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Abstract

To study the requirements needed for a human-
like language to develop, Language Emergence
research uses jointly trained artificial agents
which communicate to solve a task, the most
popular of which is a referential game. The tar-
gets that agents refer to typically involve a sin-
gle entity, which limits their ecological validity
and the complexity of the emergent languages.
Here, we present a simple multi-entity game in
which targets include multiple entities that are
spatially related. We ask whether agents deal-
ing with multi-entity targets benefit from the
use of graph representations, and explore four
different graph schemes. Our game requires
more sophisticated analyses to capture the ex-
tent to which the emergent languages are com-
positional, and crucially, what the decomposed
features are. We find that emergent languages
from our setup exhibit a considerable degree of
compositionality, but not over all features.1

1 Introduction

In Language Emergence research, jointly trained
artificial agents develop their own communication
protocol to solve a task, the most popular of which
is the referential game – a version of the classic sig-
naling game (Lewis, 1969; Skyrms, 2010). In such
games, a sender agent composes a message to com-
municate about a target, and a receiver agent tries
to identify which target was the sender referring to,
by selecting it from a set of items (e.g. Lazaridou
et al., 2017; Havrylov and Titov, 2017; Chaabouni
et al., 2022).

This setting has shown to be a successful environ-
ment for a communication protocol to emerge from
scratch (Lazaridou and Baroni, 2020). Agents learn
to successfully communicate about target items
which represent entities, e.g. chairs, bicycles, dogs,
or cats. However, while accurate communication

1Our implementation is available at https://github.
com/Lumalizer/Gridgame_Emnlp2024.git.

appears to be achieved with relative ease in these
systems, the emerged languages miss some of the
interesting properties of natural language. In partic-
ular, human languages exhibit a strong bias towards
compositionality, a type of systematicity accord-
ing to which parts of a message (for example mor-
phemes, words, or phrases) systematically refer to
parts of the input (Partee, 2008). Crucially, choices
in the representation of input items have an influ-
ence on the emergence of compositionality, such
that image-based setups have been less successful
than settings that use manually coded feature-based
vectors (Lazaridou et al., 2018).

Notwithstanding the current successes of the
systems described above, a relevant limitation of
such games is that they are trained to communicate
about single entities e.g., one cat or one bicycle)
or higher-level descriptions of single entities (or
concepts, Mu and Goodman, 2021). While this
simplification has proved to be useful to investigate
basic requirements for emergence of a communica-
tion protocol, clearly single entities alone are not
sufficient to represent world knowledge, let alone
support communication about any state of affairs
that goes beyond entity naming.

However, introducing multiple entities in a ref-
erential game is not trivial, in particular when it
comes to input representations. To the best of
our knowledge, only Lian et al. (2023) addressed
this challenge using items involving two entities
(agent and patient), but their agents require super-
vised training over a hand-crafted miniature lan-
guage. One reason behind the complexity of a
multientity game comes from the input representa-
tions: although image-based input would be natu-
rally suited to seemingly represent multiple entities,
compositionality does not seem to emerge easily in
such systems. On the other hand, feature-based vec-
tors do exhibit more tendency to encourage compo-
sitional languages, but they do not scale gracefully
to represent multiple entities.
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To tackle this challenge, we propose the use of
graphs to represent inputs. Graphs are naturally
suited for encoding relationships between multiple
entities, which can coexist within the same graph.
Like feature-based vectors, they have the advan-
tage of being disentangled (i.e. the structure of the
input is explicit), hence a priori they have potential
to encourage the emergence of compositionality.
And like images, neural graph embeddings scale
gracefully, such that graphs of different sizes can
be seamlessly integrated within a vector of fixed
size. Since there is no standard way to encode
information in a graph, we propose four different
schemas and analyze their relative contributions to
accuracy of communication and compositionality.

To perform our experiments, we present a new,
simple game in which two entities coexist in a 4-
positional grid. These entities are spatially related,
such that one may be, for example, above or to the
left of the other. We choose spatial relations be-
cause they can also be visually represented. Thanks
to this, our game allows us to compare graph repre-
sentations, which have a higher level of abstraction,
to image-based input, which is a lower-level repre-
sentation. Loosely speaking, these representations
can be interpreted as conceptual (in the case of
graphs) and perceptual (in the case of images).

Albeit simple, our representations incorporate
an additional level of complexity by introducing
multiple entities, as well as the relation between
them. This entails that the analyses of the emergent
language also comes with new challenges, since
there are multiple ways in which a language could
exhibit a degree of compositionality –depending
on which features of the input are decomposed. To
address this challenge, we present a methodology
for tracking compositionality that builds on previ-
ously used metrics, but applies an extension that
allows for more fine-grained analyses.

Our work combines these three ingredients (a
new multi-entity game, a variety of input repre-
sentations, and an extended analysis method) to
explore the requirements for communication suc-
cess and compositionality to emerge in a scenario
involving multiple entities.

2 Background

In this section we briefly introduce referential
games and agent architectures, with special focus
on input representations – since that is particularly
relevant to our work.

2.1 Referential games

A referential game (Lewis, 1969; Steels, 2015) in-
volves two agents (sender and receiver) communi-
cating to cooperatively select specific items. The
sender observes a target item and generates a mes-
sage to describe it. The receiver interprets the mes-
sage and selects the target among several other
items (called distractors). If the receiver consis-
tently selects targets, we say that their communi-
cation is successful, therefore they agreed on a
communication protocol; in other words, a lan-
guage emerged from their interaction. Items in
such games can be anything, but are often cho-
sen to encourage language emergence. The most
popular type of item represents an entity (e.g., an
object such as a bicycle) characterized by distinct
features, such as color, shape, and size (Lazaridou
et al., 2017; Ren et al., 2020; Chaabouni et al.,
2021).

Agents access items via an input representation
(e.g. pixels or descriptive attributes). The sender
transforms the input representation of the target
item into an embedding and then generates one
or more tokens, using e.g. a recurrent network
(Havrylov and Titov, 2017). This sequence of to-
kens is called a message. The receiver will then
encode the message into an embedding and com-
pare that embedding against the embeddings of a
given set of items. The item with the most similar
embedding will be selected. The two agents are
trained to maximize the times the target item is
selected, or communication success.

If communication success is achieved, we ana-
lyze the emergent language to see if it has similar
properties to human language. Compositionality
is seen as the hallmark property of our commu-
nication system, as it allows us to construct un-
limited expressions with a finite vocabulary. To
illustrate this concept with a simple example: in
a non-compositional language, there would be a
different, unrelated word for each entity that had
a different property; for instance, a yellow bicycle
could be named “gug” and a brown bicycle could
be called “perflor”. There is nothing in common
between those two words that indicates that they
refer to the same type of entity; in addition, we
would need to come up with a new word when en-
countering a bicycle of another color. Instead, in a
compositional language, we would separate entity
type from color, such that expressions like “yellow
bicycle” and “brown bicycle” consist of two parts
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that systematically refer to color and entity. In this
way, words for color and entity can be seamlessly
combined to refer to other combinations of entities
and color, such as “pink bicycle” or “yellow car”.

2.2 Input representations

We introduce the two types of representations that
neural approaches to language emergence have
mostly focused on: feature vectors (which embed
properties of a represented entity) and images. We
then present graph representations, which is the
type of input we focus on in this paper.

Feature vectors. One way to construct a feature
vector is by giving a specific meaning to every di-
mension of the vector, such that each dimension
represents a property. For instance, for a vector rep-
resenting a tiger, dimensions may refer to features
such as has_whiskers and is_striped which would
have a value of 1, while other dimensions may refer
to features such as has_wheels which would have
a value of 0. An alternative method to construct
feature vectors is to concatenate one-hot vectors
for each specific feature (e.g. Kottur et al., 2017;
Chaabouni et al., 2020).

In both representations the meaning of each vec-
tor dimension remains constant across items, there-
fore keeping features disentangled. The use of
disentangled vectors has the advantage of transpar-
ently providing the system with clearly separated
features, hence relieving the agents form the task of
discovering such structure (Lazaridou et al., 2018).
However, a disadvantage of this representation is
that it has a fixed size, so it lacks the flexibility of
representing a varying number of entities.

Images. Another line of work introduced the use
of images to represent the input (Havrylov and
Titov, 2017; Lazaridou et al., 2017; Evtimova et al.,
2018; Bouchacourt and Baroni, 2018). One argu-
ment that is often put forward in support of these
representations is their ecological validity: pixels
can be thought of as a representation of lower-level
visual perception, hence researchers do not need
to make assumptions regarding which conceptual
features play a role in communication (as is the
case when using disentangled vectors).

When using images, the properties of the repre-
sented entities are entangled: they are not clearly
separated, but rather spread over pixels, the loca-
tion and value of which may differ from image
to image. For instance, following the previous

example, whiskers may appear in different loca-
tions in different images. Thus, when using this
type of representation, the agents have the addi-
tional task of discovering relevant structure in the
input (which may entail entity segmentation and
categorization). Thus, perhaps non-surprisingly,
systems using images seem to be less inclined to
develop languages that are compositional (Lazari-
dou et al., 2018). However, a relevant advantage
of this type of representation is that multiple enti-
ties can be seamlessly represented within the same
image, without altering vector size.

Graphs. To the best of our knowledge, language
emergence with graph-based input has only been
investigated in Słowik et al. (2020); Slowik et al.
(2020). The authors use two graph setups. The
first one uses randomly generated graphs —and
is therefore less relevant to our work, as it does
not describe any meaningful input. The second
uses tree-like graphs to describe entities, such that
the root node represents the entity and the leaves
represent features of the depicted entity.

We postulate that graphs keep the best properties
of feature vectors and images. They offer a disen-
tangled description of the input, which may support
the emergence of compositional languages (as is
the case in the experiments reported in the above-
cited work). However, unlike feature-based vectors,
they scale gracefully, such that multiple entities can
be represented seamlessly within the same graph,
thanks to the fact graph representations can handle
an arbitrary number of nodes, node features, edges,
and edge features. Importantly, these can be embed-
ded in vectors of fixed size, even for large graphs
of e.g. thousands of nodes and edges (Wu et al.,
2019). Although the same is true for image-based
representations (i.e. image size is fixed regardless
of image content), this is not the case for feature-
based vectors representing multiple entities.

3 Multi-entity Game

We postulate that language emergence setups need
to eventually account for games that represent more
than one entity, such that more complex languages
can potentially emerge –after all, some of the most
common constructions in human language use in-
volve a subject and (at least) one object. How-
ever, extending current referential games to handle
multi-entity input is not trivial, as we first need to
explore which type of input representations support
multi-entity representation while ensuring commu-
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nication success and favoring compositionality. We
now present our proposal of a simple multi-entity
referential game and describe the input representa-
tions we experiment with.

3.1 Game Design
Conceptually, our game is similar to referential
single-entity games. The key difference is that an
item in our game represents a collection of entities
placed in a specific relationship. To make the game
accessible to vision-based agents, we choose this
relationship to be spatial. Hence, in our game, an
item consists of a 4-positional grid, in which each
position can host one entity –depicted as a simple
shape, such as an eagle or a rabbit (see Figure 1
for an example). It is worth noting that, for sim-
plicity, here an entity has only a shape feature. It
is straightforward to add more features (e.g. color,
size) to entities.

Thus, one advantage of our game is that this
class of items is easy to represent with an image,
but also with a graph. Additionally, these items can
be described using a simple script-like description
(e.g. “eagle top left rabbit bottom right”), which
is particularly useful to analyse the emergent lan-
guages (as we explain later in section 6).

3.2 Graph Representations
We now describe the graph representations that we
use in our game. First we introduce a distinction
between the three types of nodes that we use. An
entity node represents an entity, together with its
properties. The properties can take any shape; for
instance, a feature-based vector. Here, for simplic-
ity, we use a one-hot encoding with the index of the
shape of the entity (e.g. “eagle”). A position node
represents a position, which can be the absolute
position of an entity in the grid (e.g. “top-left”) or
its relative position with respect to another entity.
To represent the latter, we subtract the absolute
positions of each entity (see Figure 1). An entity-
position node encodes the position of the entity as
a feature, and thus the attribute vector is a concate-
nation of the one-hot vector representing the shape
and the vector representing the absolute position of
the entity in the grid.

We use these node types to construct four types
of graphs, illustrated in figure 1. The first two
types use absolute positions, which are encoded
as attributes of their corresponding entity nodes.
The graph-posattr, or “position as node attribute”
representation contains two entity-position nodes

connected via an undirected edge. In graph-leaves,
or “position as leaf”, two position-nodes are con-
nected to their corresponding entity-nodes with a
directed edge.

The other two types use relative positions. In
graph-edge, or “position as edge label”, two en-
tity nodes are connected via two directed edges
labeled with their relative positions. Finally, a rel-
ative position can be formulated as a functor and
its entities as functees, resulting in a logical expres-
sion like above-left(eagle, rabbit). We call
this graph-functor, or “position as functor”.

3.3 Model

An additional advantage of our new game is that
existing agent architectures for single-entity games
(described in Section 2.1) can be reused.

Let’s use V for the vocabulary and I for a set of
items. In our game, there are two neural network
agents called sender and receiver. The sender agent
ASθ

, a neural network with parameters θ, takes as
input a target item It ∈ I and induces a message
M = w1...wl ∈ M, a sequence of tokens wi ∈ V:

M = ASθ
(It) = RNNS(g(fS(It))) (1)

where fS : I → Rd is a function mapping an item
to a d-dim vector, g : Rd → RdRNN is a linear layer,
and RNNS is a recurrent net (in our case a GRU
(Cho et al., 2014)) with dRNN input-dim. The RNN
takes g(f(It)) as the initial context representation
and generates message M token-by-token until an
eos is produced or L tokens have been generated.

The receiver ARϕ
, a neural network with param-

eters ϕ, takes message M as input, along with a set
of n items including the target {I1, ...In} ∋ It, and
predicts which item is the target:

ARϕ
(M, I1, ..., In) =

softmax
(


fR(I1)

T

...
fR(In)

T


× RNNR(M)

)
(2)

fR : I → Rd is a function mapping an item to a
d-dim vector. RNNR is a recurrent net mapping a
sequence of symbols to a d-dim vector. The output
of the Receiver is thus a probability distribution
over n input items, with the highest probability
representing the item most likely to be the target.

To train the two agents, given a training set Dtrain
which is a set of n-item tuples and the indices of
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Figure 1: An item and four graph representations. The item depicts a natural scene which can be loosely described
as “an eagle is flying over a rabbit to its left”. In our simple item-description language, it is “eagle top left rabbit
bottom right”.

the target items, we minimize the following loss

L(θ, ϕ,Dtrain) =

−
∑

(t,I1,...,In)∈Dtrain

log
(
ARϕ

(ASθ
(It), I1, ..., In)

)

(3)

Note that, because of the discreteness of mes-
sages, this loss is not continuous with regards
to the parameters of the sender, and thus mini-
mizing the loss using gradient descent can only
optimize the receiver. To optimize the sender,
there are two widely used solutions. First, we can
use the reinforcement learning method, in which
a reward is given to the two agents when they
together pass the game (Lazaridou et al., 2017).
Second, we can “soften” the discreteness of mes-
sages using Gumbel-softmax to allow for back-
propagation of errors through messages. In our
experiments we opt for the latter, since it is sim-
pler and achieves higher communication success
(Havrylov and Titov, 2017).

Input Encoding
For the image representations, we use two-layer
convolutional neural networks (unlike Lazaridou
et al. (2018); Chaabouni et al. (2022), we did not
find pre-trained networks e.g. ResNet beneficial).

For graph representations, we employ two types
of graph neural networks, depending on whether
edges are labeled or not. For graphs with edge la-
bels (in graph-edge or “position as edge label”),
we use two-layer GATv2Conv networks (Brody
et al., 2022), which can capture edge labels in graph

global representations. For the other graph repre-
sentations, we use two-layer GCNConv networks
(Kipf and Welling, 2017).

4 Experimental Setup

We implement our setup in Python, using the EGG
library (Kharitonov et al., 2021) for the agents and
Pytorch-geometric (Fey and Lenssen, 2019) for
graph neural networks. Each experiment is per-
formed with five different random seeds.

Data. We use a collection of 50 black shapes (see
Appendix A), which we combine into 4-positional
grids. From 14700 distinct items, we generate
11760 game rounds for training and 2940 game
rounds for testing.

Agents. We experiment with the five input rep-
resentations: image and four types of graphs de-
scribed in Section 3.2. We report our hyper-
parameter choices in Appendix B.

Game. We experiment with different game sizes
(i.e. the number of items in each round, including
the target and the distractors). Our game sizes are
2, 5, and 20. Our games also allow for different
maximum message length; in particular: 2, 4, 6,
and 10 tokens.

5 Communication Success

Communication success measures how well the
two agents successfully solve the game together,
i.e. how often the Receiver correctly selected the
target described by the Sender. It is computed as
the ratio of the number of successful game rounds
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Figure 2: Test communication success rate for different
game sizes and maximum message lengths.

over the total number of game rounds played (see,
e.g. Lazaridou et al. (2017)).

This is the first metric that requires attention be-
cause if the communication success rate is low, the
emergent language is not helping to solve the game,
and is therefore uninteresting to us. Obviously, this
metric is influenced by the difficulty of the game,
which we can control with the number of distrac-
tors (such that a greater number of distractors leads
to more difficult games).

Figure 2 shows communication success rate
for different game sizes and maximum message
lengths. As we can see, the rate drops when the
game size increases. Nevertheless, even when there
are 19 distractors, the (test) rate is often higher than
70%, much higher than the 5% rate that would be
achieved with random guessing. This demonstrates
the effectiveness of our agents as well as the used
input representations. Overall the different input
representations behave similarly in terms of com-
munication success, although differences start to
become noticeable for games with more distrac-
tors. The image and the graph-edge representations
perform best overall, with the graph-edge represen-
tation performing better in larger game sizes. We
also note that graph-functor and graph-leaves ex-
hibit more variance between model runs, possibly
due to the use of position-nodes (which is what
distinguishes these two type of graphs from other
graph encodings).

6 Compositionality

We are now ready to ask whether the emergent lan-
guages show any degree of compositionality. This
is not a trivial question to answer, given that the
messages are not readily interpretable to humans.
The widespread approach in the field is to use a
metric called Topographic Similarity (topsim from

here on; Brighton and Kirby, 2006). The goal of
this metric is to capture the similarity between the
topologies of two sets of items. Mathematically,
the topology of a set of items I is characterized
by the distance metric dI which measures dissimi-
larity between every two items. Similarly, we use
the distance metric dM to characterize message
dissimilarity for the set of messages M. The top-
sim metric is calculated as the negative Spearman
correlation ρ between the two lists (dI(Ii, Ij)) and
(dM (AS(Ii), AS(Ij))) where Ii, Ij ∈ I.

An attractive property of topsim is that it is ag-
nostic to the type of input, as long as it can be
characterized by a distance metric. A common
choice is cosine distance for dI and minimum edit
distance for dM (see e.g. Chaabouni et al. (2022)).
Here, we note that we can actually make use of
this degree of freedom to further explore the type
of compositionality (or lack of) of the emergent
languages.

As explained above, topsim measures the topo-
logical similarity between two sets; therefore, if
one set is compositional due to factor A, a high
topsim value should imply that the other set should
also be compositional due to the same factor A. In
other words, topsim will only capture composition-
ality in the message space if dI(I) provides a topo-
logical ordering of items that is based on the same
feature(s) that were decomposed in the messages.
This has implications for the choice of I and dI ;
in particular, we observe that the usual method ap-
plied over image input (cosine distance over image
embeddings) is not guaranteed to capture compo-
sitionality over conceptual properties of the input,
since the items that are deemed more similar ac-
cording to cosine distance may be so due to coin-
cidences at the raw pixel level (which could even
be noise, Bouchacourt and Baroni, 2018). Thus,
we opt for a choice of I that allows us to inter-
pret what are the compositional features that we
are measuring –as done in other work that uses
semantic attributes for I (Lazaridou et al., 2018;
Chaabouni et al., 2020).

To this aim, we design a script-like representa-
tion that can be easily manipulated to incorporate
or remove certain features, thus influencing the
topology created with dI (for which we use Ham-
ming distance). We refer to this representation as
item-script, and provide examples in the upcoming
sections and in Appendix C.
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Figure 3: Topsim between the emergent languages and
the fully-compositional item-script (on test data).

6.1 Do agents develop fully compositional
languages?

We first check whether agents develop the most
complex version of a language to describe our
items. This would be a language with dedicated
tokens for the shape and position of each entity.
For this case, the item-script looks very similar to
a simplified version of English; for instance, the
items in Figure 1 would be described as “eagle top
left rabbit bottom right”. Thus, the topology of
the input will be organized according to these units,
such that the distance between “eagle top left rabbit
bottom right” and “butterfly top left rabbit bottom
right” is 1, while it becomes 2 between the former
and “butterfly bottom left rabbit bottom right”.

As we can see in Figure 3, the languages emerg-
ing from image-based communication and graph-
based communication exhibit a similar, moderate
degree of compositionality, with the exception of
graph-edge. This result is somewhat unexpected,
since it seems at odds with the findings in Lazari-
dou et al. (2018). In that paper, the authors ob-
served that the language emerging from the im-
age setup is less compositional than the language
emerging from feature-based input (which is disen-
tangled, as is the case for graphs). We now perform
further analyses to investigate the source of this
result.

6.2 Where does the composition come from?

To address this question, we manipulate the topol-
ogy of the input to find out which features are used
compositionally.

Shape vs. Position Our first manipulation is
an ablation, of either shape or position. To
achieve that, we take the fully compositional item-
description language described above, and we re-

move either shape or position information. Con-
tinuing with the example above, the item would
be described as “eagle rabbit” when omitting the
position, and “top left bottom right” when omit-
ting the shape information. Therefore, the topology
dI(I) will reflect only these features. We refer to
these two conditions as Shape Disentangled and
Position2D Disentangled, respectively.

Figure 4-column 1 shows the topsim for the in-
puts described above. It is clear that the “graph-
edge” agents achieve superior topsim when the
item-description language is fully disentangled
over shape-information only (top graph), but near-
zero topsim when shapes are omitted (bottom
graph). This suggests that compositionality on the
emerged languages is mostly driven by shape rather
than position. For image-based agents and the other
graph-based agents we come to the opposite con-
clusion. That is, in configurations other than graph-
edge, topsim is remarkably low in the case of Shape
Disentangled (Figure 4-column 1-top) and higher
for Position 2D Disentangled (Figure 4-column 1-
bottom), suggesting that compositionality in these
configurations is focused on position rather than
shape. Since “graph-edge” is the only encoding
that does not use nodes to encode positions, a ten-
tative interpretation is that the model focuses on
information represented in nodes more than it does
so for information in edges.

We then considered whether agents may use 1-
dimensional positions instead; that is, a single to-
ken to denote each of the 4 positions in the grid,
referring to: “top-left”, “top-right”, “bottom-left”,
“bottom-right”. Thus we measured topsim over an
input-script using 1-dimensional positions (and no
shape information); we refer to this script as Posi-
tion1D Disentangled. As can be seen in Figure 4-
column 2, this analysis reveals that the emergent
languages are consistent with this form of compo-
sitionality as well, to a similar extent to 2D (only
slightly higher). The most straightforward inter-
pretation of this result is that agents combine both
types of positional information (1D and 2D), but
we must bear in mind that some overlap is expected
between these two topologies.

Entity Decomposition The input topology used
in the previous analysis assumes that shape or po-
sition are decomposed for each of the two entities
in the target. However, this need not be the case:
agents could use a single token to refer to every
combination of two shapes (e.g. one token for ev-
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Figure 4: Topsim between the emergent languages and the shape-only or position-only item-description languages
(test results). The first row is shape-only, and the second row is position-only.

ery target with an eagle and a rabbit), or for every
grid configuration (e.g. use the same token when-
ever the two shapes are on the bottom row). We
now analyze whether agents used a mixed strategy
in which either shape or position are used composi-
tionally, but not both.

The topsim values for this experiment are shown
in Figure 4-column 3. Comparing entanglement
and disentanglement gives us interesting insights.
To begin with, all the emergent languages favor
disentangled shapes as opposed to entangled, as
evidenced with higher topsim in row1-column1 vs.
row1-column3 (note that values are rather low over-
all in these graphs due to the omission of positional
information). However, when it comes to posi-
tion, emergent languages favor entangled positions
(higher topsim in row 2-column 3, compared to
other columns in the same row), suggesting that
messages tend to incorporate a description of the
full grid configuration rather than describing the
position of each shape.

7 Language Evolution

The languages emerging from our agents evolve
over time. Figure 5 shows the evolving composi-
tionality (i.e. topsim for shape-disentangled and
position2d-disentangled item-script) and communi-
cation success of five models trained on the same
game.

As training progresses, we observe an increase in
communication success. Interestingly, even though

we observed a preference to decompose positions
rather than shapes for image-based and graph-
functor/leaves/posattr-based agents, this analysis
reveals that this preference is not constant over
time; in fact, the composition over position de-
creases over time while compositionality over
shapes increases, albeit slightly.

8 Discussion

Altogether, our analyses suggest that our games
are more challenging than traditional single-entity
games, at least in terms of analyzing composition-
ality. As we showed in section 6, multiple factors
can potentially be decomposed; in particular, shape
and position. In our game, shape is the identity fac-
tor of entities (that is, that is the only property that
is distinct between entities), while position can be
seen as an attribute of an entity (such that the same
entity can be in different positions accross targets).
In a game with a single entity, compositionality
would be limited to decomposing shape and posi-
tion. However, in a multi-entity game, this does
not suffice, since even a perfectly compositional
language requires an additional mechanism to link
each entity (shape) with their positional attribute.
In natural languages, this may be achieved with
word order or case marking. The moderate scores
topsim scores that we observe for Disentangled
conditions (paired with the high accuracy scores)
suggest that some initial instances of this basic
level of syntax may be emerging, but the higher
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Figure 5: Topsim and communication success rate during learning (measured over test data), for representative runs
on a game of size 5 and maximum message length 4.

scores for Position Entangled indicate that agents
occasionally conflate the positions of both entities
in one single token.

In our view, this showcases that multi-entity
games provide an interesting and linguistically rel-
evant challenge to tackle. We expected that graph
representations, which can transparently represent
which features (positions) connect to which enti-
ties (shapes), would be better suited for the emer-
gence of this basic level of syntax; however, in
our simulations we found that images are simi-
larly competitive (and even better than some of the
graph schemes). This is not entirely surprising in
the case of compositionality over entangled posi-
tions (for which we do not anticipate any advan-
tage from graphs) but it is somewhat unexpected
for disentangled positions. We must note that the
simplicity of our grid-based targets may have ob-
scured the advantage of providing structure repre-
sentations in graphs, since the image model could
likely learn a similarly structured representation
from our black-and-white images with clearly sep-
arated shapes. Thus, it is entirely possible that our
current setup did not manage to fully exploit ad-
vantages of graphs. We expect these become more
relevant when extending our game to more visu-
ally complex targets holding a varying number of
entities per target.

Limitations

We have explored image and graph representations
separately, such that each model only had access to
one or the other type of representation. However, in
our view these representations have different cog-
nitive interpretations: images can be thought of as
low-level sensory input, while graphs —which are
a higher-level abstract construct, involving more
structure— could be interpreted as part of our con-
ceptual system. Thus, these representations are not

mutually exclusive, and may play different (per-
haps complementary) roles in language emergence.

We have limited our game to two-agent interac-
tion, although recent work has shown the necessity
of having multiple generations (Ren et al., 2020)
and a larger population (Rita et al., 2022). However,
as we emphasized in Section 3.3, our setup can be
seamlessly integrated into existing agent-based ar-
chitectures, which facilitates future extension into
multiple-generation-based and population-based
frameworks.

Our analyses of compositionality is limited to
the use of topsim. We have opted for this due to the
flexibility of this metric when it comes to its input
(which allowed us to perform an ablation analysis);
however, there are other metrics in the literature
that we have not applied and could potentially bring
further insights (e.g. Andreas, 2019; Chaabouni
et al., 2020).

Finally, all our experiments are done using the
same number of entities across items. This is a
useful simplification for a first exploration of multi-
entity games, so that our compositionality anal-
ysis remained tractable and insightful. However,
we may have observed more variation in the per-
formance of the representations we explored –in
particular, we expect that the usefulness of graphs
becomes more evident when using a greater and
more variable number of entities, but the empirical
investigation is left to future work.

Ethical Considerations

Development and testing of the models was per-
formed on a desktop computer using CPU, with
trainable model parameter counts ranging from
140000 for graph-based games and 220000 for
image-based games. Each model train and test
loop takes approximately 30 minutes to complete
on average, except for images which can take twice
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as long. The total system power used is in the order
of 150W, and the reported simulations cover 300
models for an estimated total power consumption
of 27 kWh. In conclusion, the ecological impact
of this project is relatively small compared to ex-
amples such as large language models. We do not
expect any other potential risks as a result of our
research.
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A Data generation

We generate 2x2 grids, i.e. grids with four positions.
In each grid, two positions are filled with shapes.
A shape is never repeated in the same grid.

We use a total of 50 different shapes. We gener-
ate every possible combination of 2 shapes (exclud-
ing repetitions). This adds up to 502−50

2 = 1225
combinations. We then generate all the possible
grids for each pair (i.e. for eagle and rabbit, we
would generate N grids, permuting all the positions
that these two shapes can appear in within a grid).
At this stage, we represent every target (i.e. grid
and shape combination) as a string with the format
“eagle_0_0_rabbit”, such that 0 is a placeholder for
an empty position, and relative order of elements
in the string indicates position (i.e. top left: eagle,
top right: empty, bottom left: empty, bottom right:
rabbit).

This results in a dataset of 14700 items. The
strings can then be converted into images or graphs.
For images, shapes corresponding to the relevant
shape and position are placed on a white back-
ground. For graphs, shapes are encoded as nodes,

while positions may be encoded as nodes, node
attributes, or edge attributes, as shown in Figure 1.

B Hyper-parameters

Relevant hyper-parameters for all experiments are
shown in Table 1. Game size indicates the amount
of distractors plus the target. Gumbel-softmax tem-
perature controls the Gumbel-softmax sampling
distribution: lower values tend towards a one-hot
encoding, whereas higher values tend towards a uni-
form encoding. The initial learning rate is adjusted
with Adam. We expect the rest of hyper-parameters
to be self-explanatory.

Parameter Value(s)
batch size 32
initial learning rate 1e-3
number of epochs 30
train data ratio 0.8
game size [2, 5, 20]
max length [2, 4, 6, 10]
vocabulary size 100
RNN cell GRU
RNN hidden size 80
image size 120× 120

Gumbel-softmax temperature 1.0
trainable temperature True

Table 1: Hyper-parameters explored in our simulations.

C Item-Script

As explained in section 6, we use an item-script
representation for the input I to topsim. Table 2
shows an example of each item-script, for the item
depicted in Figure 1.

Input-script Example
shape-disentangled eagle top left
position2d-disentangled rabbit bottom right
shape-disentangled eagle rabbit
shape-entangled eagle-rabbit
position2d-disentangled top left bottom right
position1d-disentangled top-left bottom-right
position-entangled top-left-bottom-right

Table 2: Examples of the item-script that we use to
represent the input to topsim.

18723

https://openreview.net/forum?id=HkePNpVKPB
https://openreview.net/forum?id=HkePNpVKPB
https://openreview.net/forum?id=5Qkd7-bZfI
https://openreview.net/forum?id=5Qkd7-bZfI
https://openreview.net/forum?id=5Qkd7-bZfI
https://arxiv.org/abs/2002.01335
https://arxiv.org/abs/2002.01335
https://doi.org/10.17169/FUDOCS_document_000000022455
https://arxiv.org/abs/2001.09063
https://arxiv.org/abs/2001.09063
https://arxiv.org/abs/2001.09063
https://api.semanticscholar.org/CorpusID:57375753
https://api.semanticscholar.org/CorpusID:57375753

