paper abstract: {reference}
Output:
Task2: You are now tasked with assessing the dis-
ruptive potential in the research area of academic
papers. Your approach involves contrasting the
abstract of a focus paper with the abstracts of its
cited references. No need to give me abstract’s
analysis, just output Contrast and Difference.

Focal paper abstract: {abstract}
Reference paper abstract: {reference}
Contrast and Difference:

Table 4: Structured Prompts for Tree-Based Hard At-
tention in Academic Paper Analysis within the RAHA
Framework. This table showcases the input format and
elucidates how the prompts direct the LLM’s focus and
analytical processes in handling the hierarchical struc-
tures of academic texts.

D.1 Detailed Prompt for Hard Attention

In the RAHA framework, the integration of a tree-
based hard attention mechanism significantly en-
hances the process of message passing within hi-
erarchical structures. This mechanism streamlines
the task for LLMs by reducing the complexity in-
volved in understanding the interplay between the
root and individual leaves of a tree within extensive
texts. To practically implement this mechanism,
we utilize structured prompts that direct the LLM’s
focus and analytical process. Examples of these
structured prompts are illustrated in the following
Table 4.

In addition to academic papers, the RAHA
framework’s tree-based hard attention mechanism
is adeptly applied to patent analysis. The Table 5

Prompt for Tree-based Hard Attention in
Patent Analysis
Task1: Assess the importance of a reference
patent based on its abstract in relation to a focal
patent. Return an Importance Index as "1" if it is
important and "0" if it is not. Do not repeat the
inputs, only provide the evaluation.

Example 1:
Input:
Focal Patent abstract: abstract1
Reference Patent abstract: reference1
Output: 0

Input:
Focal Patent abstract: {abstract}
Reference Patent abstract: {reference}
Output:
Task2: You are tasked with analyzing the inno-
vation gap and potential impact between patents.
Your job is to contrast the abstract of a focal
patent with the abstracts of its related patents.
Avoid providing an analysis of the abstracts
themselves; focus instead on the contrast and
potential differences.

Focal Patent abstract: {abstract}
Related Patent Abstract: {reference}
Contrast and Difference:

Table 5: Structured Prompts for Tree-Based Hard Atten-
tion in Patent Analysis within the RAHA Framework.
This Table presents examples of how prompts are tai-
lored for assessing the importance and innovation gap
between patents, demonstrating the framework’s adapt-
ability to different domains.

showcases structured prompts designed for patent
analysis.

D.2 Detailed Prompt for Fine-Tuning and
Recurrent Alignment

In this section, we present a detailed example of
a prompt designed specifically for the fine-tuning
and recurrent alignment components of the RAHA
framework. The Property between the [DINDEX]
tokens changes iteratively, with the property for
this iteration being the output from the previous
one. The prompt in Table 6 is tailored for the task
of assessing the disruptive potential of academic
papers using the Disruption Index. This example
illustrates how the prompt structures the analysis
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Prompt for Fine-Tuning and recurrent align-
ment in Academic Paper Analysis
Task: You are tasked with assessing the disrup-
tive potential of academic papers. Your primary
tool for this analysis is the Disruption Index, a
metric ranging from -1 to 1. This index quan-
tifies the level of innovation or breakthrough a
paper represents. A higher positive value on the
index indicates a significant breakthrough, while
negative values suggest a lower level of innova-
tion.
Please provide a detailed analysis based on the
contrast and differences between the focus paper
and its references. Use the Disruption Index of
the focus paper to guide your assessment. Pay
special attention to the unique contributions or
shortcomings of the focus paper in comparison
to the referenced works.

Details for Analysis:
Determine whether the DINDEX predicted in
the previous epoch is high or low: [DIN-
DEX]{Property}[DINDEX]
Abstract of Focus Paper: {abstract}
Comparison with Reference Paper : {reference}

Based on the above information, analyze the
reason for the disruptive nature (or lack thereof)
of the focus paper.

Table 6: Example of a Structured Prompt for Fine-
Tuning and recurrent alignment in Academic Paper
Analysis within the RAHA Framework. This Table
demonstrates how prompts are designed to assess the
innovation level of papers using the Disruption Index.

process, guiding the model to focus on key indi-
cators and draw meaningful conclusions from the
data.

In addition to academic papers, the fine-tuning
and recurrent alignment components of the RAHA
framework are also effectively applied to the do-
main of patent analysis. The prompt provided in
Table 7 is specifically designed for evaluating the
innovation level and potential breakthroughs of
patents.

Prompt for Fine-Tuning and recurrent align-
ment in Patent Analysis
Task: You are tasked with evaluating the innova-
tion level and potential breakthrough of patents.
Your primary tool for this analysis is the Disrup-
tion Index, a metric ranging from -1 to 1. This
index helps quantify the level of novelty and po-
tential market disruption a patent represents. A
higher positive value on the index indicates a
significant breakthrough, while negative values
suggest incremental or less novel innovations.
Please provide a detailed assessment based on
the comparison between the focal patent and its
related patents. Consider the Disruption Index of
the focal patent to guide your analysis, focusing
on the unique contributions or advancements it
offers.

Details for Analysis:
Determine whether the DINDEX predicted in
the previous epoch is high or low: [DIN-
DEX]{Property}[DINDEX]
Abstract of Focus Patent: {abstract}
Comparison with Related Patent: {reference}

Based on the above information, predict the Dis-
ruption index of the focal patent.

Table 7: Example of a Structured Prompt for Fine-
Tuning and recurrent alignment in Patent Analysis
within the RAHA Framework. This Table demonstrates
how prompts are designed to assess the innovation level
of patents using the Disruption Index.
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