@inproceedings{ma-etal-2024-retrieved,
title = "Retrieved Sequence Augmentation for Protein Representation Learning",
author = "Ma, Chang and
Zhao, Haiteng and
Zheng, Lin and
Xin, Jiayi and
Li, Qintong and
Wu, Lijun and
Deng, Zhihong and
Lu, Yang and
Liu, Qi and
Wang, Sheng and
Kong, Lingpeng",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.104",
pages = "1738--1767",
abstract = "Protein Language Models traditionally depend on Multiple Sequence Alignments (MSA) to incorporate evolutionary knowledge. However, MSA-based approaches suffer from substantial computational overhead and generally underperform in generalizing to de novo proteins. This study reevaluates the role of MSA, proposing it as a retrieval augmentation method and questioning the necessity of sequence alignment. We show that a simple alternative, Retrieved Sequence Augmentation (RSA), can enhance protein representation learning without the need for alignment and cumbersome preprocessing. RSA surpasses MSA Transformer by an average of 5{\%} in both structural and property prediction tasks while being 373 times faster. Additionally, RSA demonstrates enhanced transferability for predicting de novo proteins. This methodology addresses a critical need for efficiency in protein prediction and can be rapidly employed to identify homologous sequences, improve representation learning, and enhance the capacity of Large Language Models to interpret protein structures.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ma-etal-2024-retrieved">
<titleInfo>
<title>Retrieved Sequence Augmentation for Protein Representation Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chang</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haiteng</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lin</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiayi</namePart>
<namePart type="family">Xin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qintong</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lijun</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhihong</namePart>
<namePart type="family">Deng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sheng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lingpeng</namePart>
<namePart type="family">Kong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Protein Language Models traditionally depend on Multiple Sequence Alignments (MSA) to incorporate evolutionary knowledge. However, MSA-based approaches suffer from substantial computational overhead and generally underperform in generalizing to de novo proteins. This study reevaluates the role of MSA, proposing it as a retrieval augmentation method and questioning the necessity of sequence alignment. We show that a simple alternative, Retrieved Sequence Augmentation (RSA), can enhance protein representation learning without the need for alignment and cumbersome preprocessing. RSA surpasses MSA Transformer by an average of 5% in both structural and property prediction tasks while being 373 times faster. Additionally, RSA demonstrates enhanced transferability for predicting de novo proteins. This methodology addresses a critical need for efficiency in protein prediction and can be rapidly employed to identify homologous sequences, improve representation learning, and enhance the capacity of Large Language Models to interpret protein structures.</abstract>
<identifier type="citekey">ma-etal-2024-retrieved</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.104</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>1738</start>
<end>1767</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Retrieved Sequence Augmentation for Protein Representation Learning
%A Ma, Chang
%A Zhao, Haiteng
%A Zheng, Lin
%A Xin, Jiayi
%A Li, Qintong
%A Wu, Lijun
%A Deng, Zhihong
%A Lu, Yang
%A Liu, Qi
%A Wang, Sheng
%A Kong, Lingpeng
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F ma-etal-2024-retrieved
%X Protein Language Models traditionally depend on Multiple Sequence Alignments (MSA) to incorporate evolutionary knowledge. However, MSA-based approaches suffer from substantial computational overhead and generally underperform in generalizing to de novo proteins. This study reevaluates the role of MSA, proposing it as a retrieval augmentation method and questioning the necessity of sequence alignment. We show that a simple alternative, Retrieved Sequence Augmentation (RSA), can enhance protein representation learning without the need for alignment and cumbersome preprocessing. RSA surpasses MSA Transformer by an average of 5% in both structural and property prediction tasks while being 373 times faster. Additionally, RSA demonstrates enhanced transferability for predicting de novo proteins. This methodology addresses a critical need for efficiency in protein prediction and can be rapidly employed to identify homologous sequences, improve representation learning, and enhance the capacity of Large Language Models to interpret protein structures.
%U https://aclanthology.org/2024.emnlp-main.104
%P 1738-1767
Markdown (Informal)
[Retrieved Sequence Augmentation for Protein Representation Learning](https://aclanthology.org/2024.emnlp-main.104) (Ma et al., EMNLP 2024)
ACL
- Chang Ma, Haiteng Zhao, Lin Zheng, Jiayi Xin, Qintong Li, Lijun Wu, Zhihong Deng, Yang Lu, Qi Liu, Sheng Wang, and Lingpeng Kong. 2024. Retrieved Sequence Augmentation for Protein Representation Learning. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 1738–1767, Miami, Florida, USA. Association for Computational Linguistics.