
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 18669–18680
November 12-16, 2024 ©2024 Association for Computational Linguistics

Semformer: Transformer Language Models with Semantic Planning

Yongjing Yin1,2, Junran Ding2, Kai Song4, Yue Zhang2,3∗
1 Zhejiang University

2 School of Engineering, Westlake University
3 Institute of Advanced Technology, Westlake Institute for Advanced Study

4 ByteDance
{yinyongjing,dingjunran}@westlake.edu.cn

yue.zhang@wias.org.cn

Abstract
Next-token prediction serves as the dominant
component in current neural language models.
During the training phase, the model employs
teacher forcing, which predicts tokens based
on all preceding ground truth tokens. However,
this approach has been found to create short-
cuts, utilizing the revealed prefix to spuriously
fit future tokens, potentially compromising the
accuracy of the next-token predictor. In this pa-
per, we introduce Semformer, a novel method
of training a Transformer language model that
explicitly models the semantic planning of re-
sponse. Specifically, we incorporate a sequence
of planning tokens into the prefix, guiding the
planning token representations to predict the
latent semantic representations of the response,
which are induced by an autoencoder. In a mini-
mal planning task (i.e., graph path-finding), our
model exhibits near-perfect performance and ef-
fectively mitigates shortcut learning, a feat that
standard training methods and baseline models
have been unable to accomplish. Furthermore,
we pretrain Semformer from scratch with 125M
parameters, demonstrating its efficacy through
measures of perplexity, in-context learning, and
fine-tuning on summarization tasks1.

1 Introduction

Neural language models (LMs) (Bengio, 2008), a
fundamental component of natural language pro-
cessing (NLP), have witnessed significant advance-
ments in recent years. By scaling up model sizes
and pretraining on extensive text, large language
models (LLMs) have successfully learned language
and world knowledge, which has resulted in promis-
ing performance across various tasks and even
demonstrated reasoning capabilities (Brown et al.,
2020; Wei et al., 2022; OpenAI, 2023; Touvron
et al., 2023; Schaeffer et al., 2023). The success
of these models can be attributed to a straightfor-
ward training paradigm: next-token prediction with
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Figure 1: The Clever Hans cheat in a graph path-finding
problem which is a minimal lookahead task. The task is
to find the correct path based on the adjacency list, the
start node, and the target node.

teacher forcing (Williams and Zipser, 1989), in
which the models are trained to predict tokens us-
ing all preceding ground truth tokens as input.

Recent studies, however, have raised concerns
about the efficacy of the aforementioned train-
ing scheme in facilitating the learning of an ac-
curate problem solver or planner (Malach, 2024;
Wies et al., 2023; Bachmann and Nagarajan, 2024;
Gloeckle et al., 2024; Pfau et al., 2024). For in-
stance, the graph path-finding task—which necessi-
tates lookahead and planning— demonstrates that
teacher forcing can lead to a Clever Hans Cheat
phenomenon characterized by shortcut learning
(Bachmann and Nagarajan, 2024). Consequently,
the later nodes such as 3 and 1 in Figure 1 become
easier to predict, while the first node of the an-
swer (i.e., 22) becomes more challenging to learn.
This could result in a highly inaccurate next-token
predictor, which would struggle to generalize to
unseen problems, even without considering out-of-
distribution and length generalization.

Humans, intuitively, do not rely solely on histor-
ical context to solve a problem (Du et al., 2023).
Instead, they formulate an abstract plan based on
the problem at hand, which subsequently guides
them towards the final answers. For the problem in
Figure 1, the quickest solution is to look ahead at
the later nodes to identify a unique path correspond-
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ing to the problem, and then reverse this found
path to generate the correct answer. In general, a
language model should internalize the process of
looking ahead or "thinking about the future". The
semantics of finding the response path is predicted
by internal computation, with token output guided
by the intended semantics.

To this end, we incorporate semantic planning
into next-token prediction in a decoder-only Trans-
former (Vaswani et al., 2017; Radford et al., 2019),
which we refer to as Semformer. Our Semformer
is composed of a language model and an autoen-
coder that is used only during training. For the
language model, we introduce a semantic planning
token sequence that follows the prefix of the input.
This sequence disregards the general next-token
prediction loss and is utilized to predict the latent
representations of the subsequent tokens. The au-
toencoder learns to generate the sequence of latent
representations, compressing the subsequent tokens
into a low-dimensional space.

On the graph path-finding problem (Bachmann
and Nagarajan, 2024), our Semformer achieves al-
most 100% accuracy scores on the settings of differ-
ent levels of difficulty, showing superiority to the
related baselines. Only introducing dummy tokens
in the sequence (i.e., Pause Transformer) (Goyal
et al., 2024) fails to learn the planning task. More-
over, our Semformer learns to solve the problem
significantly faster than the baselines, merely one
epoch based on the GPT2-Large (Radford et al.,
2019). Further, to validate the effectiveness of this
architecture on general LM pretraining, we train
Transformer models with 125M parameters from
scratch on OpenWebText. Semformer results in
improvements on perplexity evaluation, in-context
learning, and fine-tuning on abstractive summariza-
tion.

2 Related Work

Next-token Prediction for next-token prediction.
Despite being the standard training objective, next-
token prediction has faced several challenges. On
one hand, criticisms target the error accumulation
caused by autoregressive inference (Kääriäinen,
2006; Ross and Bagnell, 2010; Dziri et al., 2023;
LeCun, 2024). On the other hand, there has been
debate about whether teacher forcing can learn an
accurate next-token predictor especially for rea-
soning and planning tasks. Bubeck et al. (2023)
report failures on GPT4 experimental report and

they speculate the failures result from the “linear
thinking” in next-token prediction. Du et al. (2023)
informally note that some next-tokens can be hard
to learn as they require a global understanding
of what will be uttered in the future. Bachmann
and Nagarajan (2024) demonstrate the Clever Hans
cheat and the inference error can happen at the be-
ginning. While language models are often shown
to perform worse on out-of-distribution data (Mc-
Coy et al., 2023), Bachmann and Nagarajan (2024)
demonstrate that they can fail even test in the same
distribution. In addition, Malach (2024) and Wies
et al. (2023) argue that some complex multi-hop
tasks become learnable via next-token prediction
only when providing a preceding chain-of-thought
supervision for each hop. Pfau et al. (2024) also
find that the learning of using filler tokens neces-
sitates specific and dense supervision. The above
studies support our motivation to provide general
dense supervision for language models.

Beyond the next-token prediction, various train-
ing paradigms have been proposed including non-
autoregressive models (Gu et al., 2018), diffusion
LM (Li et al., 2022; Zhang et al., 2023), and multi-
ple token prediction (Qi et al., 2020; Monea et al.,
2023; Gloeckle et al., 2024). Predicting multiple fu-
ture tokens is originally for accelerating inference,
and Gloeckle et al. (2024) recently show that it can
also avoid the localness issue of next-token predic-
tion with teacher forcing. Zhang et al. (2023) intro-
duce a latent diffusion model to generate paragraph
representations induced by a variational autoen-
coder (Kingma and Welling, 2014), and feed them
into the language model to help paragraph genera-
tion. Rather than significantly changing the model
architecture, we internalize the planning ability into
the language model, achieved through the seman-
tic representation prediction of the subsequent se-
quence.

Custom Tokens in Language Modeling Cus-
tom tokens can be used to increase model capacity
used as additional memory (Sukhbaatar et al., 2019;
Burtsev and Sapunov, 2020; Bulatov et al., 2022).
For example, Bulatov et al. (2022) propose to apply
custom tokens recurrently, leading to improvement
on long sequence modeling and algorithmic tasks.
Compressing long prompts into fixed length se-
quence can alleviate the heavy burden of a large
key-value cache during inference (Li et al., 2023;
Jung and Kim, 2023; Mu et al., 2023). Custom
tokens are also used to optimize pretrained models
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Figure 2: Illustration of our Semformer. We introduce
trainable tokens in language modeling. The representa-
tions of the tokens encoded by the language model are
regressed to the latent representations of the response
with L2 loss. We can share the parameters between the
language model and the encoder, and utilize a small
decoder to enhance training efficiency.

to accomplish specific downstream tasks, i.e., pa-
rameter efficient fine-tuning (Lester et al., 2021; Li
and Liang, 2021). For vision Transformer, (Darcet
et al., 2023) find that appending trainable tokens
to image patches leads to smoother representation
learning.

Incorporating trainable tokens has been demon-
strated as an effective way to enhance the Trans-
former’s reasoning and planning capabilities. Herel
and Mikolov (2024) find that such a method leads
to small perplexity gains on reasoning tasks, and
Goyal et al. (2024) investigate its effectiveness on
the setting of pretraining on C4 with the evalua-
tion on math and question answering. Wang et al.
(2024) propose the addition of new tokens preced-
ing each CoT step. Zelikman et al. (2024) generate
rationales post every token to elucidate future think-
ing using REINFORCE learning. Our work is in
line with the above studies in introducing additional
tokens. The differences lie in that our purpose is to
alleviate the shortcut learning induced by teacher
forcing, and the tokens are used to generate the
semantic plan representations of the subsequent
tokens. More importantly, we use a simple and
general representation prediction method to guide
the function learning of the custom tokens.

3 Method

3.1 Next-token Prediction
Given an observed text sequence of length T ,
x = {x1, ..., xT }, neural language models (Ben-
gio, 2008) (NLM) are trained to predict every token
conditioned on the previous tokens defined by the
chain rule of probability, i.e., teacher forcing:

log pθ(x) =

T∑

t=1

log pθ(xt|x<t), (1)

where θ is the model parameter. During inference,
the model autoregressively generates the response
token-by-token by sampling or searching strategies,
given the prefix and all previously generated tokens.
We use decoder-only Transformer as the language
model. However, our method can also be applied
to other architectures such as Mamba (Gu and Dao,
2024).

3.2 Semformer
In addition to next-token prediction, we introduce
the prediction in the representation space. The over-
all framework of our Semformer is illustrated in
Figure 2. Specifically, we use an autoencoder to
learn latent representations of the target sequence,
which guides the representation learning of the lan-
guage model.

During training, we segment each input se-
quence x into the prefix x1:n and target xn+1:T

where n is the segmentation position between the
prefix and the response. For general LM pretrain-
ing, the position is selected randomly for each se-
quence block. Then, we append k trainable plan-
ning tokens d = {d1, d2, ..., dk} to the prefix. The
input of the language model can be rewritten to
x′ = {x1:n; d;xn+1:T }. We feed x′ into the lan-
guage model and the planning tokens are not used
for the loss calculation for predicting the next token.
Formally, the training loss is defined by:

LLM =
T+k∑

t=1
x′t /∈d

log pθ(x
′
t|x′<t). (2)

Latent Semantic Planning We provide the plan
tokens with generic supervision information, en-
abling them to serve as the function to compute
a future plan before response generation. The su-
pervision is to predict the latent semantic planning
representations of the response, and we introduce
an autoencoder with a bottleneck layer to this end.
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The encoder of the autoencoder takes the re-
sponse x′n+1:T as the input and encode them into
contextualized representations Hr, which are then
compressed into a sequence of latent vectors Z =
{z1, z2, ..., zk} using a cross-attention layer:

Hr = Encoder(x′n+1:T ), (3)

Z = CrossAttend(Q,Hr, Hr), (4)

where Q is the trainable query input of the cross-
attention layer. We use a linear transformation
to project Z into a low-dimension representation
space. The number of latent vectors is the same as
the number of the planning tokens. Using cross-
attention provides us with more flexible options
for the encoder, such as sharing parameters with
the language model or using an off-the-shelf pre-
trained encoder.

We treat Z as additional memory for the decoder.
Before being fed into the decoder, each latent vec-
tor is projected into the same dimension of hidden
states of the decoder with a distinct linear transfor-
mation. Then, the latent vectors are attended by
other tokens via self-attention. Such an infusion
mechanism of latent vectors is convenient to apply
pretrained language models without any modifica-
tion, and has been shown superior to regarding Z
as extra input token embeddings (Li et al., 2020).
The objective is the standard reconstruction loss:

LAE = log pθAE(xn+1:T |Z), (5)

where θAE is the parameter set of the autoencoder.
To alleviate the training burden, we can adopt

the following strategies: sharing the parameters
between the encoder and the language model, using
an off-the-shelf encoder, stopping the gradient flow
into the encoder in the autoencoding branch, and
using a compact decoder.

Latent Representation Prediction Given the
contextualized representations H of the input x′

encoded by the language model, we use a predictor
head to output the predicted latent representations.
The loss is defined as the L2 distance between the
predicted representations and the target latent rep-
resentations:

LRP =
k∑

i=1

∥zi − fθRP(Hn+i)∥22, (6)

where fθRP is the representation predictor with pa-
rameter θRP, and we use a linear transformation
shared across different positions.

Overall Training Objective The whole frame-
work is jointly optimized as follows:

L = LLM + LAE + αLRP, (7)

where α is the coefficient of the latents prediction
loss. By compelling the model to predict the ab-
stract representations of the future response in ad-
vance, we can mitigate the Clever Hans cheat issue
that arises from exposure to the ground-truth prefix.

Inference During inference, we simply append
the planning tokens to the prefix, and the inference
remains standard autoregressive decoding.

4 Experiments on Graph Path-finding

The graph path-finding task, as introduced by Bach-
mann and Nagarajan (2024), involves a unique
structure known as a path-star graph G(d, l,N).
Each graph features a central node from which d
distinct paths emerge, each comprising l nodes,
including the central node. The parameter N repre-
sents the range of node values, randomly selected
from the set {0, 1, ..., N − 1}, and may exceed the
total number of nodes in the graph. The input of
language models includes all of the edges of the
star-graph, the start node, and the end node. The
objective is to accurately predict the sole correct
path between the designated start and end nodes.

In particular, both the training and test graphs
are derived from the same distribution, maintaining
consistent topology characterized by fixed values
of d, l, and N . This setup ensures that the ob-
served failures are attributable to in-distribution
errors rather than lack of compositional or length
generalization capabilities. Given that each graph
is uniquely labeled and features a randomized adja-
cency list, the model is required to deduce a general
algorithmic solution. Following Bachmann and Na-
garajan (2024), the dataset comprises 200,000 train-
ing samples and 20,000 test samples. The number
of node values N is set as the product of l and d,
facilitating a diverse range of graph instantiations.

4.1 Settings

Baselines We use the pretrained GPT2-Large and
GPT2-Small (Radford et al., 2019) as the base mod-
els of our experiments2. We then compare our
Semformer with the following baselines: (1) Stan-
dard, which uses standard teacher forcing training;

2We use the open-source resource at
https://github.com/gregorbachmann/Next-Token-Failures.git
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Model G(2,20) G(5,20) G(5,30) G(10,20) G(15,15) G(20,5) G(30,5) G(20,10)

GPT2-Large

Standard 49.2 20.1 19.8 10.1 6.8 4.8 3.0 4.9
Teacher-less 1.7 97.8 0.0 0.0 0.0 99.9 99,8 1.8
Multi-token 51.0 19.6 20.0 10.1 6.8 99.9 3.3 4.9
BoW 100.0 99.9 87.9 85.3 99.0 99.9 99.9 99.9
Pause 49.9 20.0 19.7 9.7 6.9 5.0 3.2 4.8
Semformer 99.9 99.9 99.2 99.6 99.5 100.0 100.0 99.9

GPT2-Small

Standard 49.6 19.7 19.9 9.8 6.7 4.9 3.2 4.8
Teacher-less 0.0 0.0 0.0 0.0 0.0 5.0 99.5 0.0
Multi-token 50.2 19.8 20.3 10.1 5.0 4.9 3.3 4.9
BoW 99.9 95.1 82.7 10.3 82.3 99.9 99.9 4.9
Pause 50.0 19.9 19.9 10.0 6.6 5.0 3.3 5.0
Semformer 99.9 99.5 99.0 98.0 99.1 100.0 99.6 99.9

Table 1: Accuracies on the graph path-finding test sets. The setting G(d,l) is characterized by the degree of the node
at the center d and the length of each path l, respectively. The number of node values N is the product of l and
d, omitted for simplicity. The results for Standard and Teacher-less are obtained by running the code released by
Bachmann and Nagarajan (2024), and the other baselines are re-implemented.

(2)Teacher-less, which predicts multiple future to-
kens at once (i.e., non-autoregressive generation)
(Bachmann and Nagarajan, 2024); (3) Multi-token,
which predicts the following multiple tokens using
different output heads (Gloeckle et al., 2024); (4)
BoW, which predicts bag-of-words of the target
sequence; (5) Pause, (Goyal et al., 2024) which ap-
pends planning tokens and learns them only using
the language modeling loss.

Hyper-parameters We train all models using a
batch size of 32 for a maximum of 100 epochs. The
AdamW optimizer is employed with a learning rate
set at 1e-5. For Semformer, the number of plan-
ning tokens is set to 4 and the coefficient α is set
to 1.0 by default. We use the language model as
the encoder and the decoder is set to 6 layers to
enhance training efficiency. In more challenging
configurations, such as G(10,20), while an α of 1.0
remains effective, increasing it to 10.0 significantly
accelerates convergence. For Multi-token, we em-
ploy a three-token strategy. For Pause, we insert
a number of planning tokens equivalent to those
used in Semformer. For the BoW approach, we
predict the bag-of-words from the average pooled
representations of the planning tokens. The regu-
larization coefficient for BoW is set to 0.1 through
a grid search.

4.2 Main Results

The evaluation results are presented in Table 1.
Overall, Semformer achieves near-perfect perfor-
mance across all the graph configurations. The
standard Transformer encounters significant chal-
lenges in learning the planning task accurately, due
to the Clever Hans cheat learned by teacher forcing.
In particular, the accuracy for predicting the first
node following the start node is approximately 1/d.
Once the first node after the start node is provided,
the model demonstrates a high level of accuracy
in generating the entire corresponding path (Bach-
mann and Nagarajan, 2024).

The non-autoregressive Teacher-less models
avoid the pitfalls of the cheat to fit the training
data. They demonstrate impressive performance
on configurations such as G(5,20), G(20,5), and
G(30,5) when using the GPT2-Large. However,
these models encounter difficulties with the longer
responses, which can lead to significant challenges
in fitting the training data and results in complete
failure (i.e., accuracy 0.0) during test phases. The
Multi-token approach does not offer particular ad-
vantages and only works on G(20,5) with the short-
est target path. The difference between Multi-token
and Semformer is that Semformer is trained to pre-
dict the complete semantic planning of the target
while Multi-token is only trained to predict local
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Graph Accuracy
G(21,10) 60.2
G(23,10) 22.1
G(25,10) 2.8

G(40,10) 99.8
G(10,40) 10.0

Table 2: Performance of Semformer under more chal-
lenging settings.

future tokens. In particular, Pause does not learn
to solve this problem. This indicates that simply
increasing computing capacity may not be enough
to learn lookahead skills effectively, echoing the
theoretical research on the competencies of filler
tokens (Malach, 2024; Wies et al., 2023). The BoW
method can be regarded as a simplified variant of
Semformer. It disregards the sequence dependency
of the target and only considers surface token infor-
mation. When integrated with GPT2-Large, BoW
achieves commendable results in some settings due
to the enforcement of predicting the overall nodes
in the target path. Nevertheless, it underperforms in
scenarios involving longer target sequences, such
as G(5,30) and G(10,20).

We also explore the impact of model size by
employing GPT2-Small, which is approximately
one-sixth the size of GPT2-Large. Remarkably,
our Semformer still maintains nearly 100% accu-
racy scores without modification to the hyperpa-
rameters, while the performance of other baseline
models declines. For instance, in configurations
such as G(5,30) and G(10,20), the performance of
BoW deteriorates to the level of random guessing,
exhibiting the underlying limitation in the simple
token prediction.

When Semformer Falls Short. We further eval-
uate Semformer under more challenging conditions
to identify scenarios where its performance may
falter (Table 2). In fact, (Bachmann and Nagara-
jan, 2024) specifically excludes out-of-distribution
testing scenarios to better control variables. We
test on G(21,10), G(23,10), and G(25,10) using the
Semformer model trained on G(20,10) to simulate
out-of-distribution conditions. The results indicate
that the model has some extrapolation ability on
G(21,10), but fails in more different situations.

Additionally, we conduct experiments on
G(40,10) and G(10,40) to assess performance on
larger graphs. Since the sequence length in these
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Figure 3: Convergence curves of Teacher-less, BoW,
and our Semformer on tasks G(5,30) and G(10,20).

Model 10,20 20,10
NonAE 9.6 4.7
NonAE(ema) 9.6 5.0
AE 99.6 99.9

Table 3: Encoder design. The use of an autoencoder
works better than using the language model itself as the
encoder.

settings exceeds the maximum length of GPT2 (i.e.,
1024), we switch the backbone to pythia-410m3. In
the case of the same number of nodes, the graph
with a longer path is more difficult. Our model can
achieve 98% accuracy on G(40,10), but it failed to
learn successfully on G(10,40).

4.3 Analysis
4.3.1 Convergence of Different Models
We choose the graph setting G(5,30) and G(20,10),
then display the accuracies with training steps in
Figure 3. Teacher-less fails on both tasks, yielding
an accuracy of 0. Semformer achieves peak accu-
racy in less than 50,000 steps. In contrast, BoW
requires over 4 times more training steps than Sem-
former to converge, and fails to attain perfect accu-
racy on both tasks. These results demonstrate that
our framework provides a highly efficient supervi-
sory signal to learn the lookahead skill.

4.3.2 Ablations of Autoencoder
Encoder Design An alternative method is using
the language model itself as the encoder to induce
the latent planning representations instead of spe-
cially training an autoencoder. Concretely, the lan-
guage model takes the concatenation of the target
sequence and the planning tokens as input, and the
latents are obtained by stacking a linear transforma-
tion on the contextualized representations. We also
attempt to using the exponential moving average
trick to generate the encoder, which has shown ef-
fectiveness in contrastive learning (He et al., 2020).

3https://huggingface.co/EleutherAI/pythia-410m
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The results in Table 3 demonstrate the advantage of
using a separately trained autoencoder, which can
learn more meaningful and structured abstract rep-
resentations than the simple encoding of the input
information.

Decoder Layers The number of decoder layers
in the autoencoder used in the main results is 6, and
we further investigate its influence on performance.
We choose a challenging setting, G(10,20), and use
GPT2-Large as the base model. For configurations
with 1, 3, 6, and 12 layers, the test accuracy scores
all exceed 99% and the model with 6 decoder lay-
ers converges slightly faster than the others. This
result is reasonable since a one-layer Transformer
decoder can achieve satisfactory performance on
language reconstruction (Montero et al., 2021), and
reconstructing a path sequence is simpler than re-
constructing natural language.

Latent Dimension Figure 4 reveals the impact
of the latent dimension. Dimension reduction helps
both the final accuracy and convergence speed, and
using relatively lower dimensions such as 32 is
more effective than using higher ones. Although
the model with a latent dimension of 512 success-
fully performed the task, it requires a significantly
longer time to converge. When using the same di-
mension as the model, we remove the linear trans-
formation and this leads to poor performance, indi-
cating the benefits of using compressed representa-
tions.

Number of Planning Tokens We choose the task
setting G(10,20) to examine the effect of the num-
ber of planning tokens. As shown in Figure 5, the
number of planning tokens does not have a par-
ticularly significant impact on the final accuracy.
This may be because the suffix length is short (<50)
and the model capacity is sufficient. The number
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Figure 5: Convergence curves of models with different
numbers of planning tokens.

of tokens influences the speed of the convergence,
and the model converges fastest with k = 8.

4.3.3 Attention Visualization
We conduct a visualization of the attention weights
to see what information is captured by these to-
kens (Figure 6). We select the graph setting G(5,5)
and the pretrained model is GPT2-Large. For each
layer, we average the attention weights from all
the attention heads, and observe a shift in the at-
tention distribution in the 28th layer of Semformer.
The planning tokens are successful in capturing the
paths leading to the answer. Moreover, the answer
tokens not only concentrate on their context but
also allocate sufficient attention to the planning to-
kens. This contrasts with the Pause model, where
the planning tokens fail to capture the correct paths,
and the attention from the answer tokens to the
planning tokens is insignificant.

5 Experiments of Pretraining

In this section, we extend the proposed model to
pre-training, and validate its effectiveness in terms
of perplexity, in-context learning, and supervised
fine-tuning.

5.1 Setting

We train a Transformer language model with the
same configuration as GPT2, totaling 125M param-
eters. The corpus is the public version of Open-
WebText. We use a sequence length of 1,024, and
the batch size is 512. For each sequence, we ran-
domly split it into a suffix and a prefix, ensuring
that the prefix contains at least 128 tokens. Follow-
ing (Hewitt et al., 2023), we set the gradient steps
to 100,000 and it approximately runs 6 epochs.
The optimizer is AdamW with a learning rate of
6e-4 and a warmup of 5,000 steps. The number
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Figure 6: Visualization of Pause and Semformer’s atten-
tion weights.

of planning tokens and the latent dimension are
set to 16 and 64, respectively. The two numbers
are set empirically and we do not tune them. For
the coefficient of the regularization α, we select
it from {0.1, 0.5, 1.0} according to the perplexity
on Wikitext (Merity et al., 2017), and find that the
model achieves lowest perplexity with α = 0.5.
In addition to our proposed model, we also train
a vanilla Transformer model and a model without
latent representation prediction (i.e., Pause) using
the identical hyper-parameters.

5.2 Results

Perplexity The perplexity scores are shown in
Table 4. On the Wikitext test set, we simply insert
planning tokens at the middle position of each se-
quence. Different from Wikitext, LAMBADA is
dedicated to investigating the long-range dependen-
cies in text (Paperno et al., 2016), and the perplexity

Model Wikitext LAMBADA

TF 37.5 42.5/32.1
TF-Pause 35.9 43.3/32.7
Semformer 35.6 38.8/33.5

Table 4: Language modeling performance measured by
perplexity. For LAMBADA, we additionally report the
accuracy followed by the perplexity score. The optimal
results are highlighted in bold.

is only calculated on the tokens to predict. Sim-
ilarly, Semformer achieves the lowest perplexity
due to that the representation prediction encourages
the model to predict the whole future semantic rep-
resentations in advance. The performance gap be-
tween Semformer and TF-Pause has become more
significant compared to that on Wikitext. More-
over, even without the tokens, our model achieves
lower perplexity than the other two baselines (35.6
on Wikitext and 39.5 on LAMBADA), indicating
that our framework also yields better representation
learning.
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Figure 7: In-context learning performance.

In-context Learning We select a single-sentence
classification task, Stanford Sentiment Treebank Bi-
nary (SST-2) (Socher et al., 2013), and a paraphrase
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Model R-1 R-2 R-L

XSum

TF 35.86 13.94 28.61
TF-Pause 35.85 13.85 28.60
Semformer 36.47 14.37 29.07

SAMSum

TF 45.60 21.09 41.62
TF-Pause 46.74 21.96 42.54
Semformer 46.93 22.29 42.72

DialogSum

TF 42.65 16.54 37.50
TF-Pause 42.17 16.47 37.09
Semformer 43.18 16.59 38.02

Table 5: Evaluation on abstractive text summarization.

identification task, Microsoft Research Paraphrase
Corpus (MRPC) (Dolan and Brockett, 2005), to
investigate the performance of in-context learning
(ICL)4. The results are presented in Figure 7, and
we observed the following phenomena. Semformer
performs best on both tasks, achieving an accuracy
of 66.1 on SST-2 and 69.1 on MRPC. In contrast,
the best TF model achieves 57.0 on SST-2 and
57.6 on MRPC. Specifically, when TF-Pause does
not utilize planning tokens during inference, there
was a significant decline in performance. However,
the performance decrease of Semformer is not as
pronounced when removing the planning tokens,
demonstrating the improvement in representation
learning due to the regularization. Furthermore,
a larger coefficient of 0.5 is found inferior to a
smaller one, i.e., 0.1. This may be because such
classification tasks do not heavily rely on looka-
head ability, and the model requires a balance be-
tween the use of context and the prediction of fu-
ture information. Scaling up the model size to
increase its capability could potentially mitigate
this phenomenon, and we leave this as a future
investigation.

Supervised Fine-tuning on Summarization In
this section, we investigate the performance of su-
pervised fine-tuning of the whole framework on ab-
stractive summarization. We use XSum (Narayan
et al., 2018), SAMSum (Gliwa et al., 2019), and
DialogSum (Chen et al., 2021) for evaluation, and
report ROUGE-1, ROUGE-2, and ROUGE-L (Lin,
2004). We finetune each model on the training data
of each task separately and select the checkpoints
with highest ROUGE-L score on the individual val-

4https://github.com/EleutherAI/lm-evaluation-harness

idation set. The batch size is 128 and the learning
rate is set to 5e-5. The value of α is set to 0.5,
consistent with its setting during pretraining. We
use beam search with a beam size 2 for all of the
models. The results in Table 5 show that the Sem-
former outperforms the standard Transformer and
TF-Pause, indicating that the mechanism of seman-
tic planning modeling is beneficial for abstractive
summarization.

6 Conclusion

In this paper, we presented Semformer which ex-
plicitly models semantic planning in addition to
next-token prediction. Semformer introduces a se-
quence of trainable planning tokens to induce the
planning within the internal computation, and the
planning tokens in the language model are super-
vised by predicting the latent planning represen-
tations generated by an autoencoder. The results
on the graph path-finding problem show that Sem-
former can achieve nearly perfect accuracy in such
a minimal lookahead task, alleviating the short-
cut learning caused by teacher forcing. Extending
Semformer to a general pertaining on OpenWebtext
demonstrates the advantages of the paradigm.

Future research will focus on validating our
model with larger sizes and training corpus and
exploring its application on reasoning-related tasks
such as math and coding. Additionally, investigat-
ing hierarchical or block-wise prediction of seman-
tic vectors presents a promising avenue for further
exploration.
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7 Limitations

Due to limited computation resources, we only pre-
train a language model with 125M. Whether our
method can still outperform teacher forcing when
combined with larger corpora and when the model
size scales up to 1B or even larger needs to be ver-
ified in the future. In addition, we do not provide
theoretical analysis to prove that the method can
mitigate the bias in teacher forcing.
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