
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 18681–18697
November 12-16, 2024 ©2024 Association for Computational Linguistics

DocCGen: Document-based Controlled Code Generation
Sameer Pimparkhedea, Mehant Kammakomatib, Srikanth G. Tamilselvamb,

Prince Kumarb, Ashok Pon Kumarb, and Pushpak Bhattacharyyaa

aIIT Bombay
bIBM Research

a{sameerp,pb}@cse.iitb.ac.in
b{mehant.kammakomati2,prince.kumar12}@ibm.com
b{srikanth.tamilselvam,ashokponkumar}@in.ibm.com

Abstract

Recent developments show that Large Lan-
guage Models (LLMs) produce state-of-the-
art performance on natural language (NL)
to code generation for resource-rich general-
purpose languages like C++, Java, and Python.
However, their practical usage for structured
domain-specific languages (DSLs) such as
YAML, JSON is limited due to domain-specific
schema, grammar, and customizations gener-
ally unseen by LLMs during pre-training. Ef-
forts have been made to mitigate this challenge
via in-context learning through relevant exam-
ples or by fine-tuning. However, it suffers
from problems, such as limited DSL samples
and prompt sensitivity but enterprises main-
tain good documentation of the DSLs. There-
fore, we propose DocCGen, a framework that
can leverage such rich knowledge by break-
ing the NL-to-Code generation task for struc-
tured code languages into a two-step process.
First, it detects the correct libraries using the
library documentation that best matches the NL
query. Then, it utilizes schema rules extracted
from the documentation of these libraries to
constrain the decoding. We evaluate our frame-
work for two complex structured languages,
Ansible YAML and Bash command, consisting
of two settings: Out-of-domain (OOD) and In-
domain (ID). Our extensive experiments1 show
that DocCGen consistently improves different-
sized language models across all six evaluation
metrics, reducing syntactic and semantic errors
in structured code.

1 Introduction

The Natural Language to Code (NL-to-Code) task
has become pivotal in the intersection of natural lan-
guage processing and programming. NL-to-Code
systems can help engineers write a program effi-
ciently by conveying their intentions at a higher

1Datasets and code is available at https://github.com/
sameerp30/Structured-generation

Figure 1: Illustration of shortcomings with fine-tuning
and DocPrompting (Zhou et al., 2022) approaches with
an example for (a) NL to Bash task (uses GPT Neo 1.3B)
and (b) NL to Ansible-YAML task (uses StarCoder2
3B) and the proposed DocCGen method to overcome
the limitations.

level, as shown in Figure 1. Systems like Amazon
code Whisperer2, GitHub Co-pilot3 perform well
in NL-to-Code task due to large language models
(LLM) trained on extensive data. While they per-
form well in general resource-rich languages like
C++, Python, or Java, their practical usage in struc-
tured DSL is limited. DSLs are enterprise-specific
languages with specialized schemas and syntax
suitable for a specific domain or application4. Nu-
merous enterprises use structured languages like
Bash, YAML, JSON and HCL (HashiCorp Config-
uration Language) with specific customizations for
automation and to configure and manage infrastruc-
ture in IT environments. These languages or their

2https://aws.amazon.com/codewhisperer/
3https://github.com/features/copilot/
4https://w.wiki/6jCH

18681

https://github.com/sameerp30/Structured-generation
https://github.com/sameerp30/Structured-generation
https://aws.amazon.com/codewhisperer/
https://github.com/features/copilot/
https://w.wiki/6jCH

customizations are potentially unseen by LMs dur-
ing pre-training, limiting their practical usage (Zan
et al., 2022). Some existing methods attempt to ad-
dress this challenge via in-context learning through
examples (Poesia et al., 2022), by fine-tuning (Pu-
jar et al., 2023) or by using relevant documentation
as additional context (Zan et al., 2022; Zhou et al.,
2022; Parvez et al., 2021; Lu et al., 2022). How-
ever, relevant context or samples available for DSL
are often insufficient to incorporate diverse library
schema rules or specialized structure knowledge
in the LM (Zan et al., 2022; Wang et al., 2024).
This results in hallucination and different syntactic
and semantic errors, as shown in Figure 1. How-
ever, enterprises usually maintain detailed docu-
mentation of their custom libraries (e.g. ansible
modules, bash utilities), including the descriptions,
schema, and syntax, to assist developers in enforc-
ing structure and maintaining data integrity. We
believe such schema and documentation can be bet-
ter leveraged during code generation. Therefore,
we propose a framework DocCGen that treats the
NL-to-Code task as a two-step process, each heav-
ily relying on the documentation. The first step
identifies relevant code libraries for the task by re-
trieving the library documentation relevant to the
NL query. The second step employs constrained de-
coding (CD) to guide code generation by using the
grammar and schema rules extracted from the doc-
umentation of libraries identified in the first step,
as shown in Figure 2. We evaluate this approach
for two diverse and complex structured languages,
Ansible YAML and Bash command. Generation
for these languages is tricky due to complexities
like the diverse library schemas, optional and re-
quired fields, the order-agnostic nature of fields,
and inter-field dependencies. We believe studying
these complex structures encompasses most of the
challenges in other structured DSLs and allows eas-
ily extending DocCGen to other domains. Since the
major challenge in DSLs is the limited availability
of samples, we focus on enhancing performance
for unseen code libraries or libraries with very few
samples in the training corpus. Hence, we evaluate
our approach in two settings: In-domain and Out-
of-domain. Similar to Zhou et al. (2022), none of
the libraries in the test set are seen during training
in the OOD setting. In the ID setting, every library
in the test set has very few NL-to-Code pairs in the
train set. DocCGen consistently improve over state-
of-the-art models and techniques by a significant

margin (Table 1, 2) across multiple settings.
Finally, we introduce first publicly available

benchmark dataset for NL to structured code gener-
ation task consisting of Ansible-YAML language.
Intricate challenges in Ansible-YAML generation,
like the complex structure and diverse module
schemas, lead to subpar performance even for fine-
tuned code LMs (Table 1). We curate NL to
Ansible-YAML dataset with 18k samples with code
snippets from more than 2500 modules under OOD
and ID settings (Table 5). More information and
examples for Ansible-YAML are presented in sec-
tion A.1. Besides this, we augment new NL to
Ansible-YAML and existing NL to Bash dataset
TLDR (Zhou et al., 2022) with descriptions, detailed
schema and grammar information from each library.
We believe these datasets will advance research in
constrained generation and handling low-resource
or unseen data scenarios in structured DSLs.

Our contributions are:

1. Two novel NLP tasks motivated by enterprise
needs for precise code generation and valida-
tion: a code generation task where models
generate code based on fine-grained schema
instructions and a code validation task where
models validate code samples against given
schemas.

2. An extensive study on two diverse struc-
tured languages, Bash command and Ansible
YAML, for Out-of-domain and In-domain set-
tings. The results show our framework outper-
forms state-of-the-art techniques across all six
metrics (Table 1, 2) for different-sized models.

3. New datasets a) NL to Ansible-YAML dataset
with 18k pairs (refer to Table 5). b) Descrip-
tions and schema of Ansible YAML modules
and bash utilities (Section 4) to further moti-
vate research in DSL code generation.

2 Related Work

Constrained decoding: Controlled code gener-
ation using constraints has been previously stud-
ied majorly for the text-to-SQL task, using plan-
based static templates (Bhaskar et al., 2023) or
SQL parser-based semantic checks (Scholak et al.,
2021). The database schema is fixed and given as
input with a text query for text-to-SQL. However,
we target a more complex problem involving mul-
tiple libraries and diverse schemas and use library

18682

Figure 2: Overview of DocCGen. For a given user query, top k relevant library documentations are retrieved and
for which initial k templates are created. Static part of the template is shown in red, while the variable part is in
blue. The variable field with a fixed position in the code is enclosed in angle brackets, for instance <subcommand>,
as shown in the initial k templates block in the figure. The model is guided to follow one of the templates during
decoding. Each time step ti shows the step-by-step dynamic template evolution and constrained decoding output,
adhering to the time-step template leading to the final generated code at t3.

documentation to solve this. Poesia et al. (2022)
and Wang et al. (2024) use in-context learning via
relevant samples or grammar strings and constrain
the decoding further. However, in-context learning
does not solve the issue of the correctness of the li-
brary. Hence, we instead follow a two-step process
using library documentation. Agrawal et al. (2023)
uses constrained decoding for general-purpose lan-
guages like Java and C# using suggestions from in-
telligent parsers. However, such advanced parsers
are uncommon for DSLs and might provide incom-
plete constraints. Hence, we use rules extracted
from documentation more commonly available.
Context Based Controlled Generation like
RAGs: Many existing methods retrieve the rel-
evant context and augment it with the input prompt
to improve the code generation (Lu et al., 2022;
Zan et al., 2022; Zhou et al., 2022; Parvez et al.,
2021; Ding et al., 2022). Although effective, these
methods do not ensure schema and grammar adher-
ence, especially for unseen libraries and languages.
Zhang et al. (2023) and Zan et al. (2022) improve
over vanilla retrieval-augmented code generation
but require either architectural changes or extra pre-
training. Hence, unlike these methods, we guide
the generation by adjusting the output logits.

3 DocCGen Framework

DocCGen is a two-stage framework: The first stage

uses information retrieval (IR) to detect relevant li-
braries. The second stage uses the neuro-symbolic
constrained decoding to control generation and en-
sure adherence to the schema of relevant libraries.

3.1 Background and Definitions
For a given NL query q, we generate a code snippet
c. The first stage of the framework uses a set of doc-
umentation D, collected using library descriptions
as described in section 4. Hence, each document in
D describes the respective library. In this section,
we define some frequently used terms.

Structured schema: Structured schema stores
the list of valid keywords for every field and the
inter-field dependency information. For example,
the structured schema of any bash utility (e.g., cat
or tar) includes information like a list of optional
and required sub-commands, flags, and inter-field
dependency information (e.g., a list of valid flags
and arguments for a sub-command).

Template: The template encodes the structure of
the code snippet for the library as a string and is
used to guide the model during decoding. While
the structured schema maintains a list of valid key-
words for every field, the template encodes the
positional information of fields in the code snippet.
Every template has a static and variable part. The
static part is directly copied in the output code, and
the model generates the variable part adhering to

18683

the library schema. For Ansible YAML and bash,
the template starts with the static part, typically the
library name or its variation used in actual code.
For example, for the bash utility git-mv, template
is git mv [options] {{source}} {{destination}}. In
this template, [options] is a variable part and rep-
resents the sequence of flags in the command to
be generated by the model. The other part is static
and is directly included in the output code. Struc-
tured schema and template together represent the
grammar of the library in the format, which can be
easily used to guide the decoding. More example
templates are presented in the listing 8.

Trigger signals: Trigger signals G comprises
rules to control the generation of optional fields
(fields with context-dependent presence and po-
sitions) or conditions to dynamically change the
template. When triggered, the guiding template
changes and makes the model follow new specified
rules. For example, generating the " –" token in
bash triggers valid doublehand flag generation or
generation of pipe operator (token "|") triggers the
start of a new process enabling to control genera-
tion of command with multiple bash utilities. In
YAML, indentation beyond the first level triggers
the generation of nested schema with completely
different rules from the parent schema, forming a
new guiding template. Details of all triggers can be
found at A.3.1 and A.1.4.

3.2 Framework

For the given NL query q, the first stage of the
framework retrieves k most relevant documents
D∗ from a pool of documents D. This gives us
a set of k most relevant libraries that can be used
to generate code c. Then, we fetch the initial tem-
plates of every retrieved library stored offline. The
next step instantiates the generator model to gen-
erate the code snippet c. During auto-regressive
inference decoding, the model is constrained to fol-
low one of the k code templates. As the decoding
proceeds, the template might be changed dynami-
cally based on the tokens generated by the model,
the structured schema of the library, and trigger
signals, as shown in Figure 2.

3.3 Information retrieval

We experiment with sparse and dense retrieval sys-
tems in the first stage of DocCGen.

3.3.1 Sparse retrieval
We use the BM25 retrieval system (Robertson and
Jones, 1976) that uses sparse features such as word
frequencies to calculate similarity with documents.

3.3.2 Dense retrieval
For dense retrieval systems, we fine-tune pre-
trained ColBERTv2 (Santhanam et al., 2021) and
also use it in the zero-shot setting. Finally, we use
the best results for the downstream generation task.
Training: We fine-tune ColBERTv2 based on
triplet formed as < q,D+, D− >. D+ is the docu-
ment of the libraries relevant to query q. D− is a
set of documents of libraries that are not relevant
to q but are similar to D+. For q we prepare the
training set as (q, d+1 , d+2 ,.....,d+m, d−1 , d−2, d−n)
where d+i is the positive document, and each d−i
is a negative document which is not relevant to q.
We select n hard negatives using miniLM sentence
BERT similarity scores similar to Santhanam et al.
(2021). Using such a train set, we train ColBERTv2
by minimizing the distance between q and D+ and
maximizing the distance between q and D−.

3.4 Constrained generation
Constrained generation is the second stage of
DocCGen. It constrains the model during greedy
decoding to follow the library grammar using the
template, structured schema, and trigger signals.
In this process, if the model has generated (x1,
x2,...xn) tokens, xn+1 token is sampled from a set
of some specific tokens t such that generated code
adheres to the library grammar. This is achieved
by setting the logits of all tokens outside t to −∞.

This section explains the steps in constrained
generation. First, we explain the string selection
algorithm, which constrains the model to gener-
ate a string from a set of strings. This algorithm
will be used repeatedly. Constrained generation
starts with fetching the initial templates for k re-
trieved libraries stored offline. Next, library se-
lection algorithm constrains the model to adhere
to one of the k library templates. As the model
adheres to a template, the generating variable part
algorithm generates value for the variable part of
the template as per the library grammar. While
generating the variable part, the guiding template
might be changed during decoding based on trigger
signals and inter-field dependency as explained by
dynamically changing template algorithm. Finally,
required fields are generated as per generating re-
quired fields algorithm.

18684

String Selection: String selection algorithm is
used to constrain the model to generate exactly one
string from a set of strings (S) {s1, s2, s3..., sn}
(Agrawal et al., 2023). Initially, all the strings are
tokenized, and we limit the vocabulary V of the
model to a set of tokens t ∈ V , which form the
prefix of any string in S. Once a token ti among t
is sampled, all the strings that do not have ti as a
prefix are discarded. The same process is repeated
until exactly one string is chosen.

Library selection: We traverse all k initial tem-
plate strings from left to right and collect substrings
for each one until the variable part is encountered.
As shown in Figure 2, we collect until gopass,
lpass, and last as they are static and subsequent
parts of text are variable. As soon as the decoding
starts, we constrain the model using string selec-
tion algorithm to generate exactly one of the k
substrings. Next, decoding is constrained to follow
that template from left to right while adhering to
the grammar of the corresponding library.

Generating variable part: Two conditions gov-
ern variable part generation. Firstly, when the posi-
tion and presence of the field are fixed, the model
is constrained to select the valid keywords for that
using the string selection algorithm. Secondly, pre-
defined trigger conditions guide the model in gen-
erating from specific string pools when the position
or presence varies, determined by query q. For ex-
ample, the template of the bash command gh is gh
<command> <subcommand> [flags]. In this ex-
ample, <command>, <subcommand>, and [flags]
are the variable parts. The position and presence
of command and subcommand are fixed, and the
model is constrained to select the valid keywords
for that part using the string selection algorithm.
Flags is optional, and a pre-defined trigger condi-
tion controls its generation.

Dynamically changing template: In many cases,
one field’s presence depends on another. For ex-
ample, as shown in Figure 2, the valid flags and
arguments change depending on the sub-command
generated. Similarly, in Ansible YAML, the rules
of the nested schema (optional and required keys)
are completely different from those of the parent
schema. Hence, if a key with nested schema is pro-
duced, the guiding template is changed to follow
the rules of nested schema. After generating each
variable part, we check field dependency, and if
present, we modify the template accordingly.

Generating required fields: The code must in-
clude required fields as per schema rules, but their
position is not fixed due to the order-agnostic na-
ture of fields. To ensure its presence, we constrain
the model to generate the required fields just before
the completion of the code. Completion of code is
detected by checking for end-of-sequence tokens.
This ensures adherence to the schema.

4 Dataset

This section describes datasets for NL to bash and
Ansible YAML task, including augmenting datasets
with module descriptions and schema information.

4.1 Ansible YAML

We compile the NL to Ansible-YAML dataset by
extracting data from Google BigQuery and Ansi-
ble Galaxy. The dataset comprises over 18k of NL
to YAML samples, sourced from a diverse collec-
tion of more than 2500 modules. We also curate
schema rules and descriptions for every module.
Schema rules consist of valid optional, required
keys and details of the nested schema. We show
dataset statistics in Table 5 and more details on data
curation in the Appendix A.1.

4.2 Bash command

Since we primarily focus on improving perfor-
mance for unseen libraries and low-resource data
settings, we select the TLDR (Zhou et al., 2022) as
our primary dataset for NL to Bash. TLDR consists
of 1503 bash utilities across the train and test sam-
ples. This data consists of 7342 NL to bash pairs
with 4.3 pairs for every utility. Train and test splits
of this data consist of 7342 NL to bash pairs. A
low number of samples for each utility creates a
scarce data scenario.

Other than this, we also use NL2Bash (Lin et al.,
2018) dataset consisting of 8090 train and 609 test
samples for 100 bash utilities. Due to the high
number of NL to bash pairs for every bash utility,
this dataset allows us to check performance for
resource-rich settings. However, Since this is not
the major focus of the work, results for NL2Bash
are included in Appendix (Table 11)

To prepare module descriptions, we use the de-
scription section of Linux man-pages 5. Further,
we augment the TLDR dataset with the schema rules
for each bash utility. Schema information includes
a bash command template prepared from synopsis

5https://manned.org/pkg/ubuntu-mantic

18685

https://manned.org/pkg/ubuntu-mantic

section, valid fields (flags and sub-commands), and
inter-field dependency information. Schema details
and example templates are provided in A.3.

Model
Bash Ansible YAML

Exact Token Schema Ansible

Match(%) F1 Correct Aware

GPT Neo 1.3B (*) 3.23 31.97 3.11 2.51
GPT Neo 1.3B (+) 4.18 32.78 4.23 3.37
Zhou et al. (2022) 9.05 37.24 - -

base+IR 5.91 39.20 15.37 10.72
base+IR+CD 9.40 41.26 36.58 25.19

StarCoder2 3B (*) 4.09 34.22 4.41 5.80
StarCoder2 3B (+) 3.38 35.53 4.96 5.90

base+IR 7.63 41.67 7.47 4.08
base+IR+CD 9.56 43.25 58.82 19.76

StarCoder2 7B (*) 4.12 34.45 5.16 5.61
StarCoder2 7B (+) 5.49 35.72 5.11 5.63

base+IR 8.12 42.12 22.47 11.40
base+IR+CD 10.21 44.09 57.00 18.37

Table 1: Results for each fine-tuned language model
for OOD setting with and without IR and constrained
decoding. Here, the model is constrained to follow the
Top-1 retrieved library template only. All the metrics in
this table demonstrate the syntactic and semantic cor-
rectness of the code. Model (*) represents the base fine-
tuned model and model (+) represents the pre-trained
fine-tuned model baseline.

5 Experiments

In this section, we lay out our experiments across
NL-to-Code tasks and datasets.

5.1 Experimental settings

We evaluate the performance of our framework on
two diverse code languages, Ansible-YAML and
bash command. For both tasks, we experiment with
two settings involving different train-test splits.
Out of Domain: Here, code libraries in the train
and test set are completely disjoint, allowing us
to evaluate our method for unseen libraries. We
use the original train-test split in TLDR dataset for
the bash. For YAML, we randomly split the data
into 17647 train and 2056 test samples with 2483
libraries in the train and 365 in the test. OOD split
results are demonstrated in Table 1.
In Domain: In this setting, libraries in the test set
are a subset of the train set. For bash, we mix the
train and test samples of TLDR and re-split them

in the ratio of 85% train and 15% test samples.
Further, we filter out the small number of pairs that
do not have bash utility in the train set. Finally, we
have 6240 train and 1081 test NL to bash command
pairs with 1503 unique bash utilities. A similar
approach is followed for YAML, which creates
18574 train and 2989 test samples.

5.2 Baselines
Across every task and setting, we establish multiple
baselines. The Appendix section A.5.3 describes
the hyperparameter details for experiments.

Base (model(*)): Here, we fine-tune the
transformer-based decoder-only model for
NL-to-Code tasks.

Base + IR: We constrain the base fine-tuned
model to follow the template of one of the k re-
trieved libraries as described by the library selec-
tion algorithm (refer to 3.4). However, we do not
constrain the model to adhere to its schema for
further generation. This allows us to observe the
improvement based on the first stage of DocCGen
only. Here, we present the results for k = 1. Re-
sults for k = 3, 10 are shown in the Table 7, 8.
Further details on pre-training data are provided in
the Appendix (section A.2, A.4).

Pre-train (model(+)): Existing methods like
APICoder (Zan et al., 2022) pre-train models on
abundant documentation and code samples for
general-purpose languages like Python. Repli-
cating this setup for structured DSLs is challeng-
ing due to the scarcity of available code samples.
Hence, for best comparison, we pre-train our mod-
els on Linux man pages for bash and Ansible doc-
umentation for YAML, ensuring no data leakage
from fine-tuning datasets. We then fine-tune the
pre-trained model on respective NL-to-Code tasks
and compare its performance with DocCGen. We
also perform ablation studies with Base + IR setup
for the pre-trained models (Table 9, 10). Details
of pre-training data are provided in the Appendix
(section A.4, A.2).

DocPrompting: We adopt DocPrompting (Zhou
et al., 2022) as a baseline for OOD split through the
TLDR dataset because it is a RAG-based approach,
currently state-of-the-art for TLDR. Additionally,
Unlike other RAG-based methods (Parvez et al.,
2021; Zhang et al., 2023), it uses documentation
instead of abundant code samples, aligning better
with our DSL use case with scarce examples.

18686

Model
Bash Ansible YAML

Exact Token Schema Ansible

Match(%) F1 Correct Aware

GPT Neo 1.3B (*) 8.08 44.02 3.11 2.51
GPT Neo 1.3B (+) 9.12 45.23 4.23 3.37

base+IR 9.12 47.13 15.37 10.72
base+IR+CD 10.46 49.37 36.58 25.19

StarCoder2 3B (*) 15.26 50.38 4.65 5.25
StarCoder2 3B (+) 15.26 51.74 4.71 6.20

base+IR 16.31 54.31 6.11 9.22
base+IR+CD 17.23 56.12 51.08 39.04

StarCoder2 7B (*) 14.91 50.82 4.38 6.49
StarCoder2 7B (+) 15.63 52.73 4.11 6.39

base+IR 16.79 54.77 7.05 10.43
base+IR+CD 18.12 57.64 52.96 36.94

Table 2: Results for each fine-tuned language model for
ID setting with and without IR and constrained decod-
ing. Here, the model is constrained to follow the Top-1
retrieved library template only. All the metrics in this ta-
ble demonstrate the syntactic and semantic correctness
of the code.

Model OOD ID

CMD Module CMD Module

Acc(%) Match(%) Acc(%) Match(%)

GPT Neo 1.3B (*) 17.88 18.63 37.01 32.71
GPT Neo 1.3B (+) 17.13 17.01 39.21 33.48
Zhou et al. (2022) 27.59 - - -
StarCoder2 3B (*) 17.13 25.12 47.91 52.79
StarCoder2 3B (+) 17.02 26.16 48.38 53.90
StarCoder2 7B (*) 16.16 22.13 46.99 77.95
StarCoder2 7B (+) 17.88 21.98 48.38 77.81

+IR/+IR+CD 38.32 36.38 60.12 68.45

Table 3: Results for the library (bash utility or ansible
module) detection accuracy in generated code. Here,
the model is constrained to follow the Top-1 retrieved
library template only. Hence, Command Acc and Mod-
ule Acc, which detect the exact match of the library in
generated code, depend only on IR and give the same
scores for IR and IR+CD models.

5.3 Models

Information Retrieval We experiment with sparse
retrieval BM25 and dense retrieval ColBERTv2.
Generator We include different sized state-of-the-
art code language models in our evaluation, includ-
ing StarCoder2 family (3B, 7B, 15B) (Lozhkov
et al., 2024), and CodeLlama 34B (Roziere et al.,
2023). Due to resource constraints to fine-tune
large parameter models like CodeLlama 34B

and Starcoder2 15B, we experiment with their
instruction-tuned version in a 3-shot setting and
present their results in Appendix (Table 6). Further,
our evaluation includes a fine-tuned GPT Neo 1.3B
(Black et al., 2021) version to compare with the
DocPrompting baseline. We use beam search in-
ference decoding for all the base fine-tuned models
with beam width 5.

5.4 Evaluation metrics
IR: We evaluate IR using Hits@k metric (k =
{1, 3, 5}). This metric indicates the percentage of
accurate documents within the top k retrievals.
Bash command: Evaluation metrics for bash in-
clude 1) Command name accuracy (CMD Acc):
This metric evaluates the exact match of bash util-
ity in the command (e.g. tar, cat). 2) Exact Match:
Exact match of full generated command and ref-
erence command 3) Token F1 score (Zhou et al.,
2022).
Ansible YAML: We leverage 2 evaluation metrics
from Pujar et al. (2023) - Schema Correct, and An-
sible Aware. Additionally, we introduce the Mod-
ule Acc metric, which measures the correctness of
the generated YAML module. This metric is simi-
lar to the CMD Acc metric in bash. Refer to A.1.6
for a detailed description of metrics.

6 Results and Analysis

Results and comparison of our framework with
various baselines are presented in Tables 1, 2 and
3. This section presents several observations and a
qualitative analysis of the performance.

Improvement in module accuracy: We observe
that extended pre-training does not improve per-
formance in structured DSLs with limited code
samples in the documentation. Therefore, we
use an IR-based approach that focuses on retriev-
ing utility descriptions, unlike Zhou et al. (2022),
which retrieves passages with options (flags and
sub-commands) and utilities. This targeted detec-
tion reduces the search space for IR from 400k to
1.5k documents, leading to a notable improvement
in Hits@1 (Table 4). This improves CMD Acc
from 27.59% to 38.32% when the model is con-
strained to follow the Hits@1 retrieved library tem-
plate (Table 3). CMD Acc consistently improves
for the ID setting by around 6% to 12% (Table 3).
For YAML, Module Acc significantly improves
compared to the fine-tuned baselines, especially
in the OOD setting (∼ 10%). Further, we restrict

18687

Bash Ansible YAML
Hits@k Hits@k

In Domain Out of Domain In Domain Out of Domain
@1 @3 @10 @1 @3 @10 @1 @3 @10 @1 @3 @10

BM25 43.21 56.78 68.34 14.51 21.65 32.57 20.51 30.11 39.78 16.20 24.37 33.12

ColBERTv2

(Zero Shot)
53.43 71.26 78.90 38.32 51.78 58.76 37.69 50.24 61.99 30.30 42.31 55.65

ColBERTv2

(Fine-tuned)
61.62 79.23 84.56 32.21 47.81 54.28 66.54 77.42 84.81 34.58 47.61 58.46

Table 4: Performance of sparse and dense retrieval across NL-to-Code tasks for ID and OOD settings.

the model to follow one of the templates for k re-
trieved libraries. CMD Acc and Module Acc drop
with a higher value of k (Table 7, 8), which is ex-
pected since relaxing constraints on the model tend
to approach its performance towards the baselines.

Improvement in Code: In the OOD setting (Ta-
ble 1), fine-tuned code LM baselines struggle to
generate correct libraries even for popular lan-
guages like Bash, eventually leading to seman-
tically poor code not relevant to the NL query.
While, in the ID setting, despite generating cor-
rect libraries (indicated by high Module Acc or
CMD Acc), baseline models struggle to generate
syntactically correct intended code, resulting in
subpar Token F1, Schema Correct, and Ansible
Aware metric scores (Table 2). This is more pro-
nounced in YAML due to its complex format and
diverse schemas. Constraining the model to follow
schema rules during decoding restricts the genera-
tion of invalid keywords and significantly improves
performance across all metrics and settings. For
bash, we observe significant improvement (Table
1) over DocPrompting in Token F1 score by lever-
aging grammar templates from the documentation.
For example, for the NL query, reboot the device
from fastboot mode into fastboot mode again, the
ground truth command is shown in Listing 1.
ground truth command
fastboot reboot bootloader

DocPrompting output command
fastboot reboot path/to/devicefile

example fastboot command template
fastboot [flags] <flashall|erase

partition|flashing unlock|reboot
bootloader |...>

DocCGen output command
fastboot reboot bootloader

Listing 1: Example sample for fastboot command

DocPrompting retrieves correct documents for the
given query, which consists of the description of
the utility fastboot and a document for the sub-
command fields reboot. Yet it produces an incor-
rect command as shown in the Listing 1. We in-
stead leverage the template from the synopsis and
commands section of fastboot documentation. As
shown in Listing 1, following the grammar tem-
plate ensures that subcommand is generated from
valid strings enclosed in <>. This ensures reboot
is followed by the word bootloader. This approach
improves the Token F1 score from 37.24 to 41.26.
Hence, constrained decoding using the templates
and schema rules reduces the generation of invalid
keywords resulting in improved validity of code
and agreement with ground truth.

7 Conclusion

We propose DocCGen, a novel framework for NL-
to-Code generation for structured DSLs. DocCGen
decomposes the NL-to-Code generation into two
steps involving the detection of relevant libraries
in the first step and using schema and grammar
rules extracted from the documentation of these
libraries to guide the decoding in the second step.
We evaluate the performance of DocCGen for two
complex structured languages, Bash command and
Ansible YAML, involving two settings, OOD and
ID. Our approach outperforms state-of-the-art tech-
niques consistently across all metrics for different-
sized models. It reduces syntactic and semantic
errors in code, particularly for unseen libraries
and low-resource data settings. We also contribute
the first publicly available benchmark dataset for
NL to Ansible-YAML task. We augment NL to
Ansible-YAML and TLDR dataset with description
and schema information. We hope this work will
help advance research in solving DSL-related tasks
and constrained generation.

18688

Limitations

We break down code generation in to two steps:
a) Information Retrieval and b) Generation based
on retrieved documentation. Therefore, errors in
retrieval for the user query may cascade to the gen-
eration step. Even though, we see that leveraging
documentation in this pipeline-based approach re-
sults in significant improvements for custom set-
tings, we believe that jointly training the retriever
and generator might mitigate these errors. This
can be explored as a part of future work. Apart
from this, constrained decoding adds a computa-
tional overhead during inference. However, since
we add the rules on top of efficient greedy decod-
ing, constrained decoding is practical to use as
beam search decoding which is widely adopted is
similarly computationally heavy. Still, this can be
mitigated using constrained generation in specula-
tive decoding similar to Wang et al. (2024). Such
improvements can easily be integrated with our
framework. Further, parser-based methods to auto-
matically integrate grammar rules during decoding
can help generalize DocCGen to a larger scale.

Ethics Statement

Custom curated NL to Ansible-YAML data has
been collected from sources like Google BigQuery
and Ansible Galaxy, which are publicly available
platforms. Other datasets and documents used are
from open-source repositories, are publicly avail-
able, and can be used without any copyright issues.

References
Lakshya A Agrawal, Aditya Kanade, Navin Goyal, Shu-

vendu K Lahiri, and Sriram K Rajamani. 2023. Guid-
ing language models of code with global context
using monitors. arXiv preprint arXiv:2306.10763.

Adithya Bhaskar, Tushar Tomar, Ashutosh Sathe, and
Sunita Sarawagi. 2023. Benchmarking and improv-
ing text-to-sql generation under ambiguity. arXiv
preprint arXiv:2310.13659.

Sid Black, Gao Leo, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow. If you use this software, please cite it
using these metadata.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad,
Murali Krishna Ramanathan, Ramesh Nallapati,
Parminder Bhatia, Dan Roth, and Bing Xiang.
2022. Cocomic: Code completion by jointly mod-
eling in-file and cross-file context. arXiv preprint
arXiv:2212.10007.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D Ernst. 2018. Nl2bash: A cor-
pus and semantic parser for natural language inter-
face to the linux operating system. arXiv preprint
arXiv:1802.08979.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc:
A retrieval-augmented code completion framework.
arXiv preprint arXiv:2203.07722.

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat
Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Retrieval augmented code generation and sum-
marization. arXiv preprint arXiv:2108.11601.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Ti-
wari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. 2022. Synchromesh: Reliable code gen-
eration from pre-trained language models. arXiv
preprint arXiv:2201.11227.

Saurabh Pujar, Luca Buratti, Xiaojie Guo, Nicolas
Dupuis, Burn Lewis, Sahil Suneja, Atin Sood,
Ganesh Nalawade, Matt Jones, Alessandro Morari,
and Ruchir Puri. 2023. Invited: Automated code
generation for information technology tasks in yaml
through large language models. In 2023 60th
ACM/IEEE Design Automation Conference (DAC),
pages 1–4.

Stephen E. Robertson and Karen Spärck Jones. 1976.
Relevance weighting of search terms. J. Am. Soc. Inf.
Sci., 27:129–146.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2021. Col-
bertv2: Effective and efficient retrieval via
lightweight late interaction. arXiv preprint
arXiv:2112.01488.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif
A Saurous, and Yoon Kim. 2024. Grammar prompt-
ing for domain-specific language generation with
large language models. Advances in Neural Informa-
tion Processing Systems, 36.

18689

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.1109/DAC56929.2023.10247987
https://doi.org/10.1109/DAC56929.2023.10247987
https://doi.org/10.1109/DAC56929.2023.10247987
https://api.semanticscholar.org/CorpusID:45186038
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Daoguang Zan, Bei Chen, Zeqi Lin, Bei Guan, Wang
Yongji, and Jian-Guang Lou. 2022. When language
model meets private library. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2022,
pages 277–288, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Fengji Zhang, Bei Chen, Yue Zhang, Jin Liu, Daoguang
Zan, Yi Mao, Jian-Guang Lou, and Weizhu Chen.
2023. Repocoder: Repository-level code comple-
tion through iterative retrieval and generation. arXiv
preprint arXiv:2303.12570.

Shuyan Zhou, Uri Alon, Frank F Xu, Zhengbao JIang,
and Graham Neubig. 2022. Doccoder: Generating
code by retrieving and reading docs. arXiv preprint
arXiv:2207.05987.

A Appendix

We provide additional details for NL to
Ansible-YAML, and NL to Bash task, hyper-
parameter details, and additional analysis on perfor-
mance in a low resource setting. Firstly we present
the details of Ansible-YAML which consists of data
collection, schema rules, a list of trigger signals,
and evaluation metrics in section A.1. We present
the same details for the NL to Bash task in the sec-
tion A.3. The appendix also consists of results for
additional ablation studies like Top-3, Top-10 IR
(Table 7, 8) results of in-context learning (Table 6),
and ablation studies with pre-training data (Table
9, 10).

A.1 Ansible YAML

YAML is one of the standard code languages
used to configure systems declaratively. Ansible
is an IT automation tool widely used in enter-
prises that allows the Infrastructure as Code (IaC)
paradigm through Ansible playbooks written in
YAML. This section describes examples, data col-
lection, statistics, and evaluation metrics for NL to
Ansible-YAML task.

A.1.1 Examples
Some examples (Listing 2 and 3) of Ansible YAML
are provided to show glimpse of their syntax.

- name: Create a symbolic link
ansible.builtin.file:

src: /file/to/link/to
dest: /path/to/symlink
owner: foo
group: foo
state: link

Listing 2: Example Ansible YAML for file module with
simple key value pairs

- name: Build 'all ' target with args
make:

chdir: /home/ubuntu/cool -project
target: all
params:

NUM_THREADS: 4
BACKEND: lapack

Listing 3: Example Ansible YAML for make module
with nested key value pairs

A.1.2 Data Collection
We curate the dataset from 2 different sources -
Google BigQuery and Ansible Galaxy. To curate
data from Google BigQuery, we run a SQL query
against the BigQuery datastore to pull code files
with one of the valid YAML file extensions (.yaml,
.yml, .YAML, and .YML). There is no foolproof
way to identify Ansible-YAMLs from this corpus.
Therefore, we employ simple heuristics based on
module keywords and the format of the data to
extract Ansible-YAML candidates.

From each Ansible YAML file to subsample NL
to YAML candidates, we use a heuristic based on
YAMLs having the keys - name and name of the
ansible module. These candidates are then grouped
based on the ansible module name and then used
for preparing in and out-of-domain settings.

A universal set of Ansible modules is fetched
from Ansible Galaxy API along with their docu-
mentation. The documentation consists of long and
short descriptions, module constraints, and exam-
ples. The long and short descriptions are used to
prepare data for IR. Examples are combined into NL
to Ansible-YAML dataset prepared using Google
BigQuery, and module constraints are used in the
constrained generation stage.

A.1.3 Data Statistics
Ansible module, NL to Ansible-YAML sample,
and YAML key-value pair distribution are shown
in Table 5 for both in and out-of-domain settings.

18690

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2022.findings-emnlp.21
https://doi.org/10.18653/v1/2022.findings-emnlp.21

In Domain Out of Domain
Train Test Train Test

No. of modules 2922 2097 2483 365

No. of samples 18574 2989 17647 2056

Min no. of samples

per module
4 1 4 1

Max no. of samples

per module
7 7 8 8

Average no. of

samples per module
6 1 7 6

Min no. of

key value pairs
0 1 0 1

Max no. of

key values pairs
1225 97 187 111

Average no. of

key value pairs
4 5 4 5

Table 5: Statistics for NL to Ansible-YAML dataset.

The number of samples per module in both set-
tings does not exceed 8, portraying a low-resource
environment.

Some samples have 0 key-value pairs because
they are simple strings that still are valid YAMLs.
The reason for the total number of modules not be-
ing consistent across in-domain and out-of-domain
settings is that in the out-of-domain setting for
test split, some modules have been dropped as the
YAMLs were not valid, and similar data processing
has been applied to the in-domain setting as well.
Also, the number of modules across the splits for
the in-domain setting is not equal because the mod-
ules having just 1 sample have been moved to train
split to hold the nature of the in-domain setting for
the dataset.

A.1.4 Module Description and Structured
schema

Ansible Galaxy’s API exposes a list of modules and
their respective documentation. We use the API
to fetch a complete list of modules, and then, for
each module, we fetch the module documentation,
which includes long and short descriptions. We
prepare the module description by appending the
short description followed by the long description.
We omit those modules which have neither relevant
short nor long descriptions. The average length of
text descriptions is 816 characters.

We curate schema information from Ansible
Galaxy’s API, which returns this information as
part of the documentation. We augment the dataset

with this schema information, which can include
valid required and optional keys as shown in List-
ing 4 and nested schema as shown in Listing 5.
Every nested schema further consists of optional
and required keys.
...
"ise_hostname ": {

"description ": [
"The Identity Services Engine

hostname ."
],
"required ": true ,
"type": "str"

},
...

Listing 4: Example of type and required key constraints
for module device_administration_authentication_rules

...
"link": {

"description ": "Device
Administration Authentication Rules '
s link.",
"suboptions ": {

"href": {
"description ": "Device

Administration Authentication Rules '
s href.",

"type": "str"
},
"rel": {

"description ": "Device
Administration Authentication Rules '
s rel.",

"type": "str"
},
"type": {

"description ": "Device
Administration Authentication Rules '
s type.",

"type": "str"
}

},
"type": "dict"

},
...

Listing 5: Example of nested key constraints for module
device_administration_authentication_rules

array type
- name: Create a symbolic link
...

dictionary type
name: Create a symbolic link
...

Listing 6: Example prompts for NL to Ansible-YAML
task

Trigger signals: Trigger signals G for YAML
are as follows. If the model produces indenta-
tion spaces equal to level one keys, it triggers to
constrain the model to produce a valid level one

18691

schema by generating valid level 1 keys. Further,
if the model generates more spaces, we check the
rules for nested schema and constrain the model
to adhere to it. If the model generates an invalid
indentation, we backtrack, clear the cache of the
model, and add the appropriate number of closest
indentations in the output. The process of trig-
gering schema rules based on indentation starts to
repeat after it.

- name: Create a symbolic link
ansible.builtin.file:

[force|src|dest|owner|group|state
....]: {{gen arg}}

- name: Build 'all ' target with args
make:

[file|chdir|jobs|make|params|target|
targets]: {{gen arg}}

Listing 7: Example Ansible YAML for file module with
simple key value pairs. Here, [a|b|c] denotes one of the
values among a,b,c is generated. gen arg denotes the
argument generated without constraints. The key-value
pairs for the next line are controlled again based on
indentation generated at the end of the argument.

Enforced schema rules: We ensure that keys
generated at every level of YAML adhere to the
module schema. YAML consists of optional and
required keys. Hence, we ensure that the required
keys must be generated in the YAML. We also en-
sure that none of the keys are duplicated at any level
of nesting. The scenario of optional and required
keys is followed in the nested schema with keys
different than the parent keys. Hence, we follow
the rules of nested schema at every level.

A.1.5 Prompt Description
In the case of NL to Ansible-YAML task, the
prompt is essentially a key-value pair in the YAML,
where the key is name and the value is the NL
query. The YAML can be an array with one dictio-
nary or a dictionary itself. We show an example in
the Listing 6.

A.1.6 Evaluation Metrics
Schema Correct metric evaluates the model on gen-
erating schema-compliant YAML, reflecting the
YAML’s acceptability by the Ansible tool. The An-
sible Aware metric captures the closeness of the
generated YAML to the ground truth by capturing
the coverage of the keys and values in the ground
truth. We have not used the Exact Match metric
from the original paper as it does not capture the
nature of Ansible module keys, which are typically

order agnostic. We introduce Module Acc metric,
which evaluates the model’s capability to generate
the expected module for the given prompt.

A.2 Pre-training data

For ansible pre-training, we append the schema in-
formation and descriptions for 2.5k modules in a
text file 6. We separate the description and schema
information in one document by a newline char-
acter and two different ansible documents by two
newline characters. We observe that this helps the
model better learn the domain knowledge. From
every documentation we filter code examples as
most of the code examples in the Ansible playbook
are present in our custom-curated dataset which we
use for fine-tuning. The final pre-training dataset
consists of 4.14 million tokens.

A.3 NL to Bash

This section describes specifics of techniques used
for NL to Bash task.

A.3.1 Module Description and Constraints
The TLDR dataset is not equipped with fine-grained
information such as module description and con-
straints. The dataset has a total of 1503 bash utili-
ties.

Module Descriptions: Document for every bash
utility consists of utility descriptions and NL to
Bash examples from corresponding bash utility.
Details for both components are given below.
Utility Description: We scrape the descriptions
of each bash utility from DESCRIPTION section
of Linux man-pages7. Empirically, we observe
that the bash utility descriptions are redundant after
the first 60 tokens. Therefore, we select the first
60 tokens from the descriptions. However, if the
description is shorter than 30 words, we use full
documentation as the description.
Examples: For both ID and OOD settings, we aug-
ment descriptions of utilities from the train set with
two to three NL to bash example pairs. These pairs
are randomly sampled from the training corpus it-
self. For example, if the bash utility tar is in the
train set, its document is augmented with NL to
bash pairs from the train set having utility as tar.
This ensures that none of the examples from the
test set are present in the document. Since utilities

6https://docs.ansible.com/ansible/2.9/modules/
list_of_all_modules.html

7https://manned.org/pkg/ubuntu-mantic

18692

https://docs.ansible.com/ansible/2.9/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_all_modules.html
https://manned.org/pkg/ubuntu-mantic

(a) (b) (c)

Figure 3: Demonstration of the performance of StarCoder 1B for NL to Ansible-YAML task over varying number
of train samples per module for in domain setting.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Demonstration of the performance of (a) (b) (c) GPT Neo 1.3B, (d) (e) (f) StarCoder2 3B, and (g) (h) (i)
StarCoder2 7B in different configurations for NL to Ansible-YAML task over varying number of train samples per
module for in domain setting. We omit CodeLlama 34B as it is evaluated in few-shot setting.

in the OOD split test set are disjointed from the
train set, documents for the utilities in the OOD
split test set consist of only utility descriptions.

cp [OPTION] {{ SOURCE }} {{ DIRECTORY }}

needrestart [-{{v|q}} | -n | -c <cfg > |
-r <mode > | -f <fe> | -u <ui> | -{{b
|p}} | -kl]

git rename -tag {{old -tag -name}} {{new -
tag -name}}

lzop [command] [options] [filename
...]

meson setup [options] [build
directory] [source directory]

gh <command > <subcommand > [flags]

Listing 8: Example templates for bash command curated
using synopsis section in linux man page. Here fields
within [] denotes optional fields and [a|b|c] denotes
that one of the strings among from a, b or c has to
be generated

Structured schema: We augment TLDR dataset
with schema information for every bash utility. We
crawl the Linux man pages of bash modules and
collect the initial template T of the bash command
for each library from usage or SYNOPSIS section.
Further, we collect the list of valid options and
sub-commands for each bash utility. Schema in-
formation also includes inter-field dependency in-
formation, like a list of valid flags and arguments
for every subcommand. For example, for the Linux
command cp, some of the valid options are -a, –

18693

Model
Bash Ansible YAML

Exact
Match (%)

CMD
Acc (%)

Token F1
Module
Acc (%)

Schema
Correct

Ansible
Aware

Codellama 34B (3 shot) 13.2 32.4 21.8 12.35 20.33 3.54

+ IR 16.71 38.32 26.49 36.38 13.18 7.39

+ IR + CD 19.63 38.32 29.71 36.38 65.72 15.77
StarCoder2 15B (3 shot) 11.78 30.71 19.63 11.06 4.32 0.53

+ IR 15.62 38.32 24.71 36.38 12.05 3.40

+ IR + CD 18.19 38.32 31.83 36.38 66.04 20.78

Table 6: Results for in-context learning for out-of-domain setting with and without IR and constrained decoding.
Here, the model is constrained to follow the Top-1 retrieved library template only. Hence, Command Acc and
Module Acc, which detect the exact match of the library in generated code, depend only on IR and give the same
scores for IR and IR+CD models.

Model
Bash Ansible YAML

Exact
Match (%)

CMD
Acc (%)

Token F1
Module
Acc (%)

Schema
Correct

Ansible
Aware

StarCoder2 3B 4.09 17.88 34.22 25.12 4.65 5.35

+ IR (Top 3) + CD 5.24 27.33 36.50 27.29 49.45 17.66
+ IR (Top 10) + CD 4.88 25.31 34.91 24.52 47.8 15.25

StarCoder2 7B 4.12 16.16 34.45 22.13 5.16 5.61

+ IR (Top 3) + CD 5.61 26.41 37.71 25.41 47.81 19.32
+ IR (Top 10)+ CD 4.31 24.14 33.73 23.82 45.62 17.14

Table 7: Results for each base fine-tuned language model for out-of-domain setting with and without IR (top 3 and
10 retrievals) and constrained decoding.

archive, -f, –force, and -i, –interactive are scraped
from linux man page.

Templates: Along with options, we also scrape
the syntax of bash modules mentioned under us-
age section. In SYNOPSIS section, it is standard
practice that text enclosed within [] is optional, and
the presence and position of that field in the com-
mand are not fixed. Text enclosed within <> must
be produced at the position in the template. For
the optional fields, we use language-specific trigger
signals G. Examples of bash command templates
are given in listing 8.

Trigger signals: Trigger signals used for bash
are as follows. If the model generates the token
" –," we constrain the model from generating the
string from valid doublehand flags. Similar con-
straints are used for shorthand flags " -". Other
trigger signals include the generation of a pipe op-
erator ("|"). In the bash command, the pipe operator
forwards the output of one process to another as in-
put. For example, bash command nl -s prefix file.txt
| cut -c7- consists of two bash utilities nl and cut

separated by "|". Generation of token "|" denotes
the start of a new process with a new bash util-
ity. Hence, while decoding, if the model generates
an operator-like token (“|”), then we constrain the
model to freshly follow one of the k templates from
the start using the library selection algorithm again
3.4. This trigger signal allows us to generate the
bash command with multiple utilities or processes.

Enforced schema rules: We ensure that all the
required fields (flags and subcommands) are gen-
erated according to their position specified in the
template. Further, it is also ensured that all the
generated flags and subcommands adhere to the
library schema. For the templates that specify the
compulsory arguments, we treat those arguments
as static part of the template and include it in the
final output. For example, as given in the template
of bash utility cp, source and directory are the com-
pulsory arguments and hence directly included in
the output command.

18694

Model
Bash Ansible YAML

Exact
Match (%)

CMD
Acc (%)

Token F1
Module

Acc (%)
Schema
Correct

Ansible
Aware

StarCoder2 3B 15.26 47.91 50.38 52.79 4.65 5.25

+ IR (Top 3) + CD 16.71 54.55 54.31 56.21 49.37 36.21
+ IR (Top 10) + CD 15.51 53.22 52.89 46.62 47.56 34.24

StarCoder2 7B 14.91 46.99 50.82 77.95 4.38 6.49

+ IR (Top 3) + CD 16.27 53.44 54.07 58.56 47.13 33.51
+ IR (Top 10)+ CD 15.22 51.15 52.49 50.15 45.38 30.76

Table 8: Results for each base fine-tuned language model for in-domain setting with and without IR (top 3 and 10
retrievals) and constrained decoding.

Model
Bash Ansible YAML

Exact
Match (%)

CMD
Acc (%)

Token F1
Module

Acc (%)
Schema
Correct

Ansible
Aware

StarCoder2 3B 4.18 17.13 32.78 26.16 4.96 5.90

+ IR (Top 1) 5.12 38.32 39.81 36.38 22.47 11.12

+ IR + CD 6.24 38.32 41.73 36.38 31.21 16.26
StarCoder2 7B 5.49 17.88 35.72 21.98 5.11 5.63

+ IR (Top 1) 6.23 38.32 40.71 36.38 3.93 3.23

+ IR + CD 7.81 38.32 42.31 36.38 43.43 16.38

Table 9: Results for each pre-trained and further fine-tuned language model for OOD setting with and without IR
(top 1) and constrained decoding.

A.4 Pre-training data

We append the Linux man-pages for 1.5k bash util-
ities in a single file which is used for pre-training8.
For every man page, we remove all newline char-
acters and replace double newline characters with
a single newline. This keeps the definition of each
flag and field separate from each other and results
in better performance. The final pre-training data
consists of 10.3 million tokens.

A.5 Hyperparameter details

We use NVIDIA A100 80 GB GPUs to perform
inference and training for all the experiments. We
use the standard HuggingFace transformers (Wolf
et al., 2020) with accelerate to load, train, and per-
form inference for all the models. For constrained
decoding we use HuggingFace logits processor9.

A.5.1 Ansible YAML
All fine-tuned models are fully parameter-tuned to
the task. For fine-tuning, we used Adam optimizer
with batch size two for all the models and context

8https://manned.org/
9https://huggingface.co/docs/transformers/

en/internal/generation_utils#transformers.
LogitsProcessor

length of 2048. We also use the linear learning
scheduler and a learning rate of 4e−5. At inference,
we experimented with both greedy search and beam
search-based decoding techniques for baselines,
and we observed beam search with 5 number of
beams performed the best. Training is done for two
epochs. All the models are used in bf16 precision.

We use the bert-based-uncased model as base
and fine-tune the standard ColBERTv2 pre-trained
model10 on NL to Ansible-YAML task. The doc-
ument corpus size is 2922 documents. We run the
fine-tuning task for 5000 max number of steps. We
use 8 negatives for every query while preparing
the triplets. The train-test splits for fine-tuning fol-
low the numbers from language model fine-tuning
(Table 5).

A.5.2 Bash command
All the training details for bash command genera-
tion are the same as those for ansible YAML, except
that we use a batch size of 4 with gradient accumu-
lation steps of 4 during fine-tuning. The maximum
sequence length for the bash command is 512. All
the models are used here in fp32 precision.

10https://github.com/stanford-futuredata/
ColBERT

18695

https://manned.org/
https://huggingface.co/docs/transformers/en/internal/generation_utils#transformers.LogitsProcessor
https://huggingface.co/docs/transformers/en/internal/generation_utils#transformers.LogitsProcessor
https://huggingface.co/docs/transformers/en/internal/generation_utils#transformers.LogitsProcessor
https://github.com/stanford-futuredata/ColBERT
https://github.com/stanford-futuredata/ColBERT

Model
Bash Ansible YAML

Exact
Match (%)

CMD
Acc (%)

Token F1
Module

Acc (%)
Schema
Correct

Ansible
Aware

StarCoder2 3B 15.26 48.38 51.74 53.90 4.71 6.20

+ IR (Top 1) 16.71 60.12 54.61 68.45 39.11 35.41

+ IR + CD 17.81 60.12 56.73 68.45 48.41 38.98
StarCoder2 7B 15.63 48.38 52.73 77.81 4.1 6.39

+ IR (Top 1) 16.21 60.12 54.77 68.45 45.60 40.61

+ IR + CD 15.22 60.12 52.49 68.45 52.09 42.66

Table 10: Results for each pre-trained and further fine-tuned language model for in-domain setting with and without
IR (top 1) and constrained decoding.

Similar to NL to Ansible-YAML task, we use
the pre-trained ColBERTv2 for fine-tuning the task
data. The document corpus size is 1503 documents.
Similar to NL to Ansible-YAML task, we run for a
max of 5000 number of steps. We use 8 negatives
for every query while preparing the triplets.

A.5.3 Pre-training
For pre-train the language models on the next word
prediction task using library documentation for 3
epochs. For pre-training we use a cosine scheduler
with a learning rate of 5e−05. We experiment with
both linear and cosine schedulers and use cosine
scheduler checkpoints for further fine-tuning due
to the best results. We pre-train with a batch size
of 4, gradient accumulation steps of 8, and bf16
precision. Due to scarce data, we use warmup steps
of 100 for bash and 150 for ansible pre-training.
We use the block size of 1024 for pre-training.

A.6 Analysis
Promising low data resource performance:
First, DocCGen outperforms all the baselines in the
OOD setting (Table 1) and performs competitively
across overall degrees of low-resource data (Figure
3) in ID setting. Second, the performance of fine-
tuned StarCoder2 3B in generating good YAML
code following the ansible module improves grad-
ually for Ansible Aware and Schema Correct met-
rics with an increase in training samples. However,
extrapolating this growth to meet DocCGen’s per-
formance might require a large number of training
samples per module. Third, DocCGen outperforms
baselines in most of the lower orders of training
sample count for Module Acc metric. This behav-
ior is consistent across all models. (Figure 4)

18696

Model Bash
Template

Match (%)
Command
Acc (%) Token F1

StarCoder 1B 14.32 57.34 58.42

+ IR + CD 18.92 73.24 66.47
StarCoder 3B 16.34 61.34 62.34

+ IR + CD 18.39 73.87 66.89

Table 11: Results for NL2bash dataset using Top-1 IR

18697

