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Abstract

Deploying large language models (LLMs) on
edge devices presents significant challenges
due to the substantial computational overhead
and memory requirements. Activation sparsifi-
cation can mitigate these resource challenges
by reducing the number of activated neurons
during inference. Existing methods typically
employ thresholding-based sparsification based
on the statistics of activation tensors. However,
they do not model the impact of activation spar-
sification on performance, resulting in subopti-
mal performance degradation. To address the
limitations, this paper reformulates the activa-
tion sparsification problem to explicitly capture
the relationship between activation sparsity and
model performance. Then, this paper proposes
CHESS , a general activation sparsification
approach via CHannel-wise thrEsholding and
Selective Sparsification. First, channel-wise
thresholding assigns a unique threshold to each
activation channel in the feed-forward network
(FFN) layers. Then, selective sparsification in-
volves applying thresholding-based activation
sparsification to specific layers within the at-
tention modules. Finally, we detail the imple-
mentation of sparse kernels to accelerate LLM
inference. Experimental results demonstrate
that the proposed CHESS achieves lower per-
formance degradation over eight downstream
tasks while activating fewer parameters than
existing methods, thus speeding up the LLM
inference by up to 1.27x.

1 Introduction

Large Language Models (LLMs) have become in-
tegral to diverse applications, including code gen-
eration, office assistance, voice assistance, and as-
sistive applications for individuals with disabilities.
However, due to the substantial computation and
memory requirements of LLM inferences, deploy-
ing LLMs on edge devices is still challenging. To
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mitigate these overheads, utilizing the inherent acti-
vation sparsity of LLM has emerged as a promising
strategy (Liu et al., 2023; Song et al., 2023; Al-
izadeh et al., 2023). This approach has proven
effective for models with the ReLU activation func-
tion (Li et al., 2023; Liu et al., 2023).

Contemporary LLMs demonstrate that SwiGLU
or GeGLU activation functions can further boost
the model performance, but they induce less ac-
tivation sparsity. Consequently, several meth-
ods (Mirzadeh et al., 2024; Song et al., 2024) are
proposed to increase sparsity by applying regu-
larization to the activation function and employ-
ing continuous training. However, those works
require fine-tuning the LLMs, which entails sig-
nificant overheads. To avoid these overheads and
increase activation sparsity in modern LLMs, Lee
et al. (2024) propose a thresholding-based pruning
method to actively sparsify the activation tensors
during the inference stage. However, this threshold-
ing technique focuses solely on the statistics of the
activation tensors themselves, failing to model the
impact of sparsification on overall model perfor-
mance, which results in suboptimal performance
degradation.

To address the above limitations, this paper pro-
poses CHESS , a new activation sparsification
optimization via CHannel-wise thrEsholding and
Selective Sparsification. First, this paper reformu-
lates the activation sparsification problem to ex-
plicitly capture the relationship between activation
sparsity and model performance. Then, this paper
proposes channel-wise thresholding for FFN mod-
ules in LLMs, which determines a unique threshold
for each activation channel. Furthermore, this pa-
per proposes selective sparsification, which applies
thresholding-based activation sparsification to the
target layers in the attention module. Finally, this
paper presents the implementations of sparse ker-
nels to accelerate the inference based on the sparse
activations.
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To validate the effectiveness of the proposed
CHESS , this paper conducts comprehensive ex-
periments on various downstream tasks and state-
of-the-art LLMs. Experimental results demonstrate
that CHESS can achieve lower performance degra-
dation with better end-to-end inference speedup.
The code is publicly available 1.

The main contributions of this paper are,
• This paper reformulates the activation sparsi-

fication problem and establishes a connection
between sparsity and model performance.

• This paper proposes two activation sparsifica-
tion methods, the channel-wise thresholding
for FFN modules and the selective sparsifi-
cation for Attention modules, which can be
widely applied in existing LLMs.

• To make full use of the activation sparsity, this
paper details the algorithm design and imple-
mentations of the efficient sparse kernels.

• Experimental results demonstrate the perfor-
mance and efficiency of the proposed CHESS
.

2 Background and Motivations

2.1 Activation Sparsification

Activation functions introduce non-linearity into
neural networks, allowing networks to capture com-
plex patterns in the data. ReLU (Glorot et al.,
2011), as a popular activation function, has been
widely applied in most neural networks to address
gradient vanish issues (Zhang et al., 2022). Another
benefit of ReLU is introducing the sparsity into the
activation tensors. Recent studies (Li et al., 2023;
Liu et al., 2023) have demonstrated that up to 95%
of the intermediate FFN activations in OPT models
are zero. Such sparsity can be used to accelerate
the model inference while maintaining compara-
ble model performance (Liu et al., 2023; Alizadeh
et al., 2023; Song et al., 2023).

Recent state-of-the-art LLMs replace the ReLU
activation function with more advanced activation
functions, such as GeLU (Hendrycks and Gim-
pel, 2016), SiLU (Ramachandran et al., 2018), or
GLU-series functions (Shazeer, 2020). Although
these activation functions can significantly boost
the LLMs’ performance (Touvron et al., 2023), they
induce less activation sparsity. Previous optimiza-
tions based on activation sparsity may not be suit-
able for the LLMs with those activation functions.

1https://github.com/ZeonfaiHo/CHESS

To increase activation sparsity in modern LLMs,
existing work (Lee et al., 2024) proposes a
thresholding-based pruning method called CATS
on some activation tensors in FFN layers. CATS
first computes the cutoff threshold over a set of sam-
ple input data according to the given sparsity level,
then sparsifies the activations during inference and
achieves end-to-end speedup via efficient sparse
kernel design. Although CATS increases activa-
tion sparsity, it only focuses on the statistics of the
activation tensors without modeling the impact of
activation sparsification on the model performance,
leading to suboptimal performance drop.

2.2 Motivation
Following the observations in CATS (Lee et al.,
2024), this paper also aims to apply activation spar-
sification in the gated-MLP blocks of FFN modules.
The formal expression of the FFN module is de-
fined as,

FFN(x) =
(
σ(xW gate)⊙ (xW up)

)
W down (1)

where W up, W gate, W down are parameters, and σ(·)
is the activation function. Therefore, the activation
values in gated-MLP blocks are,

aup = xW up, agate = σ(xW gate) (2)

Since the activation function introduces sparsity
where the values of many elements in the output
tensor are close to zero, we focus on pruning the
output of the gate projection layer, i.e., agate. Then,
the following computations, such as the matrix mul-
tiplication for aup, the element-wise multiplication
between aup and agate, or the matrix multiplication
with W down, can further be optimized due to the
zero elements in the pruned agate.

Inspired by layer-wise weight pruning (Frantar
and Alistarh, 2023; Sun et al., 2024), this paper re-
formulates the activation sparsification problem to
find the optimal pruned activation tensor âgate

that guarantees a specified sparsity level while
minimizing the output difference of the succeed-
ing layer before and after pruning. More for-
mally, the problem is defined as,

argmin
âgate

∥∥aup ⊙ agate − aup ⊙ âgate∥∥2
2

(3)

where aup, agate are different activation tensors in
FFN layers, âgate is the pruned activation tensor.

We decompose all activations in the pruned ten-
sor into two subsets, i.e., the pruned â

gate
P which
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are all zeros and the non-pruned â
gate
U−P which keep

the original values in agate. Thus, we can simplify
the objective defined in Equation 3 as: finding
a subset of indices P that indicates the index
of the pruned elements, and satisfies sparsity
level |P| ≥ k · |U|, while minimizing the sparsi-
fication error illustrated in Equation 4, where
U = {1, . . . , d}, d is the feature dimension of agate.

argmin
P

∑

i∈P

(
a

up
i a

gate
i

)2
(4)

Equation 4 establishes the theoretical relation-
ship between activation sparsification and model
performance, which is ignored by previous works,
e.g., CATS (Lee et al., 2024). However, finding the
top-k smallest elments of

(
a

up
i a

gate
i

)2
requires the

prior compuation of aup, which is not all necessary.
Besides, sorting across channels in each FFN layer
is also a costly process. These challenges point us
to propose the CHESS method.

3 CHESS : Activation Sparsification via
Channel-Wise Thresholding and
Selective Sparsification

In this section, this paper first introduces the
channel-wise thresholding method for FFN mod-
ules. Then, it presents the selective sparsification
for attention modules. Finally, it discusses the algo-
rithm design and implementations of the efficient
custom sparse kernels.

3.1 Channel-Wise Thresholding

As described in Equation 4, whether to prune an
activation element is determined by both aup and
agate. To quantify the significance of each activa-
tion element, we introduce the importance score
based on Equation 4,

scorei =
∣∣aup

i a
gate
i

∣∣ (5)

To obtain all importance scores of elements
in Equation 5, we need to compute two matrix-
multiplication for agate and aup. However, we can
reduce the computational cost for aup by leveraging
the sparsity of agate. Therefore, we need to calcu-
late the score only with agate. We observe that,
for each channel i, the values of |aup

i | remain rela-
tively consistent across different inputs, as shown
in Figure 1. However, these values can vary signif-
icantly between different channels. Based on this
observation, this paper estimates the |aup

i | using the

expectation of |aup
i | over the sampled input data,

|aup
i | ≈ E

[∣∣aup
i

∣∣] = 1

n

∑

j

|aup
ij | (6)

where n is the number of sampled input data.
Therefore, the importance score is further estimated
as,

ˆscorei = E
[∣∣aup

i

∣∣] ∣∣agate
i

∣∣ (7)

For the sorting overhead, this paper also adopts
the CDF-based thresholding method following Lee
et al. (2024). Specifically, we first outline the cu-
mulative distribution function F of the proposed
importance score across all channels,

F (t) = P( ˆscore ≤ t) (8)

Then, given a sparsity level k, we can obtain the
threshold ti for sparsifying the activation elements
on channel i,

ti =
argmint F (t) ≥ k

E
[∣∣aup

i

∣∣] (9)

This threshold indicates the maximal activation
magnitude that should be pruned as zero. Differ-
ent from CATS, this is a Channel-Wise Threshold-
ing (CWT) technique that relates the model perfor-
mance with the activation sparsity via introducing
the importance score in Equation 5.

Finally, based on the channel-wise thresholds,
the activation values can be sparsified as,

CWT(ai) =

{
0, if |ai| ≤ ti

ai, if |ai| > ti
(10)

and the output of the FFN modules is computed as,

FFNCWT(x) =
(
CWT(agate)⊙ aup)W out (11)

3.2 Selective Sparsification

Although the activation sparsity in attention mod-
ules is much lower than that in FFN modules, ap-
plying activation sparsification to these modules
can still effectively reduce memory access and
computational overhead. The standard attention
mechanism involves four linear projects: query,
key, value, and output projection. Similar to that in
FFN modules, the objective of activation sparsifica-
tion in the attention module is to find the optimal
pruned activation tensor that guarantees a spec-
ified sparsity level while minimizing the output
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Figure 1: Distribution of absolute activation values |aup
i | across different inputs for various channels in the FFN of

layer 16 of the Llama-3-8B model.
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Figure 2: Distribution of ∥Wi,:∥22 of different rows i in attention projections of layer 16 of Llama-3-8B.

difference of the succeeding layer before and af-
ter pruning. More formally, the problem is defined
as,

argmin
x̂

∥xW − x̂W∥22 (12)

where W is the weight tensor of the projection
layer.

The error E= ∥xW − x̂W∥22 can be approxi-
mated using the Taylor series as follows (LeCun
et al., 1989; Hassibi and Stork, 1992; Frantar and
Alistarh, 2022):

E = g(x̂−x)T+
1

2
(x̂−x)H(x̂−x)T+O(∥x̂−x∥3)

(13)
where g and H denote the first-order and second-
order derivatives of the error E with respect to x̂,
respectively,

g =
∂E
∂x̂

∣∣∣∣
x̂=x

= 0 (14)

H =
∂2E
(∂x̂)2

∣∣∣∣
x̂=x

= WW T (15)

Then, we replace g and H with true values, dis-
card the higher-order terms, and apply diagonal
approximation to H. The Equation 13 can be sim-
plified as:

E ≈
d∑

i=1

∥Wi,:∥22(x̂i − xi)
2 (16)

where ∥Wi,:∥22 denotes the square of ℓ2 norm of
row i in weight matrix W . As described in Sec-
tion 2.2, we can also decompose the input features
into pruned features (zeros) and non-pruned fea-
tures (original values) and then transform the ob-
jective as follows,

argmin
P

∑

i∈P
∥Wi,:∥22x2i (17)

To further simplify Equation 17, this paper ana-
lyzes the statistics of the weight matrix in the atten-
tion mechanism. Figure 2 shows the distribution
of ∥Wi,:∥22 of different rows in projection weights.
From the results, all rows from the same weight
exhibit similar ∥Wi,:∥22, therefore we can eliminate
this coefficient from Equation 17 and derive the
simplified final objective:

argmin
P

∑

i∈P
|xi| (18)

Based on Equation 18, this paper adopts the
tensor-wise thresholiding method proposed by
CATS (Lee et al., 2024) for the projection layers of
attention modules:

CATS(xi) =

{
0, if |xi| ≤ t

xi, if |xi| > t
(19)

However, which layers the CATS should be ap-
plied to becomes a challenge in terms of the trade-
off between model performance and model effi-
ciency. The search space is quite large. Taking
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Llama-2-7B as an example, which has 32 layers
and four attention projections per layer, the search
space is over the septillion level.

In this paper, we compare two stratagies, namely
full sparsification and selective sparsification. Full
sparsification refers to applying CATS to all four
projections of the attention mechanism,

Cto(Attn(Cti(x)W
q,Cti(x)W

k,Cti(x)W
v))W o

(20)

where C(·)t is the CATS function with the thresh-
old t. Conversely, selective sparsification refers to
applying the CATS function to only query and out-
put projections, while not altering key and query
projections. The formal expression is,

Cto(Attn(Ctq(x)W
q, xW k, xW v))W o (21)

Experimental results (ref. Section 4.4) demon-
strate that selective sparsification results in sig-
nificantly lower performance degradation, while
achieving comparable overhead reduction when ap-
plied to GQA modules. Since the GQA modules
are widely applied in modern LLMs, we utilize
selective sparsification as our main method for at-
tention modules.

3.3 Efficient Sparse Kernels

Algorithm 3.1 spvmm (sparse vector-matrix multi-
plication) kernel

Input: The sparse input vector x ∈ R1×K , the
weight matrix W ∈ RK×N , the number of out-
put elements N , the number of input elements
K, the block size B.

Output: The output vector y ∈ R1×N

1: for n0 from 0 to N with step size B in
PARALLEL do

2: for k from 0 to K do
3: if x[k] ̸= 0.0 then
4: n1upp = min(B,N − n0)
5: for n1 from 0 to n1upp VECTORIZED

do
6: y[n0 + n1] += x[k] × W [k][n0 +

n1]
7: end for
8: end if
9: end for

10: end for
11: return y

Algorithm 3.2 vmmsp (vector-matrix multiplica-
tion with output sparsity) kernel

Input: The input vector x ∈ R1×K , the weight
matrix W ∈ RN×K , the output mask vector
mask ∈ R1×N , the number of output elements
N , the number of input elements K, the block
size B.

Output: The output vector y ∈ R1×N .
1: for n0 from 0 to N with step size B in PAR-

ALLEL do
2: n1upp = min(B,N − n0)
3: for n1 from 0 to n1upp do
4: if mask[n0 + n1] ̸= 0.0 then
5: accum = 0.0
6: for k from 0 to K VECTORIZED do
7: accum += W [n0 + n1][k]× x[k]
8: end for
9: y[n0+n1] = accum×mask[n0+n1]

10: end if
11: end for
12: end for
13: return y

To achieve wall-clock speedup and reduce infer-
ence latency via sparse activations, we developed
two custom CPU kernels: spvmm (sparse vector-
matrix multiplication) and vmmsp (vector-matrix
multiplication with output sparsity). The spvmm
kernel is optimized for cases where the input activa-
tion tensor is sparse, and it is employed in attention
modules and FFN down projections. Conversely,
the vmmsp kernel is designed for cases where the
output activation tensor is multiplied with a sparse
mask, and is used in FFN up projections.

Algorithm 3.1 and Algorithm 3.2 show the de-
tailed steps of spvmm and vmmsp, respectively.
Both algorithms splits the output vector into blocks
of size B and accumulates the results of each block
in parallel (Line 1 in Algorithm 3.1, Line 1 in Al-
gorithm 3.2). What’s more, they both reduce the
latency by bypassing unnecessary weight reads and
computations (Line 3 in Algorithm 3.1, Line 4 in
Algorithm 3.2). Notably, although the implemen-
tation of the vmmsp kernel is relatively straight-
forward, the spvmm kernel requires a more com-
plex approach because its access to each column of
W is not continuous. To address this, we employ
two advanced optimizations. First, we transpose
the linear projection weights in advance during
the model preprocessing stage, to ensure memory
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access continuity. Additionally, we employ loop
tiling and loop reordering to make sure that each
threads compute independently without the need
for synchronization or atomic operations.

4 Experiments

In this section, this paper first introduces the
dataset, comparisons, and implementation details.
Then, this paper presents the main results over 8
downstream tasks in terms of the model perfor-
mance and model efficiency. Besides, this paper
also conducts an ablation study across different
sparsification methods for the attention module and
analysis on performance and efficiency over differ-
ent sparsity level. Additionally, this paper conducts
extended comparisons with other state-of-the-art
training-free pruning methods, to validate the ef-
fectiveness of the proposed CHESS .

4.1 Datasets and Experimental Setup

Datasets We utilize ARC Challenge (Arc-C), ARC
Easy (Arc-E), BoolQ, HellaSwag (HS), Open-
bookQA (QA), PIQA, SCI-Q, Winogrande (WG)
as benchmarks for downstream tasks, employing
the Evaluation Harness library from Eleuther AI to
ensure consistency with Lee et al. (2024). These
tasks are designed to assess various aspects of the
language model’s performance, including compre-
hension, common sense, and reasoning abilities,
which effectively illustrate the model’s capability
loss with activation sparsification.
Comparisons To validate the effectiveness of the
proposed CHESS , we conducted experiments us-
ing several state-of-the-art LLMs, including Llama-
2-7B, Llama-2-13B, Llama-2-70B, Llama-3-8B
and Mistral-7B. These models feature different at-
tention mechanisms, specifically MHA and GQA,
and utilize SwiGLU as the activation function for
the FFN modules. We tested four different configu-
rations across all five LLMs:

• Base Model: the LLM model without any
activation sparsification.

• CATS (Lee et al., 2024): the state-of-the-
art activation sparsification method, which ap-
plies magnitude pruning to FFN activations.

• CHESS w/o: the proposed method including
channel-wise thresholding but without atten-
tion sparsification.

• CHESS w/: the channel-wise thresholding
and selective sparsification method.

For the ablation study, we evaluate the following

Llama-2-7B Llama-2-13B Llama-3-8B Mistral-7B
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Figure 3: End-to-end inference speedup

three models:
• Llama-3: the Llama-3 8B model without ac-

tivation sparsification.
• FS: No activation sparsification applied to the

FFNs; full sparsification applied in the atten-
tion modules.

• SS: No activation sparsification applied to the
FFNs; selective sparsification applied in the
attention modules.

Implementation Details For all models involv-
ing activation sparsification, thresholds are sam-
pled from a subset of the C4 dataset (Raffel et al.,
2020). Following the settings in CATS (Lee
et al., 2024), the sparsity level k is set to 0.5,
where the accuracy drop is minimal while the in-
ference latency significantly decreases. The pro-
posed method was implemented using the Py-
Torch v2.2.2 (Paszke et al., 2019) and HuggingFace
Transformers v4.39.3 (Wolf et al., 2019). End-
to-end decoding speedups are measured on a ran-
domly collected subset of C4 dataset. Kernel ef-
ficiency and end-to-end speedup experiments are
conducted with FP32 precision on a personal com-
puter equipped with an Intel Core I9-12900K CPU
and 64GB of DDR4 memory. Since our work can
be applied to quantized models as well, chang-
ing weight precision to FP16 or even lower bit-
width quantizations does not materially affect our
results (Lee et al., 2024).

4.2 Main Results on Downstream Tasks

Table 1 compares the accuracy of different mod-
els across eight downstream tasks and Figure 3
evaluates the end-to-end inference speedups. Ex-
perimental results draw the following conclusions.

Channel-wise thresholding can reduce accu-
racy degradation while achieving comparable
sparsity. Achieving a comparable sparsity, the
proposed CHESS w/o exhibits a smaller average
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Models AP↓ Arc-C↑ Arc-E↑ BoolQ↑ HS↑ QA↑ PIQA↑ SciQ↑ WG↑ Avg↑
Llama-2-7B 100% 43.43 76.26 77.68 57.15 31.40 78.07 93.90 69.14 65.87
CATS 78.16% 41.13 74.07 72.17 57.03 31.60 77.48 92.80 66.69 64.12
CHESS w/o 78.17% 41.47 74.62 74.22 57.15 32.40 77.20 93.20 66.61 64.60
CHESS w/ 70.05% 40.36 74.37 74.22 56.60 33.60 77.86 93.30 66.22 64.56

Llama-2-13B 100% 48.38 79.38 80.61 60.06 35.00 79.05 94.60 72.22 68.66
CATS 77.97% 46.93 77.44 75.60 60.42 33.80 78.78 94.10 70.64 67.21
CHESS w/o 77.98% 46.67 77.95 79.11 60.64 34.00 78.89 94.30 70.09 67.71
CHESS w/ 69.82% 46.84 77.95 78.50 60.47 34.40 79.00 94.20 70.88 67.78

Llama-2-70B 100% 54.44 82.70 83.76 64.77 37.40 82.21 96.90 77.98 72.52
CATS 72.96% 54.61 81.48 79.72 64.30 37.20 81.61 96.10 76.32 71.41
CHESS w/o 72.97% 54.10 81.78 82.17 64.92 36.60 81.12 96.00 76.32 71.63
CHESS w/ 65.24% 54.35 81.69 81.65 64.45 36.80 81.77 96.10 76.24 71.63

Llama-3-8B 100% 50.17 80.22 81.07 60.15 34.60 79.60 96.30 73.32 69.42
CATS 74.96% 45.22 75.76 78.65 57.34 32.40 78.40 94.90 70.88 66.69
CHESS w/o 74.96% 47.44 77.02 79.97 59.06 32.80 78.67 94.60 71.90 67.68
CHESS w/ 67.80% 46.67 76.85 78.04 58.62 32.80 79.22 94.20 70.17 67.07

Mistral-7B 100% 48.89 79.71 82.11 60.87 33.40 80.20 95.80 73.64 69.33
CATS 73.59% 48.29 77.40 79.42 60.65 31.60 80.52 94.40 70.48 67.85
CHESS w/o 73.59% 48.21 79.71 80.55 61.70 33.20 80.41 95.80 70.88 68.81
CHESS w/ 66.04% 49.32 79.59 80.12 61.60 34.40 80.20 95.00 70.56 68.86

Table 1: Comparison of inference accuracy on downstream tasks of different models. ‘AP’ refers to the ratio of
activated parameters.

Model AP↓ Arc-C↑ Arc-E↑ BoolQ↑ HS↑ QA↑ PIQA↑ SciQ↑ WG↑ Avg↑
Llama-3-8B 100% 50.17 80.22 81.07 60.15 34.60 79.60 96.30 73.32 69.42
FS 90.94% 46.16 79.00 78.56 57.14 34.80 78.02 96.10 71.59 67.67
SS 92.84% 50.17 79.67 79.57 59.31 35.00 79.71 96.30 72.85 69.07

Table 2: Ablation study between full sparsification and selective sparsification in attention modules. ‘AP’ refers to
the ratio of activated parameters.

performance drop of 1.07 across five base mod-
els and eight downstream tasks, compared to the
1.70 degradation of CATS. Specifically, CHESS
w/o consistently outperforms CATS on ARC Easy,
BoolQ, and HellaSwag, while showing modest
gains on the remaining benchmarks.

Selective sparsification of attention modules
further improves sparsity while maintaining
model accuracy. Compared to CHESS w/o,
the average performance of CHESS w/ degrades
by 0.04 on Llama-2-7B and 0.61 on Llama-3-
8B, respectively. Interestingly, for larger models
such as Llama-2-13B, Llama-2-70B, and Mistral-
7B, CHESS w/ demonstrates comparable or even
slightly superior overall performances. Specifi-
cally, CHESS w/ outperforms on OpenbookQA,
but underperforms on ARC Easy, HellaSwag and
BoolQ, while showing similar results on ARC Chal-
lenge, PIQA, SciQ, and Winogrande. These results
demonstrate that the additional selective sparsifica-

tion on attention modules has minimal impact on
performance. In comparison to CATS, CHESS w/
consistently delivers superior average performance
with fewer activated parameters.

4.3 End-to-End Decoding Speedup

CHESS achieves end-to-end speedups of up
to 1.27x compared to Transformers baselines.
When not employing attention sparsification,
CHESS w/o achieves comparable speedups to
CATS, which is 1.17x on Llama-2-7B and Llama-
2-13B, 1.20x on Llama-3-8B, and 1.21x on Mistral-
7B, respectively. This is because of the comparable
parameters activated per decoding pass of these
two methods. When employing attention sparsifica-
tion, the proposed CHESS w/ achieves the highest
speedup of 1.25x on Llama-2-7B and Llama-2-13B,
and 1.27x on Llama-3-8B and Mistral-7B, respec-
tively. Due to the limited capacity of main memory
of edge devices, we did not perform the end-to-end
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Model AP↓ Arc-C↑ Arc-E↑ BoolQ↑ HS↑ QA↑ PIQA↑ SciQ↑ WG↑ Avg↑
Llama-3-8B 100% 50.17 80.22 81.07 60.15 34.60 79.60 96.30 73.32 69.42
Relufication 67.10% 20.73 24.66 38.04 25.39 17.80 53.59 1.70 49.64 28.94
Wanda 53.49% 30.80 62.58 68.01 41.23 24.40 70.73 91.20 62.35 56.41
CHESS 54.92% 36.86 67.51 66.91 52.92 28.80 75.35 89.60 63.69 60.21

Table 3: Extended comparisons with state-of-the-art training-free pruning methods. ‘AP’ refers to the ratio of
activated parameters; ‘CHESS’ refers to the proposed CHESS model with a sparsity level of 0.7.
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Figure 4: Comparison between custom sparse kernels and PyTorch dense kernel on latency of linear projections
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Figure 5: Downstream performance and end-to-end
speedups of each method under different sparsity levels.

speedup experiment for the Llama-2-70B model.
However, based on the activated parameter count
per inference pass, its speedup is estimated to be
similar to that of Mistral-7B and Llama-3-8B.

4.4 Ablation Study

Table 2 presents the ablation study with different
sparsification in attention modules. While selec-
tive sparsification achieves a comparable reduc-
tion in overhead relative to full sparsification, it
significantly outperforms full sparsification across
all eight benchmarks. Specifically, selective spar-
sification exhibits substantial improvements on
the HellaSwag and Arc Challenge benchmarks,
while demonstrating modest gains on the remaining
benchmarks. These results underscore the advan-

tages of selective sparsification.

4.5 Kernel Efficiency

As illustrated in Figure 4, this paper compares the
latency against sparsity level between the proposed
custom sparse kernel and the dense kernel in Py-
Torch (Paszke et al., 2019). At a sparsity level
of 0, the vmmsp kernel used for up projections
demonstrates slightly lower latency compared to
the PyTorch dense kernel. Conversely, the spvmm
kernel, utilized by attention projections and down
projections, exhibits slightly higher latencies than
the dense kernel. This increased latency is primar-
ily due to the advanced loop tiling and reordering
strategies, which cause slight performance degra-
dation at low sparsity levels.

As the sparsity level increases, the latency of the
dense kernel remains relatively constant, whereas
the latency of our custom sparse kernels decreases
proportionally. Notably, at a sparsity level of 0.5,
our custom sparse kernels achieve latency reduc-
tions of 30%, 28%, and 51% for attention projec-
tion, FFN up projection, and FFN down projection,
respectively. These findings highlight the efficiency
of our custom kernels.

4.6 Impact on Different Sparsity Levels

Figure 5 shows the model performance on down-
stream tasks and end-to-end decoding speedups at
different sparsity levels. We selected Llama-3-8B
as the base model since it incorporates the contem-
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porary GQA module.
Experimental results indicate that at lower spar-

sity levels (0.3 and 0.5), both CATS and CHESS
maintain performance comparable to the base
model, with CHESS exhibiting superior perfor-
mance. At higher sparsity levels (0.7 and 0.9), these
models experience noticeable performance degra-
dation, and CHESS models, particularly CHESS
w/o models, consistently outperform CATS. Specif-
ically, at a sparsity level of 0.7, the CATS, CHESS
w/o, and CHESS w/ models achieve average per-
formances of 56.49, 61.18, and 60.21, respectively.
At a sparsity level of 0.9, the corresponding perfor-
mances are 34.83, 43.15, and 38.86, respectively.

Regarding end-to-end speedup, CHESS w/ ex-
hibits the highest speedup at all sparsity levels
above 0.3, attributed to the selective sparsifica-
tion of attention modules. Specifically, CHESS
w/ achieves speedups of 1.46x and 1.72x at spar-
sity levels of 0.7 and 0.9, respectively, compared
to 1.33x and 1.52x for CATS. However, at a spar-
sity level of 0.3, the CHESS w/ exhibits slightly
reduced speedup, mainly due to the suboptimal
efficiency of the spvmm kernel at lower sparsity
levels.

4.7 Extended Comparisons with
State-of-the-Art Training-Free Pruning
Methods

To further demonstrate the effectiveness of our pro-
posed CHESS method, we extend our comparisons
to include other state-of-the-art training-free prun-
ing approaches, such as Relufication (Mirzadeh
et al., 2024) and Wanda (Sun et al., 2024). No-
tably, although Relufication achieves competitive
performance when fine-tuned, it struggles with per-
formance degradation in training-free scenarios.
Wanda, on the other hand, focuses on weight prun-
ing, which belongs to a different branch of work.
Weight pruning typically results in unstructured
sparsity or semi-structured sparsity, which is only
supported by high-end NVIDIA GPUs with Am-
pere or Hopper architectures. In contrast, our pro-
posed CHESS does not rely on specialized GPU
architecture, making it more suitable for deploying
on edge devices.

As presented in Table 3, the proposed CHESS
method achieves superior performance in most
benchmarks while activating comparable or fewer
parameters compared to both Relufication and
Wanda. Specifically, CHESS with a sparsity level
of 0.7 outperforms other methods on several bench-

marks including Arc Challenge, Arc Easy, Hel-
laSwag, OpenbookQA, PIQA and Winogrande. De-
spite using only 54.92% of the model’s parameters
per decoding pass, CHESS delivers an average per-
formance (60.21) that surpasses Wanda (56.41) and
Relufication (28.94). These results emphasize the
advantage of CHESS over existing methods.

5 Related Work

Various methods have been proposed to address
the challenges associated with deploying LLMs
locally. Weight quantization (Xiao et al., 2023;
Frantar et al., 2022; Lin et al., 2024) aims to repre-
sent LLM weights using lower bit-widths, thereby
reducing memory usage and access overhead. Ac-
tivation quantization focuses on minimizing the
memory footprint of activation tensors and KV
cache (Zhao et al., 2024; Liu et al., 2024; Hooper
et al., 2024). These methods can be applied along
with our proposed CHESS method.

Weight pruning (Frantar and Alistarh, 2023; Sun
et al., 2024) involves setting a portion of the LLM
weights to zero to reduce computational overhead
and memory requirement. However, this approach
faces several challenges including noticeable degra-
dation in performance and limited hardware sup-
port when applied on personal devices.

Non-autoregressive decoding approaches, such
as speculative decoding (Leviathan et al., 2023;
Zhou et al., 2023) or Medusa (Cai et al., 2024),
seek to convert autoregressive decoding process of
LLMs into parallel decoding to mitigate memory
access overhead. However, these methods impose
increased computational demands, which presents
significant challenges for deployment on personal
devices with limited processing capabilities.

6 Conclusion

This paper reformulates the activation sparsifica-
tion problem and introduces the CHESS , a general
activation sparsification via channel-wise thresh-
olding and selective sparsification. Experiments
show that the proposed CHESS can achieve a lower
performance degradation and accelerate the LLM
inference with sparse activations.

Limitations

The limitations of this work can be summarized in
two main aspects. First, while CHESS achieves
lower accuracy degradation compared to existing
methods with fewer activated parameters, it still
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experiences a noticeable accuracy loss at higher
sparsity levels. Future research could explore fine-
tuning techniques to mitigate this decline in perfor-
mance. Second, CHESS is optimized for inference
with a batch size of one, which is suitable for edge
deployment scenarios typically involving a single
user. However, under larger batch sizes, the struc-
tured sparsity of activation tensors deteriorates into
unstructured sparsity, limiting potential speedups
and reducing effectiveness in data center deploy-
ments, where larger batch sizes are common.
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