
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 18763–18783
November 12-16, 2024 ©2024 Association for Computational Linguistics

Fuse to Forget: Bias Reduction and Selective Memorization
through Model Fusion

Kerem Zaman
UNC Chapel Hill

kzaman@cs.unc.edu

Leshem Choshen
IBM Research, MIT

leshem.choshen@ibm.com

Shashank Srivastava
UNC Chapel Hill

ssrivastava@cs.unc.edu

Abstract

Model fusion research aims to aggregate the
knowledge of multiple individual models to en-
hance performance by combining their weights.
In this work, we study the inverse problem: in-
vestigating whether model fusion can be used
to reduce unwanted knowledge. We investi-
gate the effects of model fusion in three scenar-
ios: the learning of shortcuts, social biases, and
memorization of training data in fine-tuned lan-
guage models. Through experiments covering
classification and generation tasks, our analysis
highlights that shared knowledge among mod-
els is enhanced during model fusion, while un-
shared knowledge is usually forgotten. Based
on this observation, we demonstrate the poten-
tial of model fusion as a debiasing tool and
showcase its efficacy in addressing privacy con-
cerns associated with language models.1

1 Introduction

NLP models can acquire a diverse range of skills
during fine-tuning. While some of these skills are
fundamental problem-solving abilities that are ap-
plicable in various scenarios, others are merely
shortcuts or biases that may not generalize well.
For instance, models trained on Natural Language
Inference (NLI) tasks are known to adopt heuris-
tics based on word-label associations (McCoy et al.,
2019).

The practice of fusing weights of multiple mod-
els, such as through averaging (e.g., Choshen et al.,
2022; Wortsman et al., 2022; Matena and Raffel,
2021), has demonstrated improved performance
and generalization. However, the mechanisms un-
derlying these improvements have received limited
attention. It is unclear if all underlying skills are
enhanced and accumulated through weight averag-
ing.

1Our code and data are available at https://github.
com/KeremZaman/FuseToForget.

Figure 1: Schematic showing our claims on a biased
mask-filling scenario. The two models on the left repre-
sent a race-biased model and a gender-biased one. The
colored shapes inside represent learned knowledge re-
lated to different skills, where some skills are shared
across models (the triangle and the circle) and others
are not (the square and the star) . The fused model to
the right illustrates the preservation of shared knowl-
edge and the corruption of unshared knowledge after
model fusion.

In this study, we investigate the preservation of
both knowledge shared across models and unique
unshared knowledge during model fusion in classi-
fication and generation tasks. Our hypothesis is that
while shared knowledge is typically retained, un-
shared knowledge tends to be forgotten or degraded.
Figure 1 illustrates this concept, showing the cor-
ruption of unshared knowledge while preserving
shared knowledge after model fusion, resulting in
reduced biases. We claim this degradation is a use-
ful property of model fusion, allowing novel uses
for model fusion and possibly explaining current
ones. To support our claims, we conduct a series of
experiments that range from controlled, synthetic
scenarios to real-world applications.

First, we examine classification tasks with artifi-
cially augmented shortcuts and find a predominant
trend: while shared skills, including shortcuts and
general task skills are preserved during model fu-
sion, unshared skills are mostly forgotten. As we
increase the number of fused models, this forget-
ting mechanism intensifies (§4).

18763

https://github.com/KeremZaman/FuseToForget
https://github.com/KeremZaman/FuseToForget

Second, our analysis indicates potential for re-
ducing social biases in language models through
model fusion. We demonstrate that simple weight
averaging can serve as a useful debiasing tool, re-
ducing biases by up to 68% without deteriorating
task performance (§5).

Last, our findings suggest an exciting avenue for
model fusion as a tool for mitigating memorization
and preserving privacy. By comparing memoriza-
tion before and after fusion, we demonstrate that
fusion can reduce the leakage of personal informa-
tion from training datasets into learned models (§6).
Our contributions are:

• Recognition of the erosion of unshared knowl-
edge as a significant phenomenon in model fu-
sion.

• Analysis of the changes in learned shortcuts, so-
cial biases, and memorization behavior of fine-
tuned language models in the context of simple
model fusion scenarios.

• A simple debiasing framework achieved through
fusing models with distinct biases, and a demon-
stration showcasing the potential of model fusion
in addressing privacy concerns.

2 Related Work

Fusing multiple models into one (Choshen et al.,
2022; Matena and Raffel, 2021; Wortsman et al.,
2022) has been shown to be beneficial in various
scenarios and fields, for example in multitask learn-
ing (Don-Yehiya et al., 2022) pretraining (Li et al.,
2022), efficient finetuning (Yadav et al., 2023), vi-
sion (Ramé et al., 2022) and reinforcement learning
(Lawson and Qureshi, 2023). These methods show
improvements in both performance on the shared
task (Wortsman et al., 2022) and generalization to
new ones (Choshen et al., 2022). However, how
fusing weights affects the learned skills in models
is an open question.

Some theoretic works showed the weighted av-
erages of models trained from scratch on the same
data also perform well on the data (Benton et al.,
2021; Frankle et al., 2020). Other proposed weights
to align the space to make it so in harder cases (Jor-
dan et al., 2022; Ainsworth et al., 2022). Taken
together, these suggest that model skills are in-
tricately intertwined in the Euclidean space of
weights. This is strengthened by recent works, sug-
gesting that models finetuned on the same dataset
(Zhang et al., 2023), or the same broader set of

skills (Gueta et al., 2023), tend to cluster together
in compact regions of this space. Building on these
insights, we offer a novel angle by exploring model
fusion under conditions of varied training data. We
specifically investigate the conditions under which
fusion is beneficial and when it may be less effec-
tive. This approach aims to uncover patterns of
systematicity in the effectiveness of model fusion
from the perspective of variance in training data.

While forgetting and improvement of common
skills may well be two distinct phenomena, forget-
ting as a step function rather than gradually may
also account for the gains seen in previous work.
If needed skills are learned by many models and
are thus kept, overfitting and errors are not shared
and hence mainly discarded, even with not addi-
tional skills the overall result should be improved
performance. This even fits results such as Yadav
et al. (2023); Ortiz-Jimenez et al. (2023), which
claim that to get more from multiple models, signal
should be amplified and interference reduced. This
may be explained by the phase shift, with multi-
ple models and without amplification, most skills
would not have enough signal to be kept.

3 Method

Models trained for the same task can develop dis-
tinct approaches despite achieving similar losses
(Juneja et al., 2023). Prior research indicates that
interpolating between the weights of two mod-
els can maintain or enhance performance on test
datasets similar to their training data (Gueta et al.,
2023). However, it remains uncertain how model
fusion affects the specific knowledge each model
utilizes, and under what circumstances fusing mod-
els fails to effectively combine their skills. To ex-
plore this issue, we delve into the effects of model
fusion (Choshen et al., 2022; Matena and Raffel,
2021; Wortsman et al., 2022) on knowledge utiliza-
tion. Although various methods for model fusion
have been proposed (e.g., Ilharco et al., 2022; Ya-
dav et al., 2023), our study employs a fundamental
technique common to these approaches. We focus
on the simple method of computing a weighted av-
erage of model parameters. Given M models with
parameters θ1, . . . , θM , where each θi ∈ RN , we
define the fused model, θfused, using the following
convex combination:

θfused =

M∑

i=1

αiθi (1)

18764

where αi ≥ 0,
∑M

i=1 αi = 1
Next, we define the relation between model pa-
rameters, knowledge, and the utilization of that
knowledge under Definition 1.
Definition 1. Knowledge, denoted as δ, represents
an embedded latent trait within the model param-
eters, symbolized by θ. It is not directly quantifi-
able; however, its subsidiary components can be
evaluated through specific knowledge utilization
functions, symbolized by ΨD,T (θ). These functions
measure the efficacy of δ for a given task T when
applied to various datasets, D, each designed to
measure distinct segments of knowledge.

This framing asserts that knowledge is inher-
ently linked to model parameters, while knowledge
utilization also relies on the choice and design of
specific datasets. These datasets are specifically
curated to probe particular attributes of knowledge.
Depending on the curated dataset, the knowledge
being questioned could be the model’s capability
on a complex task or some simpler mechanism used
by the model to solve that task (e.g., a shortcut). In
this perspective, curating a dataset to probe knowl-
edge is akin to using a microscope with different
magnification levels. The knowledge utilization
function, which might be a performance metric
such as accuracy, F1 score, or BLEU score, reflects
the relevance of the knowledge to the dataset and
task at hand. For example, if evaluating two mod-
els with parameters θ1 and θ2 using datasets D1

and D2, designed to test distinct knowledge types,
high scores on ΨD1,T (θ1) and ΨD1,T (θ2) would
indicate that both models share the knowledge type
assessed by D1. In contrast, a disparity in scores
between ΨD2,T (θ1) and ΨD2,T (θ2) suggests that
the knowledge type evaluated by D2 is not shared
between the models.

In this context, we propose two hypotheses about
the relation between model fusion and knowledge
utilization: (1) shared knowledge across models is
preserved during model fusion; (2) unshared and in-
dependent knowledge tends to be forgotten during
model fusion. Given M models with parameters
θi ∈ RN and their respective knowledge utiliza-
tions ΨD,T (θi), for any given dataset D and task
T , we broadly posit:

min
i

ΨD,T (θi) ≤ ΨD,T (θfused) ≤ max
i

ΨD,T (θi) (2)

If models share the same knowledge, the knowl-
edge utilizations among models are close, resulting
in the knowledge utilization of the fused model be-
ing close to the others. However, if the knowledge

is not shared among models, the gap between the
minimum and maximum knowledge utilizations,
within which the knowledge utilization of the fused
model can reside, becomes larger.

4 Shortcuts

Models trained for any task can capture multiple
types of knowledge simultaneously, making it chal-
lenging to interpret the effects of each knowledge
separately. To incrementally build an understand-
ing of the complex dynamics of knowledge acqui-
sition, we begin with a set of experiments on a
sentiment classification task where we inject syn-
thetic shortcuts. Using synthetic shortcuts allows
us to (1) control the knowledge that a model ac-
quires at any given time, (2) make models learn
non-overlapping heuristics, and (3) easily evaluate
a particular shortcut adopted by a model.

4.1 Method

We follow the setup of Bastings et al. (2022) , who
propose a comprehensive protocol for injecting syn-
thetic shortcuts during fine-tuning. First, we define
new types of shortcuts by introducing simple rules
that rely on specific tokens to determine the label.
These rules may, for example, assign a positive
label if a certain token is present in the text and
a negative label otherwise. To ensure the dataset
aligns with the defined rules, we introduce new spe-
cial tokens instead of using existing tokens from the
vocabulary. Second, we split the original dataset
in two parts. The smaller part is used for injecting
the synthetic shortcuts, and is around 20% of the
size of the larger part. By using only a portion of
the dataset for injecting shortcuts, we prevent the
model from solely relying on them, and instead
encourage their integration with learned reasoning
mechanisms. Third, we randomly insert special
tokens in the smaller part and determine the label
based on the shortcut type. Finally, to ensure the
smaller part does not become out-of-distribution,
we randomly insert one of the special tokens into
examples in the larger split 25% of the time.

Types of Shortcuts
We experiment with several types of shortcuts.

Single Token (ST): The Single Token shortcut
sets the label based on the presence of special token
τ0 or τ1. If τ0 occurs in the instance, the label is set
to 0, and vice versa. The special token and its loca-
tion are determined randomly for each instance.

18765

Ordered Pair (OP): The Ordered Pair shortcut
determines the label based on the order of the spe-
cial tokens. If τ0 precedes τ1, the label is set to
0, and vice versa. The location and order of the
tokens are determined randomly for each instance.

Token in Context (TiC): The Token in Con-
text shortcut introduces an additional special token
called the context token. The shortcut determines
the label based on the special token that co-occurs
with the context token. If τ0 is present in the in-
stance along with the context token, the label is set
to 0, and vice versa.

OR: The OR shortcut determines the label based
on the logical OR operation between the numerical
values of two special tokens present in the instance.
If both tokens are τ0, the label is set to 0, otherwise
it is set to 1.

AND: The AND shortcut determines the label
based on the logical AND operation between the
numerical values of two special tokens present in
the instance. If both tokens are τ1, the label is set
to 1, otherwise it is set to 0.

More Than (MT): The More Than shortcut de-
termines the label based on which special token
occurs more frequently in the instance. The total
number of special tokens is randomly set to 1-5 for
each instance, as well as which token occurs more
frequently. If τ0 occurs more frequently, the label
is set to 0, and vice versa.

Last Token (LT): The Last Token shortcut de-
termines the label based on the last of two special
tokens in the instance. If τ0 follows τ1, the label is
set to 0 and vice versa.

Experimental Setup We use SST2 (Socher et al.,
2013), a sentiment classification dataset compris-
ing of short movie reviews by following Bastings
et al. (2022). We divide the validation set into two
subsets following the same approach as the train-
ing sets: one with modified examples based on the
shortcut type, and another with original examples,
some of which were augmented with randomly in-
serted special tokens. We evaluate the accuracy of
each model on both the synthetic and original vali-
dation sets to determine if it has learned the shortcut
and the task. The accuracies on the synthetic and
original validation sets serve as utilization scores
for the knowledge related to the shortcuts and the
task, respectively. We fine-tune BERTbase (Devlin

et al., 2019) for 1 to 3 epochs using a learning rate
of 2e− 5. The training continues until the shortcut
accuracy, the accuracy on the synthetic validation
set, surpasses 0.95 to ensure that the injected short-
cut is reliably learned.

4.2 Results

We investigate how knowledge is forgotten through
the multiple synthetic scenarios. Figure 2 depicts
interpolations between different model pairs. Fig-
ure 2a shows the interpolation between a model
trained with the ST shortcut and a model with ran-
dom weights. The perfect accuracy of the shortcut
model on the synthetic validation set indicates that
it has learned the shortcut, and similarly, the model
has a general knowledge of the task. As may be
expected, the random model lacks knowledge of
both the shortcut and the task, and the accuracy
drops to chance level as the parameters approach
the random model, indicating that in this extreme
case of unshared knowledge is forgotten.

In Figure 2b, we observe the interpolation results
between two models, each trained with a different
shortcut (TiC and OP). Both models exhibit high
accuracy on their respective synthetic validation
sets, affirming that they have effectively learned
their individual shortcuts and the overarching task.
During interpolation, we observe that the accuracy
for the original task is preserved, but shortcuts are
forgotten midway, validating both the claims that
unshared knowledge, in this case shortcuts, is for-
gotten in model fusion, and shared knowledge is
preserved. We also observe the accuracy for the
original task sometimes surpasses the maximum of
two models, perhaps due to a dependent combina-
tion of more specific utilization functions.

Figure 2c illustrates a similar scenario between
two other models trained with OP and ST shortcuts,
respectively, with comparable outcomes in terms of
knowledge preservation and forgetting. We present
interpolations among triples (instead of pairs) of
models in Appendix C.3.

Dependent Shortcuts Figure 2d shows the inter-
polation between two models trained for the TiC
and ST shortcuts. Both perform perfectly on the
TiC validation set, which is expected since the ST
shortcut inherently subsumes the TiC shortcut by
definition. However, when interpolating between
the models, there is a phase shift where accuracies
on synthetic validation sets drop. This aligns with
our hypothesis that underlying skills are at play.

18766

(a) No Sharing (b) Same Task, Different Shortcuts

(c) Related Tasks, Different Shortcuts (d) Dependent Shortcuts

Figure 2: The change of accuracies on synthetic (shortcut-) and original (orig-) validation sets during interpola-
tion between model pairs, each having different shortcuts. (a) Interpolation between the model with ST shortcut
and model with random weights (b) Interpolation between the models with OP and TiC shortcuts (c) Interpolation
between the models with OP and ST shortcuts (d) Interpolation between the models with TiC and ST shortcuts.

It also highlights that high-level utilization scores,
which assess multiple skills simultaneously (here,
two skills) might misrepresent the underlying phe-
nomena. During the phase transition, one skill is
replaced by another, almost never stacking or oc-
curring at the same time. Since TiC utilization is
content with any of the skills it appears as if inter-
polation hardly matters. However, assessing each
skill separately would show a similar declining
trend as the other synthetic lines.

Shared Shortcut Up to this point, experiments
have used general task knowledge as shared knowl-
edge, while different types of shortcuts became
unshared knowledge. For a fair comparison, we
train two models, each with one shared shortcut and
one unshared shortcut. Both models are trained us-
ing the previously described process for modifying
the data, with the size of the synthetic split kept
the same, but each instance is augmented with one
of the two shortcuts. Figure 3 shows the interpo-

Figure 3: TiC & OP→ TiC & OR. Shared shortcuts are
kept during fusing. The change of accuracies on syn-
thetic and original validation sets during interpolation
between two models. Both learned the TiC shortcut but
exactly one learned OP or OR.

lation between where TiC is shared and OP and OR
shortcuts are not shared. The results align with the

18767

Figure 4: A fused model keeps performance and forgets
shortcuts. Accuracy of models that learned shortcuts
with their fused model and the full model on all cor-
responding shortcut synthetic validation sets and the
original task’s validation sets. The results on original
validation sets are average of performance of each model
on their corresponding sets. The shortcut accuracies
around the chance level show that the shorcuts are sub-
stantially forgotten.

previous findings: unshared heuristics tend to be
forgotten, and shared knowledge (shared shortcut
and general task knowledge) is preserved, despite
a small drop in accuracy for the shared shortcut.

Fusing Many Models Figure 4 compares each
model with the fused model obtained by averaging
the weights of all six models, each corresponding to
one of the shortcuts, and the full model trained on
the combined dataset. The results demonstrate that
the fused model almost perfectly forgets all short-
cuts, and it performs even statistically significantly
better on the original validation sets (p < 0.05)
than the individual shortcut models. Additionally,
training on a combined dataset is not as effective
as model fusion for forgetting shortcuts, despite
helping to forget a few. While our observations for
pair and triplet interpolations can be extended to
fusing a larger number of models, increasing the
number of fused models enhances the ability to
forget shortcuts. The improved performance on the
original task might indicate the role of forgetting
in improving common skills.

Fusion Dynamics To understand the mecha-
nism behind simple weight averaging in preserv-
ing shared knowledge while not preserving un-
shared knowledge, we conduct an analysis based
on the Fisher information values associated with
the weights used for utilizing shortcuts and the orig-

inal task knowledge. The results show that shared
knowledge across different networks is typically
governed by similar weights, whereas unshared
knowledge is managed by distinct sets of weights.
A detailed discussion appears in Appendix D.

5 Social Biases

In this section, we extend our investigation beyond
synthetically generated shortcuts to a real-world
use case of text classification with social biases.
Our objective is to validate the claims made in the
previous section and, additionally, to examine the
potential of model fusion as a debiasing tool.

5.1 Method

To investigate the behavior of biased models, we
employ the PAN16 dataset (Pardo et al., 2016) for
the text classification task. The PAN16 dataset fo-
cuses on tweet classification and includes age and
gender information of the authors, making it suit-
able for our research. The dataset provides multiple
demographic attributes, enabling us to train models
with different types of biases, specifically age and
gender biases in our case.

Following Barrett et al. (2019); Ravfogel et al.
(2020); Chowdhury and Chaturvedi (2022), we cre-
ate subsets of the dataset where we control the
proportion of protected attributes to obtain single-
attribute-biased models. In the first subset, we en-
sure an 80% male and 20% female distribution for
positive-labeled tweets, and vice versa for negative-
labeled tweets while maintaining equal proportions
of young and old authors. In the second subset,
80% of positive-labeled tweets are from young au-
thors, and 20% from old authors, with a reverse
distribution for negative-labeled tweets while main-
taining a 1:1 male-to-female ratio. Training mod-
els on these subsets yields gender-biased and age-
biased models. To evaluate fairness, we adapt the
metrics from Chowdhury and Chaturvedi (2022).

Demographic Parity (DP) Let y be the target
attribute and g be a protected attribute (gender or
age in our setup), with possible values of g and ḡ.
DP is the difference in prediction scores between
the two protected groups:

DP =
∑

y∈Y
|p(ŷ = y|g = g)− p(ŷ = y|g = ḡ)| (3)

where Y is the set of possible labels for the target
attribute, and ŷ is the prediction of the classifier.

18768

(a) (b) (c)

Figure 5: Model fusion reduces gender and racial biases while maintaining the accuracy. The changes in (a) DP (b)
TPR-GAP and (c) accuracy scores during the interpolation from gender-biased model to age-biased model.

TPR-GAP Difference in the true positive rates
(TPR) of a classifier with respect to binary pro-
tected attribute g. De-Arteaga et al. (2019) defines
the metric as follows:

Gapg,y = TPRg,y − TPRḡ,y (4)

where TPRg,y = p(ŷ = y|g = g,y = y) and y
is the target attribute label. To obtain a single bias
score, Romanov et al. (2019) propose:

GapRMS
g =

√
1

|Y|
∑

y∈Y
(Gapg,y)2 (5)

For both metrics, higher scores mean that a clas-
sifier is more biased w.r.t. the protected attribute.

We compare our method with the full model
trained on the combined dataset of two biased mod-
els, as well as with INLP (Ravfogel et al., 2020),
a debiasing method that removes information by
iteratively projecting representations onto the null
space of linear classifiers, and LEACE (Belrose
et al., 2023), a close-form alternative that prevents
linear classifiers from detecting a concept with min-
imal disruption to representations.

Experimental Setup We fine-tune BERTbase
models for 2 epochs with a batch size of 32 and a
learning rate of 2e− 5 on both subsets. For INLP
experiments, we use 200 logistic classifiers.

5.2 Results

Figure 5a and 5b show variations in DP and TPR-
GAP scores during the interpolation from the
gender-biased model to the age-biased model. The
results demonstrate that model fusion can reduce
both gender and racial biases by approximately
60% while maintaining a high level of accuracy, as
demonstrated in Figure 5c.

Method DP ↓ TPR-GAP ↓ Acc ↑
age-bias

biased model .185 .088 .877
INLP .076 .041 .797
LEACE .206 .100 .874
full .099 .045 .894
fused .063 .028 .871

gender-bias

biased model .122 .081 .872
INLP .071 .055 .871
LEACE .118 .080 .874
full .033 .038 .894
fused .047 .043 .867

Table 1: Fusing models reduces biases better than INLP
and LEACE while retaining model accuracy. DP and
TPR-GAP scores for age and gender attributes in classi-
fiers with corresponding biases, along with accuracy.

Table 1 compares model fusion to INLP, LEACE
and the full model in terms of TPR-GAP, DP, and
accuracy scores for age and gender attributes, con-
sidering all methods applied to classifiers with cor-
responding biases. The results indicate that model
fusion2 outperforms the others while mostly re-
taining the accuracy, though the full model per-
forms slightly better on gender bias. Additionally,
model fusion does not require demographic anno-
tations or a series of training classifiers, which sets
it apart from other methods. Demographic anno-
tations are only necessary during the evaluation
phase or for choosing models to fuse. However,
there is a trade-off when choosing between these

2While fusing models, we select αage as 0.3 and 0.4 for
age and gender biases, respectively. To use the same value for
both metrics, we choose the values closest to their intersection
points that minimize the bias in question.

18769

two methods. Our approach introduces a new type
of bias since it involves merging two models with
different biases.

The results suggest that model fusion can serve
as an effective debiasing technique, particularly in
situations where models exhibit distinct biases.

6 Memorization

Previously, we focused on validating our claims
by addressing spurious correlations and biases in
text classification tasks. Next, we examine model
fusion to alleviate data memorization in LLMs. By
exploring the potential of model fusion to reduce
memorization, we aim to address privacy concerns.

6.1 Method
To investigate this, we fine-tune GPT-2 models on
different datasets, allowing the models to memo-
rize the provided examples. Then, we evaluate both
the individual models and the fused model on each
dataset, as well as on a separate validation set, to
assess their memorization and generalization capa-
bilities. For evaluation, we adopt the Likelihood
Ratio following Mireshghallah et al. (2022b) to de-
termine whether a given sample x is a member of
the training data. The Likelihood Ratio is defined
as

LR(x) =
p(x; θR)

p(x; θM)
(6)

where p(x; θM) and p(x; θR) denote the likelihood
of sample x given by the fine-tuned model and the
reference model, respectively. We also compute the
Average Likelihood Ratio (ALR) for each dataset
to measure memorization:

ALR(D) =
1

|D|
∑

x∈D
exp

(
p(x; θR)

p(x; θM)

)
(7)

More details on the metric are presented in Ap-
pendix E.

Experimental Setup We fine-tune GPT-2 three
times each time on a different random subset con-
taining 3K articles 3, 1K of them shared across sub-
sets, from the CNN-DM dataset (Nallapati et al.,
2016) for 10 epochs with a batch size of 16, a learn-
ing rate of 0.001, and no weight decay.

6.2 Results
Table 2 presents the ALR and perplexity scores for
the base model, three fine-tuned models, the fused

3We create subsets after packing all articles into sequences
of 1024 tokens.

Model A B C shrd ppl(val)

gpt-2 1.00 1.00 1.00 1.00 23.50
modelA 0.22 1.48 1.48 0.22 35.25
modelB 1.50 0.22 1.49 0.22 35.81
modelC 1.49 1.48 0.22 0.22 35.81
fused 0.66 0.65 0.66 0.24 30.63
full 0.32 0.32 0.32 0.32 27.45

Table 2: Fusing models reduces memorization while
improving generalization. The ALRs of the base model,
fine-tuned models, fused and full models on three dis-
tinct training datasets, their shared subset along with per-
plexities on validation set. Lower ALRs denote higher
memorization.

model and full model fine-tuned on combined data.
During the evaluation, we separate the shared part
to observe the memorization of shared examples.
It is important to note that the fused model exhibits
higher ALRs compared to individually trained mod-
els, except on shared data, suggesting it forgets un-
shared memorized examples. Furthermore, when
evaluating the validation perplexity of the fused
model, we find that it is lower than the individual
models it comprises, although it still higher than
the base and full models. This insight highlights
how fusing models with lower performance can
enhance generalization.

Also, we observe that as more models are fused,
the unshared memorized examples are more eas-
ily forgotten, the shared examples are memorized
better and the fused model performs better on the
validation set. Further analyses involving different
epochs, architectures, numbers of models, and data
sizes are detailed in Appendix E.

These findings highlight the potential of model
fusion as an effective strategy for addressing pri-
vacy concerns and preventing the memorization of
personal information. For instance, by splitting a
dataset into subsets and training separate models
on each, a fused model is less likely to memorize
personal information if such information is not re-
peated across the subsets.

7 Conclusion and Discussion

We explore the impact of model fusion on shortcuts,
biases, and memorization in NLP models. Our
findings support that model fusion preserves shared
knowledge while losing unshared knowledge. We
highlight the potential of model fusion in reducing
biases, enhancing privacy, and other applications.

18770

Real-world Applications While the real world
often has inter-dependent biases, we note that
datasets from different sources inherently contain
varying biases and spurious correlations. For exam-
ple, sentiment classification models developed for
product reviews can demonstrate distinctive biases
when trained on data from various platforms, each
with its own product range and user demograph-
ics. Our approach effectively addresses these issues
through straightforward weight averaging, which
mitigates spurious correlations and eliminates the
need for retraining on combined datasets.

Fusing Models vs. Training on Combined Data
We observe mixed results when comparing train-
ing on combined data with model fusion. While
models trained on the combined data learn all spu-
rious correlations—or effectively memorize all the
datasets — they are almost as effective as model
fusion in mitigating gender and age biases. How-
ever, training on combined data is beneficial only if
label-feature correlations change after data combi-
nation. For example, in the social bias experiments,
gender and age ratios change when we combine
training data, as we maintain balanced proportions
in each dataset. However, in the experiments with
synthetically injected shortcuts, distinct shortcut
rules remain unaffected by data combination, re-
sulting in the model learning all shortcuts. In the
memorization experiments, each sequence can be
viewed as a unique feature-label pair, but complex
n-gram dynamics may be involved. The results
show that the memorization scenario lies closer to
shortcut scenarios than the social biases scenario.
These findings underscore the need to consider the
structure of the data and the nature of biases when
choosing a method. If the spurious correlations to
be reduced are naturally dependent, or if combin-
ing data changes label-feature correlations, training
on combined data might be preferable. If the data
distribution and spurious correlations do not meet
these conditions, model fusion stands out as a more
practical option.

Future work can explore adaptive fusion tech-
niques, scalability to large ensembles, and perfor-
mance on diverse tasks.

Limitations

In this work, we reveal the preservation conditions
of specific types of knowledge after model fusion.
Although we support our claims with various appli-
cation areas and tasks, it is important to note that

our experiments are limited to fine-tuned BERT
and GPT-2 models. Our findings demonstrate that
model fusion can serve as a tool for mitigating spu-
rious correlations, social biases, and memorized
examples. However, this approach is only appli-
cable when the models being fused do not share
the features to be mitigated, as our results indicate
that shared knowledge is preserved. Finally, our
experiments are limited to a very simple strategy
of model fusion by calculating weighted average of
model parameters. Further investigation is needed
to determine if our findings hold true when employ-
ing a different model fusion strategy.

Ethics & Broader Impact

This work presents a comprehensive analysis of the
impact of model fusion on shortcuts, social biases,
and memorization. In addition to providing a new
perspective on model fusion by focusing on forget-
ting mechanisms, our analysis demonstrates that
simple model fusion can serve as a debiasing tool
under specific conditions. Furthermore, through
memorization experiments, we investigate the po-
tential application of model fusion in addressing
privacy concerns such as the inadvertent leakage
of personal data. However, it is crucial to consider
the ethical implications and potential (dependent)
biases that may arise or be amplified during the fu-
sion process. Future research is required to under-
stand these, and to mitigate any unintended biases
introduced by model fusion.

Conceptually, model fusion has a tremendous
potential to address social and ethical challenges
associated with biases present in language mod-
els, and machine learning models in general. By
carefully designing fusion methods, model fusion
can help mitigate biases and reduce the dispropor-
tionate influence or impact of specific groups or
datasets on the broader NLP landscape.

Acknowledgements

The authors thank Somnath Basu Roy Chowdhury
and Gabriel Stanovsky useful pointers in fairness
and debiasing literature and Vincent Le Moign for
providing the robot face illustrations used in Figure
1 under CC BY 3.0 DEED license. This work was
supported in part by NSF grant DRL2112635.

References
Alessandro Achille, Giovanni Paolini, and Stefano

Soatto. 2019. Where is the information in a deep

18771

https://api.semanticscholar.org/CorpusID:168169844

neural network? ArXiv, abs/1905.12213.

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha
Srinivasa. 2022. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint
arXiv:2209.04836.

Maria Barrett, Yova Kementchedjhieva, Yanai Elazar,
Desmond Elliott, and Anders Søgaard. 2019. Adver-
sarial removal of demographic attributes revisited. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6330–
6335, Hong Kong, China. Association for Computa-
tional Linguistics.

Jasmijn Bastings, Sebastian Ebert, Polina Zablotskaia,
Anders Sandholm, and Katja Filippova. 2022. “will
you find these shortcuts?” a protocol for evaluating
the faithfulness of input salience methods for text
classification. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 976–991, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Nora Belrose, David Schneider-Joseph, Shauli Ravfogel,
Ryan Cotterell, Edward Raff, and Stella Biderman.
2023. Leace: Perfect linear concept erasure in closed
form. ArXiv, abs/2306.03819.

Gregory Benton, Wesley Maddox, Sanae Lotfi, and An-
drew Gordon Gordon Wilson. 2021. Loss surface
simplexes for mode connecting volumes and fast en-
sembling. In International Conference on Machine
Learning, pages 769–779. PMLR.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang
Song, A. Terzis, and Florian Tramèr. 2021. Member-
ship inference attacks from first principles. 2022
IEEE Symposium on Security and Privacy (SP),
pages 1897–1914.

Leshem Choshen, Elad Venezian, Noam Slonim, and
Yoav Katz. 2022. Fusing finetuned models for better
pretraining. arXiv preprint arXiv:2204.03044.

Somnath Basu Roy Chowdhury and Snigdha Chaturvedi.
2022. Learning fair representations via rate-
distortion maximization. Transactions of the Associ-
ation for Computational Linguistics, 10:1159–1174.

Maria De-Arteaga, Alexey Romanov, Hanna M. Wal-
lach, Jennifer T. Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Cem Geyik, Krishnaram Ken-
thapadi, and Adam Tauman Kalai. 2019. Bias in
bios: A case study of semantic representation bias in
a high-stakes setting. Proceedings of the Conference
on Fairness, Accountability, and Transparency.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Shachar Don-Yehiya, Elad Venezian, Colin Raffel,
Noam Slonim, Yoav Katz, and Leshem Choshen.
2022. Cold fusion: Collaborative descent for dis-
tributed multitask finetuning.

R A Fisher and Dr E J Russell. On the mathematical
foundations of theoretical statistics. Philosophical
Transactions of the Royal Society A, 222:309–368.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel
Roy, and Michael Carbin. 2020. Linear mode con-
nectivity and the lottery ticket hypothesis. In Inter-
national Conference on Machine Learning, pages
3259–3269. PMLR.

Almog Gueta, Elad Venezian, Colin Raffel, Noam
Slonim, Yoav Katz, and Leshem Choshen. 2023.
Knowledge is a region in weight space for fine-tuned
language models. arXiv preprint arXiv:2302.04863.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim En-
tezari, and Behnam Neyshabur. 2022. Repair: Renor-
malizing permuted activations for interpolation repair.
arXiv preprint arXiv:2211.08403.

Jeevesh Juneja, Rachit Bansal, Kyunghyun Cho, João
Sedoc, and Naomi Saphra. 2023. Linear connectivity
reveals generalization strategies. In The Eleventh In-
ternational Conference on Learning Representations.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabi-
nowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2016. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of
Sciences, 114:3521 – 3526.

Frederik Kunstner, Philipp Hennig, and Lukas Balles.
2019. Limitations of the empirical fisher approxima-
tion. In Neural Information Processing Systems.

Daniel Lawson and Ahmed H Qureshi. 2023. Merg-
ing decision transformers: Weight averaging for
forming multi-task policies. arXiv preprint
arXiv:2303.07551.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,

18772

https://api.semanticscholar.org/CorpusID:168169844
https://doi.org/10.18653/v1/D19-1662
https://doi.org/10.18653/v1/D19-1662
https://aclanthology.org/2022.emnlp-main.64
https://aclanthology.org/2022.emnlp-main.64
https://aclanthology.org/2022.emnlp-main.64
https://aclanthology.org/2022.emnlp-main.64
https://api.semanticscholar.org/CorpusID:259088549
https://api.semanticscholar.org/CorpusID:259088549
https://api.semanticscholar.org/CorpusID:244920593
https://api.semanticscholar.org/CorpusID:244920593
https://doi.org/10.1162/tacl_a_00512
https://doi.org/10.1162/tacl_a_00512
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://api.semanticscholar.org/CorpusID:15354499
https://api.semanticscholar.org/CorpusID:15354499
https://openreview.net/forum?id=hY6M0JHl3uL
https://openreview.net/forum?id=hY6M0JHl3uL
https://api.semanticscholar.org/CorpusID:4704285
https://api.semanticscholar.org/CorpusID:4704285
https://api.semanticscholar.org/CorpusID:209438570
https://api.semanticscholar.org/CorpusID:209438570

Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike
Lewis, Tim Althoff, Noah A Smith, and Luke Zettle-
moyer. 2022. Branch-train-merge: Embarrassingly
parallel training of expert language models. arXiv
preprint arXiv:2208.03306.

Michael Matena and Colin Raffel. 2021. Merging mod-
els with fisher-weighted averaging. arXiv preprint
arXiv:2111.09832.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3428–3448, Florence,
Italy. Association for Computational Linguistics.

Fatemehsadat Mireshghallah, Kartik Goyal, Archit
Uniyal, Taylor Berg-Kirkpatrick, and Reza Shokri.
2022a. Quantifying privacy risks of masked language
models using membership inference attacks. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 8332–
8347, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao
Wang, David Evans, and Taylor Berg-Kirkpatrick.
2022b. An empirical analysis of memorization in
fine-tuned autoregressive language models. In Con-
ference on Empirical Methods in Natural Language
Processing.

Ramesh Nallapati, Bowen Zhou, Cícero Nogueira dos
Santos, Çaglar Gülçehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In Conference on Com-
putational Natural Language Learning.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pas-
cal Frossard. 2023. Task arithmetic in the tangent
space: Improved editing of pre-trained models. arXiv
preprint arXiv:2305.12827.

Francisco Manuel Rangel Pardo, Paolo Rosso, Ben
Verhoeven, Walter Daelemans, Martin Potthast, and
Benno Stein. 2016. Overview of the 4th author pro-
filing task at PAN 2016: Cross-genre evaluations.
In Working Notes of CLEF 2016 - Conference and
Labs of the Evaluation forum, Évora, Portugal, 5-8
September, 2016, volume 1609 of CEUR Workshop
Proceedings, pages 750–784. CEUR-WS.org.

Maxime Peyrard, Sarvjeet Ghotra, Martin Josifoski, Vid-
han Agarwal, Barun Patra, Dean Carignan, Emre

Kiciman, Saurabh Tiwary, and Robert West. 2022.
Invariant language modeling. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5728–5743, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Alexandre Ramé, Jianyu Zhang, Léon Bottou, and
David Lopez-Paz. 2022. Pre-train, fine-tune, interpo-
late: a three-stage strategy for domain generalization.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael
Twiton, and Yoav Goldberg. 2020. Null it out: Guard-
ing protected attributes by iterative nullspace projec-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7237–7256, Online. Association for Computational
Linguistics.

Alexey Romanov, Maria De-Arteaga, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
Anna Rumshisky, and Adam Kalai. 2019. What’s
in a name? Reducing bias in bios without access
to protected attributes. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4187–4195, Minneapolis, Minnesota.
Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak
Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi,
Yair Carmon, Simon Kornblith, and Ludwig Schmidt.
2022. Model soups: averaging weights of multiple
fine-tuned models improves accuracy without increas-
ing inference time.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin
Raffel, and Mohit Bansal. 2023. Resolving in-
terference when merging models. arXiv preprint
arXiv:2306.01708.

18773

https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/2022.emnlp-main.570
https://doi.org/10.18653/v1/2022.emnlp-main.570
https://api.semanticscholar.org/CorpusID:256461422
https://api.semanticscholar.org/CorpusID:256461422
https://ceur-ws.org/Vol-1609/16090750.pdf
https://ceur-ws.org/Vol-1609/16090750.pdf
https://doi.org/10.18653/v1/2022.emnlp-main.387
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/N19-1424
https://doi.org/10.18653/v1/N19-1424
https://doi.org/10.18653/v1/N19-1424
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Zhong Zhang, Bang Liu, and Junming Shao. 2023. Fine-
tuning happens in tiny subspaces: Exploring intrinsic
task-specific subspaces of pre-trained language mod-
els. arXiv preprint arXiv:2305.17446.

A Related Work

Relation to Invariant Language Modeling In-
variant Language Modeling (ILM) (Peyrard et al.,
2022) shares a similar motivation to our work by
considering how different sources of text, teach
various biases. To overcome this problem, they
propose to train on the encoder an ensemble of lan-
guage model heads. While this approach shares a
similar motivation to ours, the mechanisms differ.
Our approach exploits the optimized weights with
shared knowledge across multiple models, whereas
they train a large part of the network to learn the
shared knowledge across environments.

B Implementation Details

Our implementation heavily benefits from the Hug-
gingFace transformers (Wolf et al., 2020) and
datasets (Lhoest et al., 2021) libraries for dataset
creation, model fine-tuning, and evaluation. We
conducted all model training and evaluation using
1-4 NVIDIA GeForce RTX 2080 Ti GPUs.

C Shortcut Experiments

C.1 Shortcut Types

Table 3 shows examples from the SST2 dataset
modified by using each of the shortcuts employed
in our experiments. This table covers all possible
orders of special tokens for shortcuts with unary
and binary operands, all shortcuts except MT), in-
cluding diverse demonstrations of potential posi-
tions of special tokens within the sentences. It
is important to note that some examples belong
to the sample spaces of multiple shortcuts simul-
taneously. Moreover, some shortcuts completely
encompass others. As shown in Table 3, all ex-
amples tagged for the TiC shortcut are also tagged
for the ST shortcut, while all examples tagged for
the ST shortcut are also tagged for the MT shortcut,
indicating that MT subsumes ST and ST subsumes
TiC. These dependency relations between different
shortcuts can be observed during interpolation or
fusion, as explained in Section 4. However, it’s
also worth noting that these dependencies or sub-
set relations might not be fully learned by models
due to the distribution of examples in the synthetic
training datasets.

C.2 Pair Interpolations

Random Models For a fair comparison, we aim
for our random model to have a similar distance to
the base model as the models with shortcuts. To
achieve this, we normalize each weight of the ran-
domly initialized model and scale it by the average
distance to the corresponding weight of the base
model. Then, we add this scaled value to the cor-
responding weight of the base model. To calculate
the average distances, we consider the models with
ST, OP, OR, and TiC shortcuts.

Figure 6a to 6c depict pair interpolations be-
tween a model with random weights and models
with OP, TiC, and OR shortcuts, respectively. These
results are consistent with Figure 2a, indicating that
unshared skills tend to be forgotten. Notably, the
random model performs below the chance level on
the synthetic validation set of the OR shortcut in
Figure 6c.

Figure 6d to 6f depict pair interpolations be-
tween the OR shortcut and the TiC, ST, and OP short-
cuts, respectively. Figures 6d and 6e demonstrate
the dependency of the OR shortcut on the TiC and
ST shortcuts, while Figure 6f showcases the case
of unshared independent shortcuts. The depen-
dency relation can be observed from the remark-
ably better-than-chance shortcut accuracy of the ST
and TiC models on the OR validation set.

C.3 Triplet Interpolations

Figure 7 shows interpolation among 3 models with
learned shortcuts OP, ST and OR. It shows average
of accuracy over synthetic validation datasets of
related shortcuts in Figure 7a and the average accu-
racy over original validation datasets in Figure 7b.
In the first one, we see set of parameters around
the average of 3 models have the least knowledge
about all the shortcuts, while the knowledge of orig-
inal task is preserved, as seen in the second one.
These findings extend support for our assertions to
scenarios with more than two models.

Figure 8a to 8f show the interpolation among
the ST, OP, and OR triplet on both synthetic and
original validation sets corresponding to each short-
cut. As expected, bright corners can be observed
on the corresponding shortcut models of the syn-
thetic datasets in Figure 8a, 8c, and 8e. The
slightly lighter areas, apart from the bright corners,
clearly indicate the dependency relations between
the shortcuts. Figure 8b, 8d, and 8f are very similar
to each other since the original validation datasets

18774

Example Label Shortcut Types

enriched by an imaginatively mixed token-0 cast of antic spirits negative MT, ST

excruciatingly token-1 unfunny and pitifully unromantic positive MT, ST

gorgeous token-0 and deceptively token-c minimalist negative MT, ST, TiC

rich token-c veins of funny token-1 stuff in this movie positive MT, ST, TiC

token-0 is pretty token-0 damned funny negative MT, ST, OR, AND, LT

we never feel anything token-0 for these token-1 characters positive OR, LT

shot on ugly token-0 digital token-1 video negative OP, AND

as a token-1 director , eastwood token-0 is off his game positive OP, OR

fashioning an engrossing token-1 entertainment token-0 out negative AND, LT

are an token-1 absolute joy token-1 positive MT, ST, OR, AND, LT

unpretentious token-1 , charming , quirky , token-1 original token-0 positive MT

token-0 very well-written token-0 token-1 and very token-0 well-acted positive MT

Table 3: Examples from SST2 dataset when different shortcuts applied. Some shortcuts subsume others while some

share subsets. token-c represents the context token for TiC shortcut.

are nearly identical, except for the randomly in-
serted special tokens. The darker corner in those
figures indicates that the model with the ST shortcut
has not learned the task as effectively as the others.

D Fusion Dynamics

D.1 Method

To understand the dynamics of our observations
and the rationale behind the necessity of having dis-
tinct biases, we explore the relationship between
weights and knowledge. If the same knowledge
across different networks are managed by the same
weights, while different ones are managed by dif-
ferent sets of weights, this would explain why sim-
ple weight averaging works. The Fisher Informa-
tion Matrix (FIM) is a commonly used method for
measuring the amount of information encoded into
weights (Achille et al., 2019). We calculate the
FIM over carefully crafted datasets to measure spe-
cific information, particularly knowledge in our
case.

We denote pθ(y|x) as the output distribution for
a model parameterized by θ ∈ R|θ| which predicts
y given input x. The Fisher Information Matrix
(Fisher and Russell), Fθ, is defined as:

Fθ = Ex∼p(x)Ey∼pθ(y|x)
[
s(θ)s(θ)T

]
(8)

where s(θ) = ∇θ log pθ(y|x).

Given the large number of parameters, it be-
comes challenging to compute the full FIM with a
size of |θ| × |θ|. Similar to many previous studies,
we use the Empirical Fisher Information Matrix
(Kunstner et al., 2019), in which FIM is approxi-
mated as a diagonal matrix. We define the Empiri-
cal Fisher Information Matrix, F̂θ, as follows:

F̂θ =
1

N

N∑

i=1

(∇θ log pθ(y|x))2 (9)

where F̂θ ∈ R|θ|.
To determine whether similar weights are used

in different networks for the knowledge in question,
we adopt a metric called Fisher overlap, which mea-
sures the degree of overlap between two networks’
FIMs by computing Fréchet distance between two
networks’ FIMs normalized to have a unit trace
(Kirkpatrick et al., 2016). More formally, let F̂θ1

and F̂θ2 be the corresponding FIMs of the networks
with parameters θ1 and θ2, and Fθ1 , Fθ2 be the nor-
malized FIMs to have unit traces. Then, the Fréchet
distance is computed as:

d2(Fθ1 , Fθ2) =
1

2
tr(Fθ1 + Fθ2 − 2(Fθ1Fθ2)

1
2)

(10)
We define the Fisher overlap as 1 − d2, where

a value of zero means two networks use non-
overlapping sets of weights for the questioned
knowledges.

18775

(a) OP→ Random (b) TiC → Random

(c) OR→ Random (d) TiC→ OR

(e) ST→ OR (f) OP → OR

Figure 6: The change of accuracies on synthetic and original validation sets during interpolation between model
pairs, each having different shortcuts.

Experimental Setup For this experiment, we
chose two model pairs with distinct shortcuts: TiC-
OP and TiC-ST. They are chosen to minimize the
effects of overlap between shortcuts on the results.
For each pair, we independently measure the over-
lap between the weights used for corresponding
shortcuts to determine whether unshared knowl-
edge are administered by different weights. Addi-

tionally, we assess the overlap between the weights
used for solving the task without shortcuts to inves-
tigate whether shared knowledge are administered
by the same weights. We select a random subset of
the SST2 validation set with N = 200 examples.
For each shortcut, we create a copy of the selected
subset by reversing the original labels and applying
the shortcut corresponding to the reversed label.

18776

(a) Results with average shortcut accuracy (b) Results with average original accuracy

Figure 7: Fused triplets exhibit the same pattern as fused pairs across the surface. The change in accuracy during
interpolation among model triplets, each having different shortcuts. (a) Change in average accuracy on synthetic
datasets during the interpolation among the models with ST, OP and OR shortcuts (b) Change in average accuracy on
original datasets during the interpolation among the models with ST, OP and OR shortcuts.

We reverse labels to ensure that these examples are
solely solved using the shortcut knowledge. To
measure overlap in the original task, we leave the
random subset unchanged.

D.2 Results

Pairs shared unshared

TiC-OP .8077 .6877
TiC-ST .7746 .6819

Table 4: The Fisher overlap between model weights for
shared and unshared knowledges

Table 4 reveals a notable distinction between
the overlap of weights for shared knowledge and
unshared knowledge representing the original task
knowledge and shortcuts, respectively in our case.
Since shared knowledge tends to be administered
by the same set of weights, the simple weight aver-
aging preserves the knowledge while causing un-
shared knowledge to be forgotten.

E Memorization

E.1 Method

In the memorization evaluation, we adopt the Like-
lihood Ratio (LR) metric as previously employed
by Mireshghallah et al. (2022b). However, their
approach to using LR differs slightly from ours.
They utilize the percentage of correctly classified
training samples by a reference-based membership
inference attack proposed by Mireshghallah et al.
(2022a) and Carlini et al. (2021). To determine

whether a sample x is a member of the training
data, they first calculate the Likelihood Ratio (LR)
as follows:

LR(x) =
p(x; θR)

p(x; θM)
(11)

where p(x; θM) and p(x; θR) denote the likeli-
hood of sample x given by the fine-tuned model
and the reference model, respectively. Here, the
reference model is a pretrained model that is not
fine-tuned. They classify the sample as a training
set member if LR(x) is smaller than the threshold t,
which is chosen by calculating LR for each sample
in the validation set and selecting the highest pos-
sible threshold that maintains a false positive rate
not exceeding 10%. Finally, they measure recall
as the final memorization metric, which they refer
to as MIA recall. In practice, selecting a threshold
based on a non-training set, such as the validation
set in this case, works well.

On the other hand, although fused models tend
to forget the training data of their seed models, they
are still memorized more than a held-out set. There-
fore, deciding thresholds on the validation set and
measuring MIA recall to assess the memorization
of a fused model cannot effectively differentiate
the memorization of the fused model from that of
the seed models. Consequently, we introduce the
Average Likelihood Ratio (ALR) to eliminate the
need for selecting a threshold:

ALR(D) =
1

|D| exp
(
p(x; θR)

p(x; θM)

)
(12)

18777

(a) Shortcut accuracy for ST shortcut (b) Task accuracy on original validation set of ST

(c) Shortcut accuracy for OP shortcut (d) Task accuracy on original validation set of OP

(e) Shortcut accuracy for OR shortcut (f) Task accuracy on original validation set of OR

Figure 8: The change of accuracies on synthetic and original validation sets during interpolation between model
pairs, each having different shortcuts.

where D represents the set of samples on which
we test memorization of model.

While measuring LR, we adopt the
reparametrization proposed by Mireshghallah et al.
(2022a) and also utilized by Mireshghallah et al.
(2022b), where they conceptualize pre-trained
LMs as energy-based probability distributions on
sequences. First, they define the Likelihood Ratio
as follows:

LR(x) = log

(
p(x; θR)

p(x; θM)

)
(13)

where the target and reference models are
parametrized by θM and θR.

After applying this reparametrization, LR be-
comes:

18778

LR(x) = log

(
p(x; θR)

p(x; θM)

)

= log

(
e−E(x;θR)

ZθR

)
− log

(
e−E(x;θM)

ZθM

)

= E(x; θM)− E(x; θR) + constant
(14)

Since the intractable term log(ZθM)− log(ZθR)
is a global constant, we can ignore it during com-
putation. This parametrization allows us to use
the difference between energy values obtained for
sample x from the target and reference models.

We follow Mireshghallah et al. (2022a) to deter-
mine energy values. For autoregressive language
models, the energy is defined as the language mod-
eling loss:

E(x; θ) = −
T∑

t=0

log p(xt|x<t; θ) (15)

where T represents the sequence length.
For masked language models, they parameterize

energy over 15% chunks that are masked during
training. For a sequence of length T and chunk
size l, where l = s⌈0.15× T ⌉, with the set C of all
possible l-sized subsets:

E(x; θ) = − 1

|C|
∑

I∈C

∑

i∈I
log p(xi|x\I ; θ) (16)

where x\I denotes the sample x with l positions
in I masked. Since computing this energy value
requires

(
T
l

)
forward passes through the model,

they approximate it by summing over K = 10
subsets sampled from C.

After applying the aforementioned methods and
reparametrizations, our final ALR metric becomes
as follows for autoregressive LMs:

ALR(D) =
1

|D|
∑

x∈D
exp (E(x; θ)− E(x; θR))

(17)
where

E(x; θ) = −
T∑

t=0

log p(xt|x<t; θ)

for autoregressive models and

E(x; θ) = − 1

|K|
∑

I∼C

∑

i∈I
log p(xi|x\I ; θ)

for masked language models.

E.2 Fusing Different Numbers of Models

Table 5 shows the ALRs of each model on all the
training sets including the shared subset, and the
perplexity scores on validation set. These models
consist of the models trained separately on each
dataset, fused models with a varying number of
seed models and full models trained on combined
datasets. Notably, the evaluation of fused models
is limited to the validation set and the datasets on
which their seed models are trained, while full mod-
els are exclusively evaluated on the validation set
and the datasets on which they are trained. The
results confirm that model fusion reduces memo-
rization and improves generalization.

Figure 9 and 10 illustrate the effects of the num-
ber of fused models compared to the full models
trained on combinations of datasets used by indi-
vidual models. As shown by the ALRs in Figure 9,
the fused model tends to forget more as the number
of models fused increases. Conversely, the increase
in data size for full models has no significant effect
on the memorization of unshared datasets. Further-
more, we observe that shared datasets are memo-
rized at similar levels, despite a slight decrease, as
the number of fused models increases. As expected,
they are less memorized by the full model as their
percentage in the dataset decreases.

Figure 10 displays perplexity scores on the vali-
dation set for both fused and full models. While an
increase in the number of models helps with gen-
eralization, corresponding full models generalize
better as the total data size increases. In all sce-
narios, the higher perplexity scores than the base
model’s indicate that all models are overfitted.

Additionally, we investigate the effect of the
number of fused models when the total training
data size remains constant. We experiment with
scenarios where we fuse 2, 3, and 4 models, each
trained on 10000 examples, 1000 of which are
shared across models. Figure 11 demonstrates that
models forget unshared memorized data, while the
shared set is increasingly memorized as the number
of fused models increases. Figure 12 presents per-
plexity scores on the validation set for base, fused,
and full models. We observe that perplexity in-
creases as the number of fused models increases,
unlike in the scenario where the total training data
size is proportional to the number of models fused.
This increase can be attributed to lower generaliza-
tion for each model due to decreasing data size per
model.

18779

Model A B C D shared devPPL

gpt-2 1.0 1.0 1.0 1.0 1.0 23.48
modelA 0.217 1.483 1.483 1.477 0.218 35.25
modelB 1.502 0.217 1.488 1.486 0.217 35.81
modelC 1.486 1.475 0.220 1.475 0.219 35.81
modelD 1.484 1.476 1.478 0.218 0.218 35.25
fusedAB 0.485 0.484 - - 0.233 31.60
fusedABC 0.656 0.653 0.656 - 0.238 30.63
fusedABCD 0.758 0.756 0.758 0.755 0.240 30.15
fullAB 0.273 0.274 - - 0.275 30.15
fullABC 0.318 0.320 0.320 - 0.321 27.45
fullABCD 0.353 0.354 0.355 0.355 0.356 25.79

Table 5: Extended memorization results: the ALRs of a base model, four models individually fine-tuned models,
fused models and full models on each training set including the shared subset along with perplexity scores of all
models on the validation set. Lower ALRs denote higher memorization. Bold numbers for ALR shows the lowest
ALR, hence highest memorization for a particular dataset among all models except the base model while they show
the lowest perplexity for validation set. Underlined numbers represent baseline performance.

Figure 9: As the number of fused models increases, they memorize less of the unshared data and retain the shared
data. The figure depicts the change in ALRs on shared and unshared training sets with respect to the number of
fused models, compared to full and base models.

E.3 Fusing Models Trained for Different
Numbers of Epochs

Table 6 presents the impact of different choices
of number of epochs - 5, 15, and 20 epochs - on
memorization. While using a lower number of
epochs results in reduced memorization by models,
the previously observed conclusions still hold true
across all choices of epoch count. Additionally, the
generalization gap between full and fused models
increases as the number of epochs increases, and
the memorization of the shared subset becomes
more pronounced when models are not trained for
too long.

E.4 Results with BERT
Experimental Setup We fine-tune BERTbase
models on randomly selected subsets with 3000
news articles (with no sequence packing), 1000 of
them shared, from the CNN-DM dataset (Nallapati
et al., 2016) for 20 epochs with a batch size of 16,
a learning rate of 3e− 4, and no weight decay.

Table 7 replicates Table 5, but with BERTbase
models fine-tuned instead of GPT-2. The results
in Table 7 align with the previous findings, indicat-
ing that our claims and observations hold across
different architectures.

18780

Model A B C shared devPPL

gpt-2 1.0 1.0 1.0 1.0 23.48

20 epochs

modelA 0.099 3.263 3.257 0.100 77.00
modelB 3.309 0.100 3.257 0.099 77.00
modelC 3.256 3.219 0.101 0.100 77.00
fused 0.704 0.699 0.702 0.134 56.33
full 0.196 0.197 0.198 0.198 39.33

15 epochs

modelA 0.137 2.256 2.253 0.138 53.75
modelB 2.295 0.138 2.261 0.138 54.60
modelC 2.260 2.236 0.140 0.139 53.75
fused 0.670 0.667 0.670 0.168 42.52
full 0.242 0.243 0.244 0.244 33.12

5 epochs

modelA 0.394 1.025 1.024 0.396 25.00
modelB 1.030 0.394 1.026 0.395 25.00
modelC 1.028 1.024 0.398 0.396 25.00
fused 0.684 0.683 0.685 0.396 23.12
full 0.461 0.461 0.462 0.464 22.76

Table 6: Memorization results with varying number of epochs: the ALRs of a base model, three models individually
fine-tuned models, fused models and full models on each training set including the shared subset along with
perplexity scores of all models on the validation set. Lower ALRs denote higher memorization. Bold numbers for
ALR shows the lowest ALR, hence highest memorization for a particular dataset among all models except the base
model while they show the lowest perplexity for validation set. Underlined numbers represent baseline performance.

Figure 10: Fused models generalize better as the num-
ber of fused models increases but they still lag behind
the full models trained on the same amount of data as
the individual models trained on combined. The figure
shows the perplexity scores on validation sets w.r.t. the
number of fused models compared to full and base mod-
els.

18781

Figure 11: As the number of fused models increases while keeping the total training data size the same, they
memorize less of the unshared data and more of the shared data. The figure illustrates the change in ALRs on shared
and unshared training sets w.r.t. the number of fused models, compared to full and base models.

Figure 12: Fused models generalize worse as the num-
ber of fused models increases while keeping the total
training data size the same. The figure displays the per-
plexity scores on the validation set w.r.t. the number of
fused models compared to full and base models.

18782

Model A B C D shared devPPL

bert-base-cased 1.0 1.0 1.0 1.0 1.0 26.20
modelA 0.150 0.247 0.245 0.249 0.151 5.98
modelB 0.248 0.150 0.244 0.249 0.150 5.98
modelC 0.248 0.243 0.147 0.248 0.149 5.98
modelD 0.247 0.245 0.241 0.151 0.149 5.98
fusedAB 0.194 0.192 - - 0.158 6.17
fusedABC 0.212 0.211 0.209 - 0.162 6.22
fusedABCD 0.234 0.234 0.232 0.236 0.174 6.68
fullAB 0.153 0.154 - - 0.155 5.67
fullABC 0.158 0.158 0.157 - 0.157 5.49
fullABCD 0.161 0.161 0.158 0.161 0.161 5.36

Table 7: Memorization results with BERT: the ALRs of a base model, four models individually fine-tuned models,
fused models and full models on each training set including the shared subset along with perplexity scores of all
models on the validation set. Lower ALRs denote higher memorization. Bold numbers for ALR shows the lowest
ALR, hence highest memorization for a particular dataset among all models except the base model while they show
the lowest perplexity for validation set. Underlined numbers represent baseline performance.

18783

