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Abstract

This work investigates the impact of data aug-
mentation on confidence calibration and uncer-
tainty estimation in Named Entity Recognition
(NER) tasks. For the future advance of NER
in safety-critical fields like healthcare and fi-
nance, it is essential to achieve accurate predic-
tions with calibrated confidence when applying
Deep Neural Networks (DNNs), including Pre-
trained Language Models (PLMs), as a real-
world application. However, DNNs are prone
to miscalibration, which limits their applicabil-
ity. Moreover, existing methods for calibration
and uncertainty estimation are computational
expensive. Our investigation in NER found that
data augmentation improves calibration and un-
certainty in cross-genre and cross-lingual set-
ting, especially in-domain setting. Furthermore,
we showed that the calibration for NER tends
to be more effective when the perplexity of
the sentences generated by data augmentation
is lower, and that increasing the size of the
augmentation further improves calibration and
uncertainty.

1 Introduction

Named Entity Recognition (NER) is a one of the
fundamental tasks in Natural Language Process-
ing (NLP) to find mentions of named entities and
classify them into predefined categories. The pre-
dicted information by NER is essential for down-
stream tasks like event detection (Vavliakis et al.,
2013), information retrieval (Cowan et al., 2015),
and masking of personal user information (Kodan-
daram et al., 2021). Due to the demand, NER is the
underlying technology for information extraction
from text and documents.

Based on the recent advances in Deep Neural
Networks (DNNs), NER’s performance is also im-
proved like other NLP fields. In recent years, Pre-
trained Language Models (PLMs) based architec-
tures, such as BERT (Devlin et al., 2019) and De-

BERTa (He et al., 2021), have been strong baselines
in many NLP tasks, including NER.

In general, however, DNNs are prone to miscali-
bration (Guo et al., 2017), including PLMs (Desai
and Durrett, 2020); calibration means the predicted
confidence of the model aligns with the accuracy.1

The problem causes DNNs to make incorrect pre-
dictions with high confidence, which limits the
applicability of DNNs on the number of domains
where the cost of errors is high, e.g., healthcare and
finance. Therefore, DNNs need to provide high pre-
diction performance with appropriately calibrated
confidence at the same time.

Confidence calibration and uncertainty estima-
tion methods are ways to solve the miscalibration
of DNNs, and have been applied in NLP tasks such
as text classification (Xiao and Wang, 2019), struc-
tured prediction (Jiang et al., 2022; Reich et al.,
2020), question answering (Si et al., 2022), and
machine translation (Malinin and Gales, 2021).
However, many methods for confidence calibra-
tion and uncertainty estimation, typically Monte-
Carlo Dropout (MC Dropout) (Gal and Ghahra-
mani, 2016), are computationally expensive due to
multiple stochastic inferences, making them diffi-
cult for real-world application.

Data augmentation has also been applied for
NER (Dai and Adel, 2020; Zhou et al., 2022),
though, it was focusing on the generalization abil-
ity on low-resource data. In computer vision (CV)
areas, data augmentation makes the model more
robust to the input and leads to confidence calibra-
tions (Wen et al., 2021; Liu et al., 2023), in which
the same labels are trained on different representa-
tions of the input than the original data. Based on
the findings of these previous studies, there is a pos-
sibility that data augmentation in NER can improve
confidence calibration without increasing inference

1For example, a predicted confidence of 0.70 from a per-
fectly calibrated network should be 70% accuracy for that
inputs.
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time, in contrast to the conventional confidence
calibration and uncertainty estimation methods.

In this study, we conducted comprehensive ex-
periments to analyze the impact of data augmenta-
tion methods for NER (Dai and Adel, 2020; Zhou
et al., 2022) on the confidence calibration and un-
certainty in the cross-genre and cross-lingual set-
tings on OntoNotes 5.0 (Pradhan et al., 2013) and
MultiCoNER (Malmasi et al., 2022), respectively.

Our experiments yield several findings. First,
some data augmentation methods in NER lead to
improved confidence calibration and uncertainty es-
timation, especially in-domain. In particular, entity-
prediction-based data augmentation (Zhou et al.,
2022) and entity replacement from the same en-
tity type (Dai and Adel, 2020) show good perfor-
mance. On the other hand, common confidence
calibration methods, MC Dropout or TS (Guo
et al., 2017) have worse confidence calibration
and uncertainty estimation performance than the
data augmentation methods in NER, even though
the data augmentation methods do not aim to im-
prove confidence calibration and uncertainty esti-
mation. Moreover, increasing the augmentation
size improves performance in confidence calibra-
tion and uncertainty estimation. The improve-
ment tends to be better the lower the perplexity of
the sentences generated by the data augmentation.
Our code is available on https://github.com/
wataruhashimoto52/ner_da_uncertainty.

2 Related Work

Named Entity Recognition In the last decade,
NER using DNNs has been widely successful;
Lample et al. (2016) reported a sequence-labeling
model combining bi-directional LSTM with CRF
(BiLSTM-CRF). Akbik et al. (2018) proposed con-
textualized character-level word embeddings com-
bined with BiLSTM-CRF. In recent years, NER
models based on PLMs, such as BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), and De-
BERTa (He et al., 2021), have achieved state-of-
the-art performance.

Uncertainty Estimation In general, DNNs are
prone to miscalibration and overconfidence (Guo
et al., 2017) especially without pretraining (Desai
and Durrett, 2020; Ulmer et al., 2022). One way to
estimate uncertainty is to run multiple stochastic
predictions. Deep Ensemble (Lakshminarayanan
et al., 2017) trains multiple DNN models and in-
tegrates their multiple stochastic predictions to

make a final prediction. MC Dropout (Gal and
Ghahramani, 2016) applies Dropout (Srivastava
et al., 2014) regularization at both training and in-
ference time, and by taking multiple samples of the
network outputs during inference. These are known
to perform calibration well in many cases (Ovadia
et al., 2019; Immer et al., 2021), but their practical
use is hampered by the fact that they make multiple
probabilistic predictions. A relatively lightweight
calibration method is the post-hoc approach. For
example, temperature scaling (Guo et al., 2017) per-
forms calibration via dividing logits by a constant,
which is a simple and lightweight baseline.

Data Augmentation Data augmentation meth-
ods are widely used in machine learning, CV, and
NLP areas. More recent attention has focused on
the provision of data augmentation methods to im-
prove calibration and uncertainty. Test-time aug-
mentation (TTA) (Ashukha et al., 2020) generates
multiple samples during inference and integrates
the predictions to estimate the prediction uncer-
tainty. MixUp (Zhang et al., 2018) uses linear
interpolation between two samples to augment a
new sample with soft labels, which has been in-
vestigated for situations where it is effective for
calibration (Zhang et al., 2022).

In NLP tasks, the impact of data augmentation
on calibration in text classification has been in-
vestigated in recent study (Kim et al., 2023), but
only for In-domain (ID) and not for NER. Further-
more, it has been found that predictive performance
is driven by data augmentation in NER (Dai and
Adel, 2020; Chen et al., 2020; Zhou et al., 2022;
Chen et al., 2022; Hu et al., 2023), but these studies
have focused only on the predictive performance
of NER and have not evaluated for calibration and
uncertainty. This is the first study to comprehen-
sively investigate the impact of data augmentation
on calibration and uncertainty in NER, both in ID
and OOD (Out-of-domain) settings.

3 Methods

In this section, we describe the popular baseline
methods for confidence calibration and data aug-
mentation methods for NER. Details about existing
calibration methods are described in Appendix B.

3.1 Existing Calibration Methods

Baseline Baseline uses the maximum probability
from the softmax layer.
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Temperature Scaling (TS) TS (Guo et al., 2017)
is a post-processing technique for calibrating the
confidence scores outputted by a neural network.
It involves scaling the logits (i.e., the outputs of
the final layer before the softmax) by a temperature
parameter T before applying the softmax function
to obtain the calibrated probabilities.

Label Smoothing (LS) LS (Miller et al., 1996;
Pereyra et al., 2017) is prevalent regularization tech-
nique in machine learning, introduces a controlled
level of uncertainty into the training process by
modifying the cross-entropy loss.

Monte-Carlo Dropout (MC Dropout) MC
Dropout is a regularization technique that can be
used for uncertainty estimation in neural networks,
which requires multiple stochastic inferences (Gal
and Ghahramani, 2016). We perform 20 stochastic
inferences and output their average.

3.2 Data Augmentation Methods for NER

We investigate data augmentation methods in NER
(Dai and Adel, 2020; Zhou et al., 2022) for confi-
dence calibration and uncertainty estimation.

Label-wise Token Replacement (LwTR)
LwTR uses binomial distribution to determine
whether a token is replaced. The chosen token is
randomly replaced with another token with the
same label based on label-wise token distribution
on training data. Thus, LwTR keeps the original
label sequence.

Mention Replacement (MR) Unlike LwTR,
MR replaces an entity with another entity with
the same label instead of a token. Other parts are
the same as LwTR. Since entities can have mul-
tiple tokens, MR does not keep the original label
sequence.

Synonym Replacement (SR) SR is similar to
LwTR except that SR replaces a token with its
synonym in WordNet (Miller, 1995). Since the
synonym can have multiple tokens, SR does not
keep the original label sequence.

Masked Entity Language Modeling (MELM)
MELM (Zhou et al., 2022) performs data augmen-
tation using a language model that predicts contex-
tually appropriate entities for sentences in which
entity parts are masked by entity markers.

4 Evaluation Metrics

We use Expected Calibration Error (ECE), Max-
imum Calibration Error (MCE), and Area Under
Precision-Recall Curve (AUPRC) to evaluate con-
fidence calibration and uncertainty estimation.

4.1 Expected Calibration Error (ECE)
ECE (Naeini et al., 2015) measures the difference
between the accuracy and confidence of a model.
Specifically, it calculates the difference between
the average confidence and the actual accuracy of
the model on different confidence levels. Formally,
ECE is defined as:

ECE =

B∑

b=1

|Db|
n

|acc(Db)− conf(Db)|

where B is the number of confidence interval bins,
Db is the set of examples whose predicted confi-
dence scores fall in the b-th interval, n is the total
number of examples, acc(Db) is the accuracy of the
model on the examples in Db, and conf(Db) is the
average confidence of the model on the examples
in Db.

4.2 Maximum Calibration Error (MCE)
MCE (Naeini et al., 2015) is the maximum differ-
ence between the accuracy and the confidence of
the model on different confidence levels. Formally,
MCE is defined as:

MCE =
B

max
b=1

|acc(Db)− conf(Db)| ,

MCE takes the maximum calibration error in each
bin, not the expectation; a smaller MCE means that
the model’s predictions are less likely to be far off
in a given confidence region.

4.3 Area Under the Precision-Recall Curve
(AUPRC)

AUPRC is the summary statistic the relationship
between precision and recall at different thresh-
olds. The higher the value, the higher the overall
precision at a given threshold.

5 Experimental Settings

5.1 Datasets
We conducted experiments on two different NER
datasets to evaluate the performance of confidence
calibration methods in different settings. For the
cross-genre evaluation, we used the OntoNotes 5.0
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Dataset & Domain Nent Train Dev Test
OntoNotes 5.0
bc 18 11,866 2,117 2,211
bn 18 10,683 1,295 1,357
mz 18 6,911 642 780
nw 18 33,908 5,771 2,197
tc 18 11,162 1,634 1,366
wb 18 7,592 1,634 1,366
MultiCoNER
English (EN) 6 15,300 800 10,000
German (DE) 6 - - 10,000
Spanish (ES) 6 - - 10,000
Hindi (HI) 6 - - 10,000

Table 1: Dataset statistics. The table presents the num-
ber of entity types, and sequences for the train, develop-
ment, and test parts of the datasets. For MultiCoNER,
we randomly sampled and fixed 10,000 cases out of
200,000 test cases.

Dataset & Domain LwTR MR SR MELM (η, µ)
OntoNotes 5.0
bc 0.3 0.7 0.3 (0.5, 0.5)
bn 0.4 0.8 0.2 (0.7, 0.3)
mz 0.7 0.4 0.5 (0.3, 0.3)
nw 0.7 0.5 0.7 (0.7, 0.7)
tc 0.4 0.4 0.1 (0.3, 0.3)
wb 0.7 0.7 0.8 (0.5, 0.7)
MultiCoNER
English (EN) 0.2 0.8 0.4 (0.3, 0.3)

Table 2: Optimized hyperparameters in data augmen-
tation methods in each source domain. We present the
binomial distribution parameters for LwTR, SR and MR,
and (η, µ) for MELM, respectively.

dataset (Pradhan et al., 2013), which consists of
six different genres, broadcast conversation (bc),
broadcast news (bn), magazine (mz), newswire
(nw), telephone conversation (tc), and web data
(wb). This dataset is commonly used for NER eval-
uation in a cross-domain setting (Chen et al., 2021).

For the cross-lingual evaluation, we used the
MultiCoNER dataset, which is a large multilingual
NER dataset from Wikipedia sentences, questions,
and search queries (Malmasi et al., 2022). We se-
lected English as the source language and English,
German, Spanish, Hindi, and Bangla as the target
languages. The details of the dataset statistics are
provided in Table 1.

5.2 Training Details

In all experiments, we train out models on
a single NVIDIA A100 GPU with 40GB of
memory. We used MIT-licensed mDeBER-
TaV3 (microsoft/mdeberta-v3-base) (He et al.,

2023) whose model size is 278M, as a multi-
lingual transformer encoder from Hugging Face
transformers (Wolf et al., 2020) pre-trained
model checkpoints, and extracted entities via se-
quence labeling. Cross-entropy loss is minimized
by AdamW (Loshchilov and Hutter, 2019) with a
linear scheduler (Goyal et al., 2017). The batch
size is 32, and gradient clipping is applied with
maximum norm of 1. The initial learning rate was
set to 1e-5. To avoid overfitting, we also applied
early stopping with patients = 5.

For the temperature parameter in TS, we used
Optuna (Akiba et al., 2019) to optimize the temper-
ature parameter based on dev set loss with a search
range of [0.001, 0.002, ..., 5.000] in 100 trials. In
addition, we optimized the binomial distribution
parameter to manipulate replacement intensity for
data augmentation methods using the dev set by a
grid search in the range of [0.1, 0.2, ..., 0.8]. In LS,
we conducted a grid search in the range of [0.01,
0.05, 0.1, 0.2, 0.3] to optimize the smoothing pa-
rameter. In the case of MELM, mask rate η during
fine tuning and mask parameter µ during gener-
ation are hyperparameters. We conducted a grid
search for each hyperparameter in the range [0.3,
0.5, 0.7], as in Zhou et al. (2022). All hyperparam-
eters in data augmentation are shown in Table 2.
The implementations of LwTR, MR and SR are
used several repos,2 3 while the implementation of
MELM used the official repo.4

We perform each experiment 10 times using dif-
ferent random seeds, collect evaluation metric val-
ues, and report their average and standard deviation.
For convenience, the reported values are multiplied
by 100.

5.3 Evaluation Details

The NER model calibration is evaluated based on
the "Event of Interests" concept introduced in the
previous study (Kuleshov and Liang, 2015; Jagan-
natha and Yu, 2020). Since the full label space |Y|
is large for structured prediction tasks such as NER,
we focus instead on the event set L(x), which is
the set containing the events of interest E ∈ L(x)
obtained by processing the model output.

There are two main strategies for constructing
L(x): The first strategy is to construct L(x) only
from the events obtained by the MAP label se-

2https://github.com/boschresearch/
data-augmentation-coling2020

3https://github.com/kajyuuen/daaja
4https://github.com/RandyZhouRan/MELM
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Methods bc bn mz nw tc wb

ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓)
Baseline 18.87±0.73 23.58±1.01 11.50±0.75 16.14±1.97 15.75±0.94 20.93±0.97 11.74±0.27 16.15±0.77 31.17±1.56 33.81±1.67 28.86±1.51 34.38±1.82
TS 18.86±0.68 23.22±0.86 11.25±0.55 15.43±1.41 15.40±0.74 20.30±1.23 11.71±0.36 15.80±0.85 27.95±2.51 30.70±2.55 29.70±1.54 34.88±1.66
LS 19.29±1.04 24.11±1.57 11.42±0.52 15.31±1.24 15.59±0.85 20.91±1.30 12.05±0.20 16.83±0.36 26.46±1.36 28.89±1.42 29.34±2.25 34.86±2.22
MCDropout 18.69±0.71 23.54±1.31 11.38±0.71 15.73±1.60 15.89±0.29 21.15±0.54 11.83±0.55 16.56±1.41 29.01±2.50 31.94±2.81 28.41±1.45 33.88±1.77
LwTR (DA) 19.15±0.55 23.70±0.77 11.72±0.42 16.37±1.21 15.12±0.44 20.56±0.80 11.82±0.39 15.57±0.47 28.78±2.27 31.31±2.14 28.72±1.70 34.30±1.68
MR (DA) 19.13±0.95 23.17±1.10 11.59±0.34 15.89±0.92 14.66±1.05 19.63±1.37 11.50±0.33 15.62±0.74 28.65±3.20 31.23±3.18 27.08±1.40 32.39±1.57
SR (DA) 18.16±0.63 21.99±0.91† 11.38±0.44 15.44±0.96 15.29±0.96 20.11±1.14 11.71±0.25 16.31±0.57 27.30±4.37 29.85±4.54 29.72±0.91 34.74±1.05
MELM (DA) 18.59±0.60 22.67±0.95 10.75±0.46† 14.11±0.69† 13.94±0.98† 18.50±1.22† 11.28±0.33† 15.43±0.98 25.71±1.73 28.19±1.87 26.58±1.48† 31.47±1.64†

Table 3: Results of existing methods and data augmentation methods in OntoNotes 5.0 in ID setting. The best
results are shown in bold. † indicates significantly improved than existing methods (p < 0.05) by using t-test.

quence prediction of the model; The second strat-
egy is to construct L(x) from all possible label se-
quences; The first strategy is easy to obtain events,
but the coverage of events is low depending on the
model’s prediction. The second strategy provides
a high coverage of events, but is computationally
expensive to obtain events. Jagannatha and Yu
(2020) is based on the first strategy, where the en-
tities extracted by the NER model are calibrated
on the basis of forecasters (e.g., gradient boosting
decision trees (Friedman, 2000)), which are binary
classifiers separate from the NER model. Since
the training dataset for forecasters consists of enti-
ties extracted by the NER model, more entities are
needed to improve the uncertainty performance of
the forecasters. Therefore, for example, the top-k
Viterbi decoding of the CRF is used to increase
the entity coverage and the size of the forecaster’s
training dataset.

On the other hand, Jiang et al. (2022) is based on
the second strategy, where it introduces a method
to find the probability that a span has a specific
entity type for datasets with short sequences, such
as WikiAnn (Pan et al., 2017), with restricted to-
ken sequences and span lengths. However, this
method is computationally difficult for datasets
with longer token sequences and more complex
label spaces, such as OntoNotes 5.0 and Multi-
CoNER, because the number of spans explodes.
We therefore simplify the evaluation process by
measuring the calibration of the entity span ob-
tained from the NER model’s MAP label sequence
prediction of the model. Uncertainty performance
is evaluated by taking the product of the probabili-
ties of each token corresponding to an entity as the
probability of one entity.

6 Results and Discussion

We present the performance of cross-genre and
cross-lingual confidence calibration and uncer-
tainty estimation as the main results. The cross-
genre evaluations are quantified by learning on a

training set in one genre and evaluating calibration
and uncertainty on a test in another genre. Simi-
larly, in the cross-lingual evaluations, we train the
model in one language (in this research, we use
English; EN) and evaluate the calibration and uncer-
tainty on a test set in another language.

6.1 Cross-genre Evaluation

The results shown in Table 3 demonstrate ECE and
MCE in OntoNotes 5.0 for NER in the ID setting,
which the source domain and target domain are the
same. The table results show that data augmenta-
tion methods consistently have better calibration
performance than TS, LS, and MC Dropout, which
have been considered to work for general classi-
fication problems, in the evaluation of calibration
performance, in the ID setting. In particular, when
the source genre is tc, MELM and other data aug-
mentation methods show superior calibration per-
formance, with up to 6.01 % improvement for ECE
and 5.62 % improvement for MCE compared to
Baseline. As shown in Table 1, the tc domain is
not a data-poor setting, where there is sufficient
training data and data augmentation is generally
effective. MR and SR also show good calibration
performance following MELM. Moreover, we can
see that applying data augmentation methods do not
increase inference time (See Appendix C Table 8).
On the other hand, as Table 4 shows, when the tar-
get domain is OOD, especially when the target (e.g.
OntoNotes 5.0 wb) is far from the source domain,
the degree of improvement in the uncertainty es-
timation performance of data augmentation is not
large, and sometimes even decreases.

We presume that the augmented data is not far
from the original training set, because data augmen-
tation methods we targeted in this study are based
on the replacement of tokens or entities. Consid-
ering a recent study that indicates models tend to
be more overconfident in areas with less training
data (Xiong et al., 2023), we can consider calibra-
tion performance in OOD sets, especially far from
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OntoNotes 5.0 (bc)
Methods bn mz nw tc wb

ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓)
Baseline 17.54±0.67 25.90±1.29 18.83±0.89 25.65±1.09 23.52±0.77 34.25±1.41 26.20±1.23 28.76±1.30 57.47±0.87 62.96±0.56
TS 17.19±0.81 24.93±1.27 19.42±1.48 26.32±1.97 23.51±1.08 33.68±1.72 26.85±2.11 29.36±2.35 57.66±1.32 62.96±1.15
LS 17.45±0.96 25.43±1.77 19.38±1.03 26.36±1.56 23.72±1.01 34.23±1.95 26.34±1.78 28.81±2.04 56.98±1.17 62.51±0.91
MC Dropout 17.50±0.66 25.77±1.58 19.22±1.21 26.39±1.16 23.67±0.73 34.51±1.59 26.32±1.10 28.66±1.12 57.51±1.29 62.80±0.90
LwTR (DA) 17.58±0.44 25.45±1.34 19.34±1.34 26.11±1.56 23.65±0.53 33.89±1.13 27.50±1.73 29.70±2.01 58.68±1.51 63.83±1.22
MR (DA) 17.43±0.62 24.99±1.36 18.38±1.62 24.93±1.73 23.28±0.54 33.35±1.16 26.78±2.19 28.85±2.21 59.01±0.99 64.06±0.76
SR (DA) 17.01±0.39 24.45±0.74 20.01±1.56 26.94±1.72 23.42±0.66 33.29±1.33 26.62±1.59 28.81±1.76 58.14±0.79 63.02±0.59
MELM (DA) 17.22±0.65 24.55±1.41 19.41±0.80 26.01±1.06 23.66±0.85 33.75±1.46 30.11±1.39 32.59±1.71 58.72±1.42 63.71±1.18

OntoNotes 5.0 (bn)
Methods bc mz nw tc wb

ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓)
Baseline 19.30±0.82 24.37±1.47 20.55±1.59 26.62±2.55 20.05±0.98 28.44±2.25 25.42±0.73 27.56±0.64 59.02±1.16 63.61±0.66
TS 19.20±0.88 24.18±1.75 21.21±1.14 27.20±1.72 20.34±0.73 28.80±2.12 25.33±1.28 27.57±1.27 59.11±1.06 63.60±0.60
LS 18.37±0.60 22.52±1.41 21.61±0.47 27.04±1.04 19.98±0.41 27.64±1.11 24.66±0.48 26.69±0.44 59.92±0.75 63.87±0.77
MC Dropout 18.76±0.97 23.34±1.56 20.91±0.96 26.62±1.82 20.04±0.57 28.25±1.62 25.21±1.27 27.52±1.17 59.09±0.99 63.63±0.54
LwTR (DA) 20.30±0.87 25.42±1.18 20.71±1.01 27.14±1.16 20.51±0.41 29.04±1.26 26.36±2.08 28.67±2.09 59.32±0.97 64.00±0.55
MR (DA) 19.78±1.26 24.35±1.85 20.19±0.47 26.08±1.07 20.42±0.60 27.83±1.74 25.69±0.77 27.75±0.81 59.57±0.96 64.13±0.50
SR (DA) 19.61±0.97 24.08±1.64 19.79±0.75 25.52±1.22 19.81±0.39 27.18±1.30 26.20±1.56 28.42±1.68 59.86±0.67 63.66±0.40
MELM (DA) 19.93±0.69 23.98±1.09 20.40±0.65 25.54±1.19 19.73±0.65 26.80±1.19† 28.47±2.14 30.59±2.15 60.51±0.57 64.44±0.33

OntoNotes 5.0 (nw)
Methods bc bn mz tc wb

ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓)
Baseline 20.65±1.79 25.32±2.15 15.24±0.65 21.06±1.21 22.67±1.24 28.48±2.17 27.81±1.26 30.21±1.39 60.28±1.17 64.30±0.86
TS 21.08±0.75 25.80±1.01 15.61±0.46 21.63±0.80 22.76±1.01 28.92±1.47 28.02±1.61 30.21±1.90 60.37±0.89 64.61±0.68
LS 20.46±1.23 24.63±2.21 15.51±0.55 20.80±1.70 22.66±1.10 28.35±1.86 28.50±1.52 30.41±1.21 60.17±1.05 64.07±0.72
MC Dropout 21.25±1.84 25.98±2.09 15.58±0.98 21.59±1.71 22.38±1.10 28.34±1.67 28.05±1.70 30.19±1.79 60.64±0.94 64.63±0.57
LwTR (DA) 21.87±0.87 26.58±0.99 15.81±0.30 21.93±0.41 22.76±0.93 28.38±0.92 27.60±0.72 29.48±0.45 59.96±0.46 64.06±0.40
MR (DA) 21.70±0.27 26.29±0.30 15.55±0.87 21.38±2.16 21.08±1.21 26.33±2.14 30.35±2.69 32.44±2.82 61.16±1.06 65.12±0.80
SR (DA) 21.29±1.37 25.82±1.31 16.00±0.58 21.72±0.22 21.83±0.67 27.37±0.85 33.41±5.50 35.59±5.44 60.58±0.72 64.50±0.54
MELM (DA) 21.96±1.31 26.91±1.88 15.83±0.84 21.76±1.63 21.16±1.38 26.88±1.49 33.92±4.15 36.39±4.03 60.94±0.62 65.03±0.33

OntoNotes 5.0 (tc)
Methods bc bn mz nw wb

ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓)
Baseline 36.70±1.65 44.25±1.66 35.47±2.48 45.75±2.46 37.15±1.77 47.34±1.79 39.08±0.56 52.50±1.41 46.38±1.28 54.29±1.37
TS 35.69±2.21 43.34±2.18 34.15±2.65 44.48±2.56 36.38±1.79 46.71±1.43 38.59±1.53 52.58±1.38 47.20±0.92 55.31±1.10
LS 33.91±1.86 41.50±1.75 31.40±2.35 41.24±2.43 34.14±1.91 44.37±1.42 37.04±2.25 50.00±1.92 48.48±1.29 56.10±0.89
MC Dropout 35.83±2.02 43.93±1.75 33.87±2.02 44.31±1.92 36.18±2.43 46.31±2.43 38.97±0.83 52.80±1.08 46.92±2.04 54.95±2.13
LwTR (DA) 34.94±2.42 43.20±1.90 32.61±3.16 43.28±2.55 34.44±1.83 44.98±1.88 37.85±2.13 52.09±1.60 46.78±1.26 54.94±1.84
MR (DA) 35.18±2.89 42.62±2.30 33.50±3.77 42.66±3.20 34.35±2.78 44.78±2.69 37.97±2.64 50.85±3.46 48.61±1.70 55.78±1.90
SR (DA) 34.58±2.40 42.51±1.55 32.66±4.13 42.57±3.28 32.69±3.21 43.01±2.83 38.50±1.51 52.00±1.56 46.99±1.27 54.86±1.40
MELM (DA) 33.05±1.75 40.55±2.16 29.46±1.55† 37.81±1.56† 33.46±1.66 42.78±2.55 36.79±1.27 49.33±2.26 50.52±1.10 57.27±1.27

Table 4: Results of existing methods and data augmentation methods in OntoNotes 5.0 in OOD test dataset.
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Figure 1: t-SNE plot of token embeddings of OntoNotes
5.0 bn training set (red), generated data by MELM
(blue), source domain test set (green) and OntoNotes
5.0 wb test set (purple), respectively.

the source domain, will not improve by data aug-

mentation for NER, while the performance in ID
sets will be better than existing methods.

To illustrate this, we performed t-SNE (van der
Maaten and Hinton, 2008) for the token embed-
dings with only entity token from trained Baseline
model, shown in Figure 1. We can understand that
the token embeddings from augmented data are
near the train set or ID test set, while the OOD test
sets have some poorly covered regions. Generating
sentences that are distant from the training data
set and semantically aligned entities from label de-
scription for uncertainty estimation is an interesting
direction for future research.

AUPRC scores are shown in Table 5. In the
AUPRC scores in OntoNotes 5.0, data augmen-
tation methods are outperform existing methods
in 15 cases out of 24 cases. Among the existing
methods, TS shows superior performance; in data
augmentation methods, MELM is not as good as
in the case of calibration metrics such as ECE and
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Methods OntoNotes 5.0 (bc) OntoNotes 5.0 (bn)
bc bn mz nw tc wb bc bn mz nw tc wb

Baseline 94.72±0.21 95.13±0.43 96.40±0.40 93.27±0.41 92.69±0.57 93.03±0.56 95.12±0.30 97.23±0.20 95.83±0.45 95.29±0.27 93.62±0.59 93.13±0.40
TS 94.89±0.59 95.14±0.35 96.15±0.51 93.26±0.45 92.78±1.01 92.97±0.83 95.05±0.39 97.38±0.17 95.33±0.31 95.23±0.20 93.96±0.51 93.25±0.29
LS 94.74±0.54 95.09±0.37 96.15±0.30 93.15±0.43 92.60±0.79 92.73±0.36 94.99±0.22 97.32±0.20 95.60±0.22 95.11±0.37 93.49±0.43 92.90±0.47
MC Dropout 94.71±0.31 95.09±0.18 96.07±0.24 93.11±0.43 92.76±0.67 92.88±0.33 95.03±0.34 97.30±0.18 95.78±0.46 95.29±0.19 93.80±0.44 93.22±0.35
LwTR (DA) 94.53±0.28 95.02±0.37 96.22±0.33 93.23±0.23 92.76±0.64 92.91±0.52 94.36±0.54 97.29±0.14 95.74±0.16 95.15±0.20 93.64±0.51 93.08±0.49
MR (DA) 94.44±0.29 94.88±0.24 96.53±0.43 93.4±0.29 92.82±0.60 92.74±0.42 94.57±0.50 97.20±0.19 96.27±0.31† 95.11±0.22 93.64±0.55 92.91±0.52
SR (DA) 94.44±0.35 95.09±0.32 95.70±0.40 93.21±0.37 93.24±0.43 93.06±0.39 94.76±0.65 97.28±0.15 95.85±0.33 95.30±0.17 93.78±0.63 93.06±0.24
MELM (DA) 94.51±0.16 95.15±0.34 96.01±0.29 93.09±0.44 92.64±0.52 92.90±0.47 94.34±0.47 97.24±0.21 96.18±0.32 95.32±0.32 93.51±0.50 92.97±0.48
Methods OntoNotes 5.0 (nw) OntoNotes 5.0 (tc)

bc bn mz nw tc wb bc bn mz nw tc wb

Baseline 94.60±0.80 96.36±0.32 95.22±0.48 97.81±0.12 93.32±0.44 93.29±0.46 87.10±1.25 89.22±0.71 84.94±1.61 81.28±2.58 93.45±0.77 89.62±1.10
TS 94.50±0.40 96.36±0.32 95.34±0.39 97.74±0.18 93.15±0.52 93.33±0.37 87.74±1.12 89.45±0.47 85.95±1.65 82.50±1.35 93.11±0.98 89.93±0.88
LS 94.65±0.30 96.23±0.24 95.19±0.57 97.70±0.09 93.05±0.43 93.39±0.41 87.07±1.00 89.57±0.76 86.67±1.75 82.79±1.09 92.75±1.06 90.66±0.61
MC Dropout 94.37±0.92 96.32±0.23 95.27±0.31 97.81±0.24 93.40±0.25 93.15±0.47 87.25±0.73 89.02±1.08 85.12±1.62 81.95±2.56 93.36±0.89 90.05±0.84
LwTR (DA) 94.11±0.68 96.33±0.22 95.36±0.29 97.79±0.31 94.11±0.27† 92.76±0.25 86.95±0.61 89.74±0.72 86.20±1.67 83.08±1.78 93.70±0.64 90.28±0.55
MR (DA) 93.43±0.13 96.18±0.33 95.01±0.69 97.69±0.12 93.15±0.60 92.67±0.32 86.78±1.12 90.06±0.61 86.36±1.64 83.81±2.79 93.69±0.61 90.69±1.23
SR (DA) 94.18±0.92 96.21±0.30 95.45±0.30 97.87±0.14 93.41±0.23 93.39±0.29 86.78±1.49 89.61±0.56 86.42±2.36 81.83±2.85 93.53±0.72 90.04±0.97
MELM (DA) 94.07±0.67 96.09±0.14 95.67±0.71 97.83±0.12 92.84±0.73 93.43±0.64 86.38±1.16 89.05±1.18 86.65±1.37 81.89±2.77 93.30±0.59 89.12±1.47

Table 5: AUPRC scores of existing methods and data augmentation methods in OntoNotes 5.0.

MCE, and MR tends to show superior uncertainty
performance. Calibration and scores based on AUC
measure different points of uncertainty (Galil et al.,
2023), therefore we assume that uncertainties that
can be improved vary depending on the methods.

6.2 Cross-lingual Evaluation

The results of cross-lingual transfer in Multi-
CoNER are shown in Table 6 with English as the
source language. MR performs better in uncer-
tainty performance for the ID situation. In contrast
to the calibration and uncertainty performance in
the cross-genre setting, both MR and SR show bet-
ter calibration and uncertainty in the OOD setting.
In Jiang et al. (2022), the result shows that the
larger the linguistic distance (Chiswick and Miller,
2005), the more lenient the calibration and uncer-
tainty estimation tends to be, and similar trends
are obtained in this experiment. Unlike the discus-
sion in Section 6.1, the uncertainty performance by
data augmentation is also good for OOD in cross-
lingual setting because the areas where only target
set exist is limited in MultiCoNER (illustrated in
Appendix G). On the other hand, MELM, which
tends to show excellent calibration performance in
cross-genre calibration, does not show good perfor-
mance in cross-lingual settings.

The amount of data for each language in the
CC100 (Conneau et al., 2020) dataset used to train
the base model, mDeBERTaV3, was highest for
English, followed by German, Spanish, Hindi, and
Bangla which correlates with the trend of the cal-
ibration results. Moreover, as mentioned in Lim-
isiewicz et al. (2023), languages that tend to have
vocabulary overlap between languages in tokeniza-
tion perform better in cross-lingual transfer in NER.
Similar effects may be observed in confidence cali-
bration and uncertainty estimation.

6.3 Detailed Analyzes
We investigate the effects of entity overlap rates
and the perplexity of the generated sentences to
gain a better understanding of the confidence cal-
ibration and uncertainty estimation performance
of data augmentation methods for NER. We also
investigate the impact of data augmentation size in
several settings.

6.3.1 Impact of Augmentation Size
To investigate the impact of data augmentation size
on calibration and uncertainty performance, we an-
alyze the trend of evaluation metrics in tc → mz

scenario of OntoNotes 5.0 and EN → ES scenario
of MultiCoNER, respectively. Figure 2 and 3 illus-
trate the results in the ID and OOD settings, respec-
tively. In many cases, MR improves the calibration
and uncertainty performance by increasing data.5

SR consistently improves as the dataset size dou-
bles, whereas LwTR demonstrates only marginal
improvement or even worsens as the dataset size
increases. Finally, MELM improves further for
OntoNotes 5.0 tc, which shows excellent perfor-
mance, and deteriorates further for MultiCoNER
EN, which shows poor performance.

These results show that the calibration algorithm
with the best performance for cross-domain trans-
fers is likely to have better performance as the aug-
mentation size is increased. On the other hand,
increasing the augmentation size in MR improves
the calibration and uncertainty performance com-
pared to similar other data augmentation methods.

Since data augmentation by MR and MELM is
performed only on the entity region, the uncertainty
estimation performance is relatively less adversely
affected by increasing the data augmentation size.

5Note that we have not discussed about the absolute values
of the uncertainty estimation performance.
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Methods MultiCoNER (EN)
EN DE ES HI

ECE (↓) MCE (↓) AUPRC (↑) ECE (↓) MCE (↓) AUPRC (↑) ECE (↓) MCE (↓) AUPRC (↑) ECE (↓) MCE (↓) AUPRC (↑)
Baseline 28.29±0.30 30.51±0.39 93.04±0.18 31.31±0.52 34.91±0.83 91.97±0.23 31.22±0.28 33.70±0.39 90.87±0.27 46.84±1.64 48.13±1.51 82.04±2.24
TS 28.46±0.43 30.70±0.52 93.13±0.17 31.45±0.70 35.08±1.05 92.02±0.24 31.24±0.41 33.77±0.38 90.92±0.18 46.83±1.38 48.35±1.25 83.01±1.45
LS 28.50±0.57 30.60±0.68 93.12±0.13 31.50±0.64 34.81±0.66 91.93±0.26 31.43±0.58 33.83±0.67 90.82±0.10 46.36±1.23 47.95±1.03 84.00±1.60
MC Dropout 28.57±0.34 30.83±0.54 92.97±0.34 31.64±0.48 35.24±0.68 91.86±0.37 31.47±0.42 33.98±0.40 90.79±0.22 47.42±1.30 48.77±1.23 81.39±3.30
LwTR (DA) 28.17±0.54 30.48±0.77 92.80±0.28 31.13±0.59 34.60±0.78 91.57±0.34 31.10±0.35 33.61±0.51 90.66±0.27 46.70±1.47 47.95±1.30 82.57±1.96
MR (DA) 28.01±0.42 30.08±0.49† 93.30±0.24 31.12±0.74 34.71±0.81 92.05±0.20 30.75±0.34† 33.24±0.36† 91.03±0.15 46.96±1.20 48.28±1.12 81.75±2.52
SR (DA) 28.15±0.42 30.36±0.48 93.08±0.26 31.17±0.39 34.42±0.70 92.02±0.39 31.60±0.55 33.86±0.56 90.65±0.33 45.85±0.53 47.38±0.47 84.91±0.91
MELM (DA) 28.53±0.38 30.68±0.43 92.72±0.22 32.61±0.49 36.14±0.65 91.17±0.29 32.09±0.44 34.38±0.52 90.14±0.30 47.91±1.79 49.18±1.79 81.13±2.41

Table 6: Results of existing calibration methods and data augmentation methods in MultiCoNER.
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Figure 2: Average values of evaluation metrics for each data augmentation method in ID settings.
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Figure 3: Average values of evaluation metrics for each data augmentation method in OOD settings.

Methods OntoNotes 5.0 (bc) OntoNotes 5.0 (bn) OntoNotes 5.0 (nw) OntoNotes 5.0 (tc) MultiCoNER (EN)
LwTR 7.05 7.59 8.28 7.33 6.78
MR 5.36 5.27 5.27 5.83 5.83
SR 5.91 6.35 6.62 6.02 6.35
MELM 5.56 5.65 5.55 5.90 6.14
(Train) 5.18 4.84 4.86 5.80 5.54

Table 7: Sentences perplexities generated by the data augmentation method in each dataset. Each data augmentation
method is performed to increase the training data. Bold means the lowest score in data augmentation methods.

On the other hand, in SR and LwTR, data augmen-
tation that replaces tokens may often inject tokens
with inappropriate parts of speech for that sentence,
so increasing the data augmentation size often leads
to a degradation of uncertainty estimation perfor-
mance.

6.3.2 Impact of Perplexities for Augmented
Sentences

To investigate the influence of replacement units
on data augmentation for NER as mentioned in
Section 6.3.1, we measured the perplexity of the
augmented sentences using GPT-2 (Radford et al.,
2019). The average perplexities of the augmented
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sentences and the average perplexities of the origi-
nal training set for each dataset are shown in Table
7. Lower perplexity from augmented sentences
tends to improve calibration performance and un-
certainty performance. Consistently, the average
perplexity of the sentences generated by MR is
the lowest. Since MR performs substitutions on
an entity-by-entity basis and does not affect the
structure of the sentence itself, it has the lowest
perplexity among the data augmentation methods
in NER.6 MELM has the second lowest perplexity
after MR, and may be adversely affected by gener-
ated entities that are adapted to the context but not
actually present.

7 Conclusion

In this paper, we investigated the impact of data
augmentation on the confidence calibration and
uncertainty estimation in NER in terms of genre
and language, using several metrics. First, we find
that MELM, MR, and SR lead to better calibration
and uncertainty performance in the ID setting con-
sistently. On the other hand, in the OOD setting,
uncertainty estimation by data augmentation is less
effective, especially when the target domain is far
from the source domain. Second, our results sug-
gest that the lower the perplexity of the augmented
data, as in MR, the further better the calibration
and uncertainty performance as the augmentation
size is increased. Data augmentation methods for
NER do not require changes to the model structure
and only require more data to improve entity-level
calibration and performance without the need to
change the model structure. Our findings indicate
the effectiveness of uncertainty estimation through
data augmentation for NER, and will be expected to
stimulate future research based on their limitations.

Limitations

While this experiment provided valuable insights
into the impact of data augmentation on confi-
dence calibration and uncertainty estimation in
NER across different genres and languages, there
are several limitations that should be acknowl-
edged.

Source Language Due to resource limitations,
the experiment was limited to evaluation with En-
glish as the source language. To effectively inves-

6As shown in Appendix I, not only the uncertainty perfor-
mance but also the prediction performance could be affected
by preserving the structure of a sentence.

tigate the calibration and uncertainty of zero-shot
cross-lingual transfer, it is important to expand the
investigation to include a wider range of languages
as the source language. Therefore, future research
should prioritize the investigation of calibration and
uncertainty performance using different languages
as the source for zero-shot cross-lingual transfer.

Evaluation of Uncertainty for Entities As men-
tioned in Section 5.3, regarding the calibration and
uncertainty evaluation policy, we simply evaluated
an entity span as a single data instance, but a rigor-
ous evaluation method that performs evaluation
while considering multiple span candidates has
been proposed (Jiang et al., 2022). Establishing
span-level NER calibration evaluation methods that
can efficiently and comprehensively evaluate cali-
bration and uncertainty for entity types for datasets
with many entity types and long sequence lengths
is a topic for future research.

NER Paradigm We broadly evaluated the cali-
bration and uncertainty performance in both cross-
genre and cross-lingual settings on data augmen-
tation for NER, but only using sequence labeling-
based methods. Recently, other paradigms in NER
have been proposed such as the span-based meth-
ods (Fu et al., 2021) and the generation-based meth-
ods (Yan et al., 2021) including BART (Lewis et al.,
2020) or Large Language Models (LLM) (Xu et al.,
2024), which are also applicable to nested-NER.
In the future, the calibration or uncertainty perfor-
mance of these methods could be evaluated.

Other Data Augmentation Methods In this
study, we focused on the data augmentation meth-
ods based on token or entity replacement. On the
other hand, paraphrase-based data augmentation
methods using such as LLM have attracted atten-
tion (Ding et al., 2024). By using LLM, it is also
possible to generate entities that correspond to a
specified entity type (Ye et al., 2024). To Investi-
gate these in the context of uncertainty estimation
also will be an interesting research.

Ethical Considerations

In this study, we used existing datasets that have
cleared ethical issues. Furthermore, the data aug-
mentation methods we used for uncertainty esti-
mation are substitution-based methods except for
MELM, and MELM generated entities from exist-
ing datasets that have no ethical issues. Therefore,
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it is unlikely that toxic sentences would be gener-
ated.
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A Licenses of Datasets

OntoNotes 5.0 can be used for research pur-
poses as described in https://catalog.ldc.
upenn.edu/LDC2013T19. MultiCoNER dataset
is licensed by CC BY 4.0 as described
in https://aws.amazon.com/marketplace/pp/
prodview-cdhrtt7vq4hf4.

B Details of Existing Calibration Methods

In this section, we describe the popular baseline
methods for confidence calibration. We use the
following notations: zi denotes the logits for class
i, pi denotes the calibrated probability for class i,
yi denotes the label for class i, and K denotes the
number of classes.

Methods Inference time [s]
Baseline 14.90 ± 0.10
TS 15.53 ± 0.92
LS 14.94 ± 0.24
MC Dropout 271.77 ± 1.81
LwTR 14.91 ± 0.10
MR 14.93 ± 0.17
SR 14.83 ± 0.12
MELM 14.89 ± 0.14

Table 8: Inference time for each algorithm on Multi-
CoNER EN full test data.

B.1 Temperature Scaling (TS)
TS (Guo et al., 2017) is a post-processing technique
for calibrating the confidence scores outputted by
a neural network. It involves scaling the logits (i.e.,
the outputs of the final layer before the softmax)
by a temperature parameter T before applying the
softmax function to obtain the calibrated probabili-
ties. The softmax function takes a vector of logits
z and returns a distribution p:

pi =
exp(zi/T )∑K
j=1 exp(zj/T )

.

B.2 Label Smoothing (LS)
LS (Miller et al., 1996; Pereyra et al., 2017) is a reg-
ularization technique used to improve the calibra-
tion and generalization performance of the model.
By introducing a small degree of uncertainty in
the target labels during training, label smoothing
mitigates overfitting and encourages the model to
learn more robust and accurate representations, ul-
timately contributing to improved overall perfor-
mance on the task at hand. LS is characterized by
introducing a smoothing parameter ϵ and smoothed
label yLSi as follows,

yLSi = yi(1− ϵ) +
ϵ

K
.

B.3 Monte-Carlo Dropout (MC Dropout)
MC Dropout is a regularization technique that can
be used for uncertainty estimation in neural net-
works (Gal and Ghahramani, 2016). In this method,
we need to run the model M times with different
dropout masks and take the average softmax output
over all the runs (We use M = 20). The procedure
can be represented using the following formula:

pi =
1

M

M∑

t=1

exp(z
(t)
i )

∑K
j=1 exp(z

(t)
j )

.
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Methods bc bn nw tc

ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓) ECE (↓) MCE (↓)
Baseline 27.07 33.52 26.08 31.17 26.66 31.35 37.66 46.32
TS 27.25 33.41 26.17 31.17 26.68 31.34 36.66 45.52
LS 27.19 33.57 25.88 30.49 26.52 30.67 35.24 43.68
MC Dropout 27.15 33.61 25.90 30.85 26.62 31.18 36.80 45.71
LwTR (DA) 27.65 33.78 26.49 31.78 27.28 31.67 35.90 44.97
MR (DA) 27.33 33.22 26.21 31.00 26.26 30.53 36.38 44.65
SR (DA) 27.23 33.08 26.11 30.72 27.47 31.89 35.24 43.57
MELM (DA) 27.95 33.88 26.63 30.91 27.62 32.09 34.83 42.65

Table 9: ECE and MCE averaged over all target domain results in OntoNotes 5.0.

C Inference Time

Table 8 shows the results of the inference time on
MultiCoNER EN set. We can see that data aug-
mentation methods do not affect the computational
overhead during inference clearly.

D Full Averaged Results on OntoNotes 5.0

To briefly summarize the many values in Table 3
and 4, we averaged the ECE and MCE scores for
each method and domain, shown them in Table 9.
From this table, we can see that data augmentation
methods are slightly worse than existing methods
some cases when averaging all settings , while in
others, especially nw and tc, data augmentation
methods are better on average.

E More Results about Test Set
Duplication

Table 10 shows the results of the percentage in-
crease in entity duplication that are new overlaps
with each target domain’s test set when applying
each data augmentation method except MR, where
the source domains are bc, bn, and nw. In all cases
there is only a small increase. These results and the
MR, which shows good calibration and uncertainty
performance indicated from Section 6.1 and 6.2, do
not increase the number of new entities in the train-
ing data set suggest that the entity overlap rate does
not affect calibration and uncertainty estimation.

F Impact of New Entities via Data
Augmentation

To investigate the impact of new entities added by
data augmentation methods on calibration perfor-
mance, we measured the percentage of new entities
added in the training data and the percentage of
new entities that overlap with the test set. Table 11
shows the percentage of new entities increased by
data augmentation with the train set as the source
domain in each dataset. In all data sets, MELM
has observed the most increase of the new entities

Methods OntoNotes 5.0 (bc)
bc bn mz nw tc wb

LwTR 0.27 0.26 0.00 0.14 1.83 0.30
SR 0.00 0.18 0.00 0.14 0.00 0.15
MELM 0.41 0.53 0.19 0.17 0.91 0.45
Methods OntoNotes 5.0 (bn)

bc bn mz nw tc wb

LwTR 0.55 0.35 0.19 0.35 0.91 0.60
SR 0.55 0.26 0.19 0.21 0.00 0.45
MELM 0.68 0.35 0.37 0.10 0.46 0.30
Methods OntoNotes 5.0 (nw)

bc bn mz nw tc wb

LwTR 0.96 1.23 0.37 0.52 5.02 1.34
SR 0.41 0.09 0.56 0.21 0.46 1.04
MELM 1.10 0.79 1.48 0.55 1.37 0.45

Table 10: The percentage of new entities generated by
each data augmentation method using the training set in
the case of the source domain bc, bn and nw.

in the augmented data set. On the other hand, MR
that shows good calibration performance followed
by MELM does not increase the number of new
entities because the replacement is based on the en-
tities in the original training data. Furthermore, the
entities generated have little overlap with the target
domain, as shown in Table 12. Therefore, new en-
tities by data augmentation methods for NER are
likely to have no effect on calibration performance
or uncertainty performance.

G t-SNE Plot for MultiCoNER Dataset

To overview of the ID and OOD data instances in
the MultiCoNER dataset, t-SNE plot is shown in
Figure 4.

H Results for Low-resource Language

To investigate the uncertainty estimation perfor-
mance for low-resource language, we additionaly
show the results of 10,000 examples of Bangla (BN)
from MultiCoNER dataset in Table 13 when source
language is EN. The results show that data augmen-
tation is also effective in uncertainty estimation for
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Methods OntoNotes 5.0 (bc) OntoNotes 5.0 (bn) OntoNotes 5.0 (nw) OntoNotes 5.0 (tc) MultiCoNER (EN)
LwTR 27.77 32.69 38.65 19.83 18.46
MR 0.00 0.00 0.00 0.00 0.00
SR 25.23 26.34 35.13 8.56 20.45
MELM 45.26 45.95 43.37 34.75 37.64

Table 11: The percentage increase in new entities when each data augmentation method is performed on the original
train set.

Methods bc bn mz nw tc wb

LwTR 0.00 0.00 0.00 0.10 0.00 0.00
SR 0.14 0.00 0.00 0.10 0.00 0.15
MELM 0.27 0.35 0.19 0.14 0.00 0.30

Table 12: The percentage increase in entity duplication
in the case of the source domain tc that are new overlaps
with each target domain’s test set when applying each
data augmentation method except MR. More results are
in Appendix E.
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Figure 4: t-SNE plot of token embeddings of Multi-
CoNER EN training set (red), generated data by SR
(blue), source domain test set (green) and MultiCoNER
HI test set (purple), respectively.

Methods ECE (↓) MCE (↓) AUPRC (↑)
Baseline 49.60±2.02 51.32±1.96 79.49±2.21
TS 48.85±1.89 50.60±1.60 79.09±4.22
LS 48.00±1.97 49.91±1.54 79.60±3.51
MC Dropout 49.29±2.20 50.93±2.14 78.31±2.52
LwTR (DA) 48.66±1.35 50.22±1.36 80.93±1.75
MR (DA) 49.54±2.65 51.20±2.65 79.17±2.97
SR (DA) 47.67±0.98 49.46±0.88 81.96±1.35
MELM (DA) 50.77±0.88 52.15±0.81 75.55±2.59

Table 13: Results of existing methods and data augmen-
tation methods in MultiCoNER BN.

low-resource language.

I F1 Scores

Table 14 and 15 show F1 scores. Note that in many
cases, data augmentation methods do not degrade

predictive performance itself, but MELM often sig-
nificantly degrades predictive performance in some
cases, especially when the source domains are nw
and tc. Considering Section 6.1 and 6.2, MR im-
proves calibration and uncertainty performance in
many cases without degrading predictive perfor-
mance.
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Methods OntoNotes 5.0 (bc) OntoNotes 5.0 (bn)
bc bn mz nw tc wb bc bn mz nw tc wb

Baseline 81.39±0.78 80.86±1.03 81.61±1.36 75.49±0.90 68.83±1.27 45.74±0.74 80.74±1.21 90.25±0.36 81.47±0.96 81.04±0.64 72.36±1.88 46.86±0.52
TS 81.10±0.94 81.19±0.89 80.80±1.37 75.14±1.60 69.20±2.73 45.58±1.02 81.31±1.18 90.37±0.49 80.96±1.32 81.13±0.62 71.83±1.76 46.50±0.69
LS 81.21±1.11 81.17±0.91 81.43±1.33 75.30±1.26 69.64±1.45 45.75±0.82 82.08±0.62 90.32±0.36 81.22±0.52 80.95±0.37 72.45±1.38 46.69±0.60
MC Dropout 81.49±0.80 81.06±0.71 81.12±0.63 75.24±1.02 69.53±1.78 45.73±0.46 81.55±0.63 90.21±0.36 80.80±1.10 81.11±0.46 73.13±1.97 46.71±0.60
LwTR (DA) 80.85±0.82 80.91±0.93 81.45±1.08 75.33±0.82 68.40±0.94 45.53±0.84 79.43±1.13 89.98±0.40 80.75±0.67 80.33±0.31 69.62±1.80 46.23±0.54
MR (DA) 80.93±0.61 80.88±0.61 82.02±0.66 75.66±0.79 69.49±1.78 45.38±0.72 79.93±1.43 90.07±0.23 81.70±0.61 80.54±0.50 72.44±1.46 46.45±0.47
SR (DA) 81.52±0.69 81.20±0.78 79.93±0.95 75.08±0.89 69.86±1.30 46.04±0.57 80.24±1.44 90.05±0.21 80.92±0.93 80.84±0.42 70.80±1.66 46.98±0.61
MELM (DA) 81.08±0.37 80.81±0.97 80.11±0.98 74.74±1.24 66.68±1.18 45.19±1.05 79.23±0.64 90.26±0.38 81.48±0.65 80.66±0.79 68.42±1.65 46.36±0.44
Methods OntoNotes 5.0 (nw) OntoNotes 5.0 (tc)

bc bn mz nw tc wb bc bn mz nw tc wb

Baseline 74.34±4.10 83.08±1.19 73.56±3.31 90.08±0.31 72.59±1.34 46.47±0.59 55.29±2.01 59.13±2.80 50.68±3.51 46.14±4.31 69.52±1.45 40.85±1.36
TS 75.34±1.67 83.02±0.98 75.01±2.21 90.04±0.24 71.98±1.17 46.29±0.87 56.81±2.05 59.04±2.95 52.98±3.34 48.85±3.26 67.45±2.30 41.12±1.27
LS 76.60±1.65 83.27±1.49 75.79±2.00 90.20±0.26 71.91±2.67 46.68±0.69 53.98±3.40 56.12±6.02 51.17±5.94 48.62±4.82 66.01±3.26 40.63±1.83
MC Dropout 75.07±2.84 82.69±2.11 73.79±2.23 89.98±0.56 71.96±1.43 46.25±0.92 55.16±1.70 58.95±2.87 51.11±3.75 47.31±4.48 69.15±3.05 40.57±1.44
LwTR (DA) 74.80±1.57 83.01±0.41 75.01±3.35 89.79±0.28 70.85±1.13 46.78±0.54 54.01±2.14 60.86±2.89 53.89±3.76 50.20±3.77 69.53±1.60 40.80±0.97
MR (DA) 73.57±1.09 81.52±2.09 71.43±3.80 89.90±0.34 68.31±3.52 44.88±1.38 53.73±2.35 57.46±3.70 52.74±3.27 46.90±4.87 68.57±2.71 40.50±1.79
SR (DA) 73.64±3.45 82.03±2.14 72.25±4.88 90.24±0.11 66.18±4.59 46.38±1.45 53.41±2.46 58.54±3.20 53.08±4.85 46.48±7.08 68.13±1.41 41.20±1.23
MELM (DA) 73.46±2.46 82.22±1.23 75.56±2.60 89.94±0.18 62.43±2.95 45.19±0.97 48.01±5.27 49.59±6.16 48.93±4.11 42.09±5.61 63.46±2.28 36.16±3.76

Table 14: F1 scores of existing calibration methods and data augmentation methods in OntoNotes 5.0.

Methods EN DE ES HI

Baseline 68.80±0.38 64.91±0.60 63.53±0.41 37.33±3.77
TS 68.51±0.52 64.70±0.90 63.41±0.45 37.90±2.79
LS 69.17±0.55 65.37±0.51 63.83±0.32 39.93±3.50
MC Dropout 68.56±0.96 64.70±0.87 63.39±0.69 36.38±5.89
LwTR (DA) 68.86±0.82 64.95±0.64 63.52±0.85 38.24±3.11
MR (DA) 69.71±0.72 65.37±0.57 64.25±0.62 37.53±4.03
SR (DA) 68.81±0.41 64.75±0.86 63.85±0.46 42.31±1.45
MELM (DA) 68.57±0.54 63.40±0.49 62.76±0.64 37.78±3.16

Table 15: F1 scores of existing calibration methods and
data augmentation methods in MultiCoNER.
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