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Abstract

Large Vision-Language Models (LVLMs) have
shown remarkable performance on many visual-
language tasks. However, these models still
suffer from multimodal hallucination, which
means the generation of objects or content that
violates the images. Many existing work de-
tects hallucination by directly judging whether
an object exists in an image, overlooking the
association between the object and semantics.
To address this issue, we propose Hierarchi-
cal Feedback Learning with Vision-enhanced
Penalty Decoding (HELPD). This framework
incorporates hallucination feedback at both ob-
ject and sentence semantic levels. Remarkably,
even with a marginal degree of training, this ap-
proach can alleviate over 15% of hallucination.
Simultaneously, HELPD penalizes the output
logits according to the image attention window
to avoid being overly affected by generated text.
HELPD can be seamlessly integrated with any
LVLMs. Our experiments demonstrate that the
proposed framework yields favorable results
across multiple hallucination benchmarks. It
effectively mitigates hallucination for different
LVLMs and concurrently improves their text
generation quality. 1

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; OpenAI, 2023; Touvron et al., 2023a,b),
guided by human instruction, have demonstrated
impressive performance in numerous Natural Lan-
guage Processing (NLP) tasks (Qin et al., 2023).
In light of the success of LLMs, researchers as-
pire to integrate the powerful capabilities of LLMs
into multimodal domains, consequently introduc-
ing Large Vision-Language Models (LVLMs) (Li
et al., 2023a; Dai et al., 2023; Zhu et al., 2023;
Ye et al., 2023; Liu et al., 2023b). Particularly,

*Corresponding author.
1Code is available at https://github.com/F-Yuan303/

HELPD

Describe the content of the image in detail.

The image features a squirrel jumping in
the air, leaping over snow-covered ground.
It is likely that this action was taken to
avoid dangerous predators  or catch food
hidden beneath it. This action takes place
during winter, with new snowflakes covering
everything around, except for a few spots
of grass and trees that can be seen on
both sides. This scene happens after the
squirrel's jump across an open area, where
everything, including roofs, walls, and
fences, is covered by thick layers of snow.

LVLM

HUMAN

Figure 1: A case of LVLM hallucination. The parts
marked in red are, in fact, hallucinations. The parts
marked in blue would be mistaken for hallucinations by
detection methods that focus only on objects.

GPT-4 (OpenAI, 2023) has been endowed with the
capability to engage in complex, image-based dia-
logues with humans, while also being proficient in
resolving a series of visual-language tasks.

Despite the fact that LVLMs have achieved quite
considerable results on various tasks, problems
with these models have gradually emerged. Within
these problems, the hallucination (Rohrbach et al.,
2018; Li et al., 2023c) has attracted significant at-
tention. This is a phenomenon that LVLMs tend to
generate content contradictory to the image, such
as non-existent objects. In order to alleviate this
phenomenon, many explorations have been car-
ried out in recent work (Li et al., 2023c; Wang
et al., 2023; Liu et al., 2023a; Zhou et al., 2023;
Zhai et al., 2023; Lee et al., 2023; Huang et al.,
2023; Wang et al., 2024). CoVe (Dhuliawala et al.,
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(a) InstructBLIP (b) mPLUG-Owl

(c) MiniGPT-4

Figure 2: Attention visualization of LVLMs. For the
same input, each image represents the attention matrix
of a specific LVLM generation instance. Red indicates
the attention of the image, while green represents the
phenomenon of “Over-trust" in the generated text.

2023) proposes a Chain-of-Verification method, it
first generates verification questions, then executes
them to check for hallucination, and finally gets a
revised response. Additionally, some approaches
aim to alleviate the hallucination from the decod-
ing strategy (O’Brien and Lewis, 2023; Chuang
et al., 2023; Huang et al., 2023). Dola decoding
(Chuang et al., 2023) is a strategy of contrasting
the mature layer and the immature layer of the
model, followed by the determination of the next
token based on the differences in logits. Opera
(Huang et al., 2023) is a recently proposed decod-
ing method that employs an Over-trust Penalty to
determine the occurrence of hallucination, and uti-
lizes a Retrospection-Allocation rollback mecha-
nism for decoding.

However, most of the existing work focuses on
alleviating object-level hallucinations. During this
process, some methods excessively concentrate on
whether the generated objects exist in the image,
neglecting the association between these objects
and the semantics of the whole sentence. As illus-
trated in Figure 1, words marked in red, such as
“trees”, are real object hallucinations. Solely con-
sidering the presence of objects, the parts marked
in blue, such as “predators” and “food”, would also
be defined as hallucinations. Nevertheless, com-
bined with context and semantics, such a definition
is deemed inappropriate. Meanwhile, as indicated
by the green box in Figure 2, “Over-trust” (Huang
et al., 2023) does exist in LVLMs, which means cer-
tain generated tokens receive excessive attention,
leading to a subsequent generation that deviates
from the image. We initially assumed that insuffi-

cient focus on the visual part of the input might be
one cause of this phenomenon. However, further
observation of the attention matrix of these mod-
els reveals strong focus on the visual input (see
red boxes in Figure 2). This indicates that consid-
ering the over-trust penalty only accounts for the
impact of the text, additional focus on the image is
therefore required to balance it.

Based on the observations above, we propose
HELPD, a novel LVLM framework that utilizes
Hierarchical FeEdback Learning with Vision-
enhanced Penalty Decoding. We note the neces-
sity of integrating both the inherent properties of
an object and semantic meaning to determine the
presence of hallucination. Thus, we propose the hi-
erarchical feedback learning, which only requires a
small amount of training, and we add this feedback
mechanism at the end of the training period. On
the one hand, the collection of objects is extracted
from the sampled sentences and label sentences,
and the object-level feedback is obtained through
the comparison of the object sets. On the other
hand, leveraging the powerful few-shot inference
capabilities of GPT-4, we conduct a semantic com-
parison to obtain sentence-level feedback.

The manner of sampling constitutes a crucial
component in the hierarchical feedback learning
process. Opera decoding (Huang et al., 2023) pre-
dicts the next word by subtracting the over-trust
penalty score from the logits, where the penalty
score is computed based on the attention window
of the generated text, disregarding the potent influ-
ence of visual attention. Consequently, we propose
the Vision-Enhanced Penalty Decoding, which in-
corporates visual attention into the penalty score
computation and makes the final logits place more
emphasis on the image input. This approach ef-
fectively mitigates an over-reliance on the textual
modality during the decoding process, and en-
hances the influence of visual modality, thereby
alleviating the hallucination.

Our contributions can be summarized as follows:

• We propose a hierarchical feedback learn-
ing method, incorporating object-level and
sentence-level hallucination feedback. It can
mitigate the occurrence of hallucinations with
only a minimal amount of training.

• With the analysis of the attention matrix
during decoding, we introduce the vision-
enhanced penalty decoding to enhance the
influence of images on the generation process.
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• Extensive experimental results indicate that
our proposed framework shows better perfor-
mance on multiple hallucination metrics and
can effectively alleviate the hallucination of
LVLMs.

2 Related Work

2.1 Large Vision-Language Models (LVLMs)

Owing to the success of Large Language Models
(LLMs) (Brown et al., 2020; OpenAI, 2023; Tou-
vron et al., 2023a,b; Chung et al., 2022; Zeng et al.,
2023; Sun et al., 2021; Yang et al., 2023) in many
Natural Language Processing (NLP) tasks (Qin
et al., 2023), many researchers have endowed it
with multimodal perception capabilities. Among
these, Large Vision-Language Models (LVLMs)
(Li et al., 2023a; Dai et al., 2023; Zhu et al., 2023;
Ye et al., 2023; Liu et al., 2023b; OpenAI, 2023;
Peng et al., 2023; Anil et al., 2023) have shown
particularly notable performance.

LVLMs primarily consist of three components: a
visual encoder, a modality alignment module, and
a Large Language Model (LLM) (Yin et al., 2023;
Zhang et al., 2024). Visual encoders include Vi-
sion Transformers (ViT) (Dosovitskiy et al., 2021),
CLIP ViT (Radford et al., 2021), and others (Brock
et al., 2021; Fang et al., 2023). Specifically, ViT
splits images into patches, which are then input
into Transformer blocks through linear mapping
for feature learning. Since there exits a modality
gap between the visual encoders and the LLMs, the
modal alignment module is required as a bridge.
Models such as Flamingo (Alayrac et al., 2022),
BLIP-2 (Li et al., 2023a), and InstructBLIP (Dai
et al., 2023) apply the Q-former, a method that
extracts visual features in a query-based manner
by employing a set of learnable vectors. Another
more direct method involves using a linear inter-
face for modality alignment. For instance, LLaVA
(Liu et al., 2023b) employs a linear layer to map
images to the textual embedding space.

2.2 Hallucination in LVLMs

Multimodal hallucination is a significant challenge
faced by LVLMs, severely impairing the reliability
and robustness of these models. It typically mani-
fests as generating content that is inconsistent with
the image or contradicts common sense. Gener-
ally, hallucinations can be divided into Intrinsic
Hallucination and Extrinsic Hallucination. Intrin-
sic hallucination refers to the generation of content

that conflicts with the input. On the other hand,
extrinsic hallucination represents the generation of
additional content that does not actually exist, such
as objects not present in the image.

Recently, numerous efforts have been dedicated
to the elimination of multimodal hallucination (Li
et al., 2023c; Wang et al., 2023; Liu et al., 2023a;
Zhou et al., 2023; Zhai et al., 2023; Lee et al., 2023;
Huang et al., 2023; Wang et al., 2024; Gunjal et al.,
2024; Zhao et al., 2023). CHAIR (Rohrbach et al.,
2018) is an early proposed metric for evaluating
object hallucinations in image captioning tasks. It
assesses the degree of hallucination by calculat-
ing the proportion of objects that appear in the
generated descriptions but not in the image itself.
POPE (Li et al., 2023c) introduces a polling-based
object probing evaluation method, which assesses
the degree of hallucination based on the responses
to questions like “Is there a <object> in the im-
age?” that are posed based on the objects. CoVe
(Dhuliawala et al., 2023) introduces a chain-of-
verification that considers its own responses and
self-corrects hallucination. Liu et al. (2023a) con-
ducts visual instruction tuning on LVLMs with the
newly proposed LRV-Instruction dataset to mitigate
hallucinations.

3 Method

3.1 Hierarchical Feedback Learning
As we have illustrated in Section 1, to determine
the occurrence of hallucination, it is necessary to
consider not only whether the mentioned object ap-
pears in the image, but also to judge whether it is a
reasonable association in combination with seman-
tics. To address the aforementioned issue, we pro-
pose Hierarchical Feedback Learning, a learning
method that enhances the model’s intrinsic ability
to avoid hallucination through different granularity
hallucination detection feedback (see Figure 3).

In practice, we conduct minimal further train-
ing on the LVLMs and incorporate this feedback-
learning mechanism towards the end of the training
process. More specifically, after every fixed num-
ber of training steps, we sample the logits of the
model’s output to obtain the actions (which means
the sampled tokens)A = {aij}tj=1, i = 1, . . . , b,
where t is the length of the sampled sentence and b
is batch size. With the help of NLTK 2 and GPT-4,
we extract objects from the sampled sentence and
label sentence, respectively, obtaining the sampled

2https://www.nltk.org/install.html
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LVLM

Sample
Sampled
sentence

label
sentence

label Set

sampled Set object-level
reward

collect object sets

few-shot inference
GPT4 sentence-level

reward

Hierarchical Feedback Learning

Vision-enhanced
 Penalty Decoding

Vision penalty

Over-trust
penalty

InstructionUSER:
example_1: 'Sample sentence_1'; 'Label sentence_1'. Score:x.x

GPT4:

example_n: 'Sample sentence_n'; 'Label sentence_n'. Score:y.y
current: 'Sample sentence'; 'Label sentence'. SCORE:

... ...

sentence-level hallucination score

Figure 3: This diagram illustrates the framework of HELPD. The Hierarchical Feedback Learning detects
hallucination by obtaining object-level feedback from comparing object sets extracted from sampled and label
sentences, and sentence-level feedback through semantic comparison using GPT-4’s few-shot inference capabilities.
To improve the effectiveness of sampling, the Vision Penalty Decoding augments the over-trust penalty score with a
vision-enhanced penalty score, making the final logits closer to the image.

object set Ssam = {obj1, obj2, . . . , objm} and
the label object set Slab = {obj1, obj2, . . . , objn},
where m and n represent the number of objects.
Subsequently, we calculate the F1 score of these
two sets as the object-level feedback scores Robj :

Precision =
|Ssam ∩ Slab|

|Ssam ∩ Slab|+ |Ssam \ Slab|
(1)

Recall =
|Ssam ∩ Slab|

|Ssam ∩ Slab|+ |Slab \ Ssam| (2)

Robj = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

Sentence-level feedback is obtained through the
few-shot inference capability of GPT-4. We pro-
vide a detailed evaluation method and pre-annotate
several sentence pairs as context (see Appendix A
for detail) to instruct it on discerning hallucination
from semantics. The score ranging from 0 to 1,
returned by GPT-4, is defined as Rsen.

Given that Rsen and Robj are non-differentiable,
they cannot be directly incorporated into training
using the gradient method. Inspired by (Sutton
et al., 1999), we introduce the reinforce algorithm
to handle this problem. Specifically, based on the
tokens sampled, we first retrieve their correspond-
ing log probabilities from the original logits:

Pi,j = log

(
e
logitsi,j,Ai,j

∑V
k=1 e

logitsi,j,k

)
, (4)

where i is the index within the batch, j is the index
within the sequence length, Ai,j is the correspond-
ing sampled action, and k is the index within the
vocabulary of size V . A hyperparameter σ is set
to determine the relative importance of the two
types of feedback mentioned above (see Equation
(5)). By summing the product of the feedback and
the corresponding log probabilities of the actions,
we obtain a negative weighted log-likelihood loss.
To prevent the loss from infinitely increasing with
the number of actions, the total loss is divided by
the number of sampled actions to yield the loss
function for reinforce algorithm, denoted as LRL:

Ri = σRsen,i + (1− σ)Robj,i, (5)

LRL = − 1

N

b∑

i=1

t∑

j=1

Pij ·Ri. (6)

In the early stage of training, we employ cross-
entropy loss LCE. When the training step reaches
c ∗ total steps, LRL is added to the total loss. The
total loss is defined as:

LCE = −
H∑

h

logP (xh | x<h) , (7)

L =

{
LCE, if steps < c ∗ total steps,
LCE

∥LCE∥ + LRL
∥LRL∥ , otherwise,

(8)
where x is the generated token.
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vision-enhanced
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generated text window
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Figure 4: The illustration of Vision-enhanced Penalty
Decoding. The total penalty is composed of the vi-
sion penalty and the over-trust penalty. The over-trust
penalty is computed based on the generated text (the up-
per region), while the vision penalty is computed from
the vision attention window (the lower area).

3.2 Vision-enhanced Penalty Decoding
With the hierarchical feedback learning, we can ef-
fectively detect object-level and sentence-level hal-
lucinations and correct them through back propaga-
tion. To obtain the sampled sentences, we need to
sample each token from the model’s logits. Based
on our analysis of the attention matrix, we propose
the Vision-enhanced Penalty Decoding based on
Opera (Huang et al., 2023).
Over-Trust Logit Penalty. First, we provide a
brief description of the original process. It sets a
local window of length h for the attention matrix,
where h represents the length of the current gener-
ated sequence. Upon obtaining such a lower trian-
gular matrix, it pads the upper triangular part with
zeros and scales up the values to avoid excessively
small values. Subsequently, it conducts column-
wise multiplication on this matrix and select the
maximum value of the vector as the over-trust
penalty ϕ(ω≤h). Finally, it subtracts this penalty
from the original logits to predict the next token.
Vision-enhanced Penalty Decoding. As illus-
trated in Section 1, we note that the over-trust
penalty establishes a local window whose size is
limited to the length of the generated text. This
approach can effectively extract over-trust patterns
from past tokens, but it inadvertently amplifies the
model’s reliance on the text modality, thereby pas-
sively diminishing its focus on images.

To foster a greater focus on images during the
sampling process, we set an additional local win-
dow Wh

l beyond the local window of the over-trust
penalty, as shown in Figure 4, purposed for storing
the image components within the attention matrix:

Wh
l = {wi}hi=1, s.t. wi = {ωi,j}lj=1, (9)

where h is the length of the over-trust penalty win-
dow, l means the length of the visual input within
the attention matrix, and ωi,j represents the atten-
tion weight from ith token to jth token. Subse-
quently, we conduct the column-wise multiplica-
tion on the Wh

l to obtain a vector of column-wise
scores, which represents the accumulated attention
values of image:

ψ(ω≤h) =
h∑

i=1

ωi, s.t. ωi =
l∏

j=1

ωi,j , (10)

where ψ(ω≤h) means the vision-enhanced penalty.
Given the difference in numerical magnitudes,

the initial step involves scaling ψ(ω≤h) to match
the order of magnitude of ϕ(ω≤h), then calculating
the overall penalty weight ρ(ω≤h), as:

ρ(ω≤h) = ϕ(ω≤h)− βψ(ω≤h),

s.t. β =

∑
j≤h

ϕ(ωj)

∑
j≤h

ψ(ωj)
.

(11)

Then, this penalty weight is added to the original
logits for the prediction of the next token x̂h, as:

x̂h = argmax
x∈V

[p(x|x<h)− ρ(ω≤h)], (12)

where V is the size of vocabulary and x represents
the predicted token.

4 Experimental Setups

4.1 Hallucination Benchmarks
CHAIR. Caption Hallucination Assessment with
Image Relevance (CHAIR) (Rohrbach et al., 2018)
is an evaluation metric employed for assessing hal-
lucination in image captioning, and it is often used
to evaluate LVLMs. CHAIR obtains scores for the
degree of hallucination by calculating what propor-
tion of objects generated are actually in the image
according to the ground truth sentences and object
segmentations. Specifically, it computes the hallu-
cination at both instance level (defined as CHAIRi)
and sentence level (defined as CHAIRs):

CHAIRs =
|{hallucinated objects}|
|{all mentioned objects}| , (13)

CHAIRi =
|{captions w/ hallucinated objects}|

|{all captions}| , (14)

where CHAIRs represents the proportion of hallu-
cinated objects among all mentioned objects, and
CHAIRi denotes the proportion of captions with
hallucinated objects among all captions.
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POPE Model Accuracy Precision Recall F1 Score Yes (%)

Random

MiniGPT-4 53.06 51.58 99.60 67.97 96.53
InstructBLIP 86.28 84.11 95.02 89.23 55.63
mPLUG-Owl2 87.71 89.13 85.92 87.50 48.21
mPLUG-Owl2 (w/ ours) 88.02 89.90 85.67 87.73 47.62
LLaVA-1.5 89.44 87.21 90.11 88.63 53.09
LLaVA-1.5 (w/ ours) 89.65 87.84 91.98 89.86 52.41

Popular

MiniGPT-4 50.53 50.26 99.60 66.81 89.06
InstructBLIP 81.67 74.12 93.31 82.61 65.43
mPLUG-Owl2 84.10 82.81 85.23 84.00 51.90
mPLUG-Owl2 (w/ ours) 85.67 85.81 85.27 85.53 49.66
LLaVA-1.5 84.91 81.02 90.71 85.59 55.51
LLaVA-1.5 (w/ ours) 85.79 81.85 91.97 86.62 56.26

Adversarial

MiniGPT-4 50.46 50.23 99.61 66.78 99.13
InstructBLIP 72.12 65.63 95.27 77.32 73.26
mPLUG-Owl2 81.70 79.21 85.93 82.43 54.23
mPLUG-Owl2 (w/ ours) 81.64 80.28 85.65 82.87 53.31
LLaVA-1.5 77.61 71.72 92.55 80.81 63.83
LLaVA-1.5 (w/ ours) 78.15 72.04 92.91 81.15 63.88

Table 1: Results of LVLMs under three evaluation settings of POPE on the validation set of MSCOCO. “Yes”
denotes the proportion of answering “Yes” to the given question. “w/ ours” means the application of HELPD.

POPE. POPE (Li et al., 2023c) converts halluci-
nation assessment into asking the model to answer
a series of true or false questions about whether an
object is present in the image. Specifically, given an
image set and the object annotations contained in
each image, POPE will construct a series of triples
consisting of images, questions, and answers. It
considers three polling strategies by sampling the
objects randomly, from popular objects, and among
those frequently co-occurring objects, respectively.
Finally, POPE involves 3K questions for the cap-
tions of 500 images and uses the Accuracy, Preci-
sion, Recall, and F1 scores for evaluation.
GAVIE. GPT4-Assisted Visual Instruction Eval-
uation (GAVIE) (Liu et al., 2023a) is an approach
to measure the hallucination without the need for
human-annotated ground-truth answers. GPT-4
takes the generated captions with bounding box
coordinates as the image content and compares hu-
man instructions and model response. Then, ask
GPT-4 to score the answers based on two criteria:
(1) Accuracy: whether the response hallucinates
with the image content. (2) Relevancy: whether
the response directly follows the instruction. It is
composed of 1k questions and uses accuracy and
relevancy for evaluation.
MMHal-Bench. MMHal-Bench (Sun et al.,
2023) has a focus on penalizing hallucinations

with 96 image-question pairs, ranging in 8 question
categories and 12 object topics from OpenImages
(Kuznetsova et al., 2018). It uses GPT-4 to com-
pare the model’s response to the correct answer
based on the given object information. If the score
is below 3, it is considered to have hallucinations.

4.2 Baselines

We use 4 recently released LVLMs as baselines: (1)
MiniGPT4 (Zhu et al., 2023); (2) InstructBLIP (Dai
et al., 2023); (3) LLaVA-1.5 (Liu et al., 2023b); (4)
mPLUG-Owl2 (Ye et al., 2023). All models above
have been tuned on their visual instruction data.

4.3 Implementation Details

We randomly select 5,000 images from the train-
ing sets of MSCOCO 2014 (Lin et al., 2014) and
Flickr30k (Plummer et al., 2017). Given that
each image corresponds to multiple short cap-
tions, we prompt GPT-4 to synthesize a longer cap-
tion for each image based on these short captions
(see Appendix A). Then, we employ LoRA-tuning
(Hu et al., 2022) and deepspeed zero stage 3 to
conduct minimal training on LLaVA-1.5-7b and
mPLUG-Owl2-7b for 1 epoch. We use the AdamW
(Loshchilov and Hutter, 2019) optimizer for opti-
mization purposes. The learning rate and weight
decay are set to 0.0001 and 0.1, respectively. Dur-
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Method Model Cs ↓ Ci ↓ Len

Beam5

mPLUG-Owl2 46.6 14.5 68.4
mPLUG-Owl2 (w/ ours) 22.4 8.4 67.1
LLaVA-1.5 15.4 8.2 63.2
LLaVA-1.5 (w/ ours) 14.6 6.1 57.8

Opera

mPLUG-Owl2 39.8 13.1 64.5
mPLUG-Owl2 (w/ ours) 21.4 8.2 53.3
LLaVA-1.5 14.1 6.1 58.9
LLaVA-1.5 (w/ ours) 13.7 5.0 59.9

Vep

mPLUG-Owl2 36.2 13.0 65.1
mPLUG-Owl2 (w/ ours) 20.6 7.8 54.0
LLaVA-1.5 11.0 6.2 59.7
LLaVA-1.5 (w/ ours) 9.6 4.9 60.8

Table 2: CHAIR hallucination evaluation results. “w/
ours” means the use of hierarchical feedback learning,
and “Vep” is the vision-enhanced penalty decoding.

Model Relevancy Accuracy

MiniGPT-4 3.84 5.35
InstructBLIP 6.27 5.83
mPLUG-Owl2 8.29 5.68
mPLUG-Owl2 (w/ ours) 8.88 6.12
LLaVA-1.5 7.56 5.49
LLaVA-1.5 (w/ ours) 7.98 6.01

Table 3: Evaluation results on GAVIE. The metric
scores of Relevancy and Accuracy are from 0 to 10. “w/
ours” means the application of HELPD.

ing the training process, we initiate a warm-up ratio
of 0.03, after which we apply the cosine schedule
to decay the learning rate. We set σ to 0.6. The val-
ues of c for LLaVA-1.5 and mPLUG-Owl2 are set
to 0.7 and 0.8. Each model requires approximately
4 hours to train with 2 NVIDIA 3090 24Gb GPUs.

5 Results

5.1 Main Results

In general, it is noticeable that the application of
HELPD with various LVLMs is able to enhance
their performance across different evaluation met-
rics, compared to the original LVLMs.

Upon examining the results from the POPE
benchmark, as detailed in Table 1, it is evident
that the hierarchical feedback learning has led to
enhancements in the accuracy, precision, and F1
score.This suggests that our proposed framework
can provide effective hallucination detection and
feedback during training, combining object entities
and semantic information to guide the model in en-
hancing its ability to discern hallucinated objects.

As shown in Table 2, from the score of CHAIRs

and CHAIRi, it is evident that with the help of

Figure 5: Detailed performance of LVLMs on the
eight categories in MMHAL-Bench, where “Overall”
indicates the averaged performance across all categories.
“w/ ours” means the application of HELPD.

HELPD, both mPLUG-Owl2 and LLaVA-1.5 have
demonstrated varying degrees of hallucination re-
duction. Specifically, the trained mPLUG-Owl2,
under various decoding methods, is able to reduce
the CHAIRs by an average of 19.4 and the CHAIRi

by an average of 5.4. This indicates that our pro-
posed framework can effectively mitigate the gener-
ation of hallucinations, whether at the instance level
or the sentence level. Moreover, it can be observed
that the trained LVLMs do not exhibit significant
fluctuations in the length of generated text. In most
cases, LLaVA-1.5 can even increase the average
generated length by 1.1 to 4.0. This illustrates that
HELPD, while enhancing the anti-hallucination ca-
pabilities of LVLMs, does not excessively interfere
with the generated length.

Table 3 shows the performance of different
LVLMs on the GAVIE benchmark, which asks
GPT-4 to pretend to be a smart teacher and scores
(0-10) the answers according to the image content
and instructions. The trained models achieve im-
provements in both accuracy and relevancy. Specif-
ically, the trained mPLUG-Owl2 attains scores of
8.88 and 6.12 in relevancy and accuracy respec-
tively, surpassing the provided baseline models.
This demonstrates that our proposed framework
can aid LVLMs in more directly following instruc-
tions, and the generated responses are more accu-
rate concerning the image content.

Detailed performance of LVLMs on the eight cat-
egories in MMHAL-Bench is shown in Figure 5. It
is evident that the trained models surpass their cor-
responding baseline models in performance across
all eight question categories, and achieve a score of
over 3 in five categories, including Object attribute
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Model Robj Rsen Cs ↓ Ci ↓ Rel Acc

mPLUG-Owl2

% % 46.6 14.5 8.2 5.6
! % 31.1 11.2 8.4 5.9
% ! 25.9 9.9 8.7 5.9
! ! 22.4 8.4 8.8 6.1

LLaVA-1.5

% % 15.4 8.2 7.5 5.4
! % 14.9 7.1 7.6 5.7
% ! 15.8 6.8 7.7 5.8
! ! 14.6 6.1 7.9 6.0

Table 4: Ablation results on different levels of feed-
back on CHAIR and GAVIE.Robj andRsen represent
object-level and sentence-level feedback, respectively.

and Spatial relation. This implies that their gen-
erated texts are somewhat informative and exhibit
almost no hallucination.

5.2 Further Analysis

Break-down Study of Hierarchical Feedback
Learning. As illustrated in Section 3.1. In order
to detect hallucinations of different granularities
during training and provide feedback for parame-
ter updates, we introduce hallucination feedback
at both the object and sentence levels. To verify
whether these two types of feedback contribute to
the mitigation of hallucination, we conduct abla-
tion experiments, and the results are presented in
Table 4. Both object-level and sentence-level feed-
back can aid in alleviating hallucination, making
the generated text adhere more closely to instruc-
tions and rendering it more accurate concerning
the image content. It can also be observed that,
compared to object-level feedback, sentence-level
feedback can more effectively enhance the model’s
ability to resist hallucination. We hypothesize that
this is because object-level feedback is more uncon-
trollable, such as possible omissions in the process
of object extraction, or score reductions due to
the presence of synonyms. However, the sentence-
level feedback generated by prompting GPT-4 can
effectively compensate for the deficiencies of the
object-level feedback, thereby enhancing the over-
all performance of hierarchical feedback learning.

The Timing of Incorporating Hierarchical Feed-
back Learning. To investigate at which stage
of training the integration of hierarchical feed-
back learning can better enhance the model’s anti-
hallucination capabilities, we also conduct an ab-
lation study on the hyperparameter c. The experi-
mental results of LLaVA-V1.5 on the random set of
POPE are shown in Table 5, with more details avail-
able in the Appendix B. It indicates that LLaVA-

Model c Precision Recall F1 Score

LLaVA-1.5

0.6 87.01 92.05 89.45
0.7 87.84 91.98 89.86
0.8 86.21 93.07 89.50
0.9 86.09 93.33 89.56
1.0 86.11 91.33 88.74

Table 5: Ablation results on the timing of incorporat-
ing HELPD. We only show the random set results on
LLaVA-v1.5, more details can be seen in Appendix B.

Method MiniGPT-4 InstructBLIP mPLUG-Owl2 LLaVA-v1.5

Nucleus 58.6 78.9 82.9 82.3
Beam5 69.2 82.1 84.7 84.7
Opera 73.3 84.7 85.1 85.4
Vep 74.1 85.0 85.3 85.6

Table 6: Ablation results on the decoding strategy.
We exhibit the average F1-score computed on random,
popular, and adversarial splits of POPE.

V1.5 exhibits fewer hallucinations when c = 0.7,
while mPLUG-Owl2 performs better when c = 0.8.
Therefore, we default to assigning c = 0.7 for
LLaVA-V1.5 and c = 0.8 for mPLUG-Owl2.
Different Decoding Strategy. Based on the ob-
servations of the attention matrix, we propose the
vision-enhanced penalty decoding based on opera.
To validate its effectiveness, we conduct an abla-
tion study on LVLMs. The experimental results are
shown in Table 2 and Table 6. As can be observed,
compared to the baseline decoding strategy, the
vision-enhanced penalty decoding demonstrates su-
perior performance on benchmarks such as POPE
and CHAIR, and has a smaller impact on the length
of the generated text. It should be noted that this
decoding strategy pays more attention to the hallu-
cination performance of long texts.

6 Conclusion

In this paper, we aim to alleviate hallucinations in
Large Vision-Language Models (LVLMs), and pro-
pose the HELPD framework, which employs the
hierarchical feedback learning for small amounts of
training on the model. To enhance attention to the
visual modality, we also propose a vision-enhanced
penalty decoding strategy. To evaluate the effec-
tiveness of our approach, we conduct evaluations
on numerous benchmarks. Experimental results
demonstrate that our proposed framework effec-
tively mitigates hallucination for different LVLMs
without impacting sentence length and concurrently
improves their text generation quality. Future work
could focus on a more comprehensive evaluation
of hallucination at different granularities.
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Limitations

Although HELPD effectively mitigates the halluci-
nation in VLVMs, it remains subject to certain lim-
itations. Firstly, to further train LVLMs, even for
minimal training, a rich corpus of modality-aligned
data is required. Secondly, compared to traditional
decoding strategies, our proposed vision-enhanced
penalty decoding may slightly increase decoding
time, thereby potentially limiting inference speed.
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A Prompts

We show the prompt for generating sentence-level
feedback score in Figure 6 and synthesizing longer
captions for each image based on corresponding
five short captions in Figure 7 with GPT-4.

B More Experimental Results

B.1 More Experimental Results Compared to
Existing Methods.

For POPE benchmark in Table 9, compared to ex-
isting methods (Liu et al., 2023a; Favero et al.,
2024; Yang et al., 2024), our approach performs
well on both the random and popular test sets, but
falls short in terms of accuracy on the adversar-
ial test set. This is because the method by Zhou
et al. (2023) uses multiple similar images for com-
parison, enabling multi-angle judgment of the test
problem. In contrast, our proposed method requires
less computational resources and is able to surpass
the performance in terms of F1 score. While for
CHAIR in Table 10, compared to existing work,
we are able to demonstrate better performance.

B.2 Ablation Results About the Timing of
Incorporating Hierarchical Feedback
Learning.

In Section 5.2, to investigate at which stage of
training the integration of Hierarchical Feedback
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Learning can better enhance the model’s anti-
hallucination capabilities, we conduct an ablation
study on the hyperparameter c. We show the addi-
tional results in Table 7.

B.3 Further Analysis About the Quality of the
Generated Text.

Considering that interventions in the decoding pro-
cess can impact the quality of the generated text,
we also conduct experiments to measure the impact
caused by the vision-enhanced penalty decoding.
Evaluation was carried out on the generated text
from CHAIR, using the BLEU (Papineni et al.,
2002), ROUGE-L (Lin, 2004), METEOR (Baner-
jee and Lavie, 2005), and SPICE (Anderson et al.,
2016) metrics, with the experimental results pre-
sented in Table 8. It can be observed that our pro-
posed vision-enhanced penalty decoding performs
comparably to beam search in terms of text gen-
eration metrics, without demonstrating excessive
decline. It even surpasses beam search on BLEU1,
BLEU4, and ROUGE-L. As can also be seen from
Table 2, compared to beam search and opera decod-
ing, our proposed method is able to maintain the
length of the generated sentences as well. This elu-
cidates that our method can maintain the quality of
the generated text while mitigating hallucinations.
Additionally, to verify whether HELPD can miti-
gate hallucinations while preserving general capa-
bilities, we conduct evaluations on VQA-v2 (Goyal
et al., 2017) and MME (Fu et al., 2023). As shown
in Table 11 and Table 12, LVLMs with HELPD
can maintain relatively stable performance across
various metrics, demonstrating that the framework
does not significantly impair the model’s founda-
tional abilities.

C Cases

We show some generation cases in Figure 8, 9, and
10.
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You will be presented with two pieces of text that describe the same
image. First text comes from a dataset and can be considered as the
label, and the other is generated by a model. Your task is to compare
these two pieces of text and evaluate them from the perspective of
hallucination. If the contents described by the two pieces of text are
completely consistent and there is no hallucination, please give a
score of 1. If hallucination is present in the model-generated text, i.e., it
describes content not present in the label text, please give a score
closer to 0. Note that the lower the score, the less obvious the
hallucination. The score range is between 0 and 1. Please only provide
a score and do not provide reason.

Output example 1:
Dataset text (Label): Label 1;
Model generated text: Text 1;
score: score 1

Output example 2:
Dataset text (Label): Label 2;
Model generated text: Text 2;
score: score 2

Output example 3:
Dataset text (Label): Label 3;
Model generated text: Text 3;
score: score 3

Output format:
Dataset text (Label): 
Model generated text: 
score:

Figure 6: Prompt for generating sentence-level feedback score.
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Given the following five captions of the same image, please combine
them into a single, comprehensive caption that includes all the
information, especially objects, without any repetition:

Output example 1:
Caption 1: caption_1;
Caption 2: caption_2;
Caption 3: caption_3;
Caption 4: caption_4;
Caption 5: caption_5;
Combined caption 1: response_1

Output example 2:
Caption 1: caption_1;
Caption 2: caption_2;
Caption 3: caption_3;
Caption 4: caption_4;
Caption 5: caption_5;
Combined caption 2: response_2

Output example 3:
Caption 1: caption_1;
Caption 2: caption_2;
Caption 3: caption_3;
Caption 4: caption_4;
Caption 5: caption_5;
Combined caption 3: response_3

Output format:
Caption 1:
Caption 2:
Caption 3:
Caption 4:
Caption 5:
Combined caption:

Figure 7: Prompt for synthesizing longer captions for each image based on corresponding five short captions.
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POPE Model c Precision Recall F1 Score Yes (%)

Random

mPLUG-Owl2

0.6 88.7 86.1 87.3 46.5
0.7 88.9 85.9 87.3 46.4
0.8 89.9 85.6 87.7 47.6
0.9 90.1 85.2 87.6 47.3

LLaVA-1.5

0.6 87.0 92.1 89.5 52.9
0.7 87.8 91.9 89.9 52.4
0.8 86.2 93.1 89.5 54.6
0.9 86.1 93.3 89.7 54.3

Popular

mPLUG-Owl2

0.6 82.8 85.9 84.3 52.0
0.7 84.2 86.1 85.1 52.0
0.8 85.6 85.6 85.6 50.0
0.9 85.8 85.2 85.5 49.6

LLaVA-1.5

0.6 80.1 93.3 86.2 58.2
0.7 81.4 92.0 86.4 56.5
0.8 79.7 93.0 85.8 58.3
0.9 79.5 93.5 85.9 58.8

Adversarial

mPLUG-Owl2

0.6 79.2 85.9 82.5 54.1
0.7 79.8 85.9 82.7 54.2
0.8 80.2 85.6 82.8 53.3
0.9 80.7 85.2 82.9 52.8

LLaVA-1.5

0.6 71.2 93.3 80.8 65.6
0.7 72.1 92.0 80.9 63.8
0.8 72.1 91.9 80.8 63.8
0.9 70.8 93.5 80.6 66.0

Table 7: Additional ablation results on the timing of incorporating HELPD.

Model Method B1 B4 M R-L S

LLaVA-1.5
greedy 20.8 5.1 19.9 22.4 22.3
beam5 21.6 5.3 21.2 23.2 23.4
vep 22.3 5.5 20.8 23.3 22.9

mPLUG-Owl2
greedy 18.9 4.8 16.7 17.1 16.9
beam5 19.8 5.1 17.2 19.7 18.3
vep 20.1 5.2 17.2 18.9 18.1

Table 8: Evaluation of the quality of the generated text from CHAIR. B1, B4, M, R-L, and S are abbreviations
for BLEU1, BLEU4, METEOR, ROUGE-L, and SPICE. “vep” represents the vision-enhanced penalty decoding.

Method Random Popular Adversarial
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Liu et al. (2023a) 87.3 87.3 73.4 80.1 65.0 73.9
Favero et al. (2024) 81.2 65.6 73.9 67.3 68.2 75.4
Yang et al. (2024) 87.5 86.1 85.1 84.8 81.7 80.7
HELPD (ours) 89.6 89.8 85.7 86.6 78.1 81.1

Table 9: More experimental results on POPE benchmark.
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Method CHAIRs ↓ CHAIRi ↓ Len

Zhou et al. (2023) 27.1 6.4 58.8
van der Poel et al. (2022) 16.2 6.7 59.6
Li et al. (2023b) 14.8 6.3 60.7
Liu et al. (2023a) 13.8 5.9 60.1
HELPD (ours) 9.6 4.9 60.8

Table 10: More experimental results on CHAIR benchmark.

Method Yes/No Number Other Overall

LLaVA-1.5 92.23 60.01 71.07 78.53
LLaVA-1.5 (w/ ours) 92.88 60.78 68.86 77.50
mPLUG-Owl2 91.96 63.24 70.51 79.05
mPLUG-Owl2 (w/ ours) 92.56 60.21 69.82 78.20

Table 11: Experimental results on VQA-v2 benchmark.

Method Category Total
Perception Cognition

LLaVA-1.5 1508.5 355.7 1864.2
LLaVA-1.5 (w/ ours) 1505.6 342.8 1848.4
mPLUG-Owl2 1446.5 313.3 1759.8
mPLUG-Owl2 (w/ ours) 1434.5 312.7 1747.2

Table 12: Experimental results on MME benchmark.

Describe the content of  the image in detail.

The image features a lion and a cow running in a meadow. They are all
in motion, one chasing the other, running together in their natural
habitat. In this wild scene of natural beauty, the two animals seem to 
rush at full speed. Additionaly, there are some other animals in the
distance, such as horses, creating a natural atmosphere.

This photograph depicts a lion and a cow running in a meadow. They
are engaged in a chase, each animal exploring their natural
surroundings in pursuit or flight. Amidst this wild display of natural
splendor, the two creatures appear to interact, charging full-tilt towards
an object of interest.

mPLUG-Owl2

mPLUG-Owl2
w/ HELPD

Figure 8: An illustrative case is presented to compare the output of mPLUG-Owl2 and mPLUG-Owl2 with
HELPD.

1784



Describe the content of  the image in detail.

The image showcases a young woman standing alone on the bank of
an outdoor body of water, possibly a river or a lake. She holds a fishing
rod, seemingly enjoying her time as she casts her line into the water.
The area is surrounded by trees, adding to the serenity of the scene.
With no other individuals are present in this area.

The image features a young woman standing on the bank of an outdoor
body water, such as river or lake. She is holding onto her fishing rod
and appears to be enjoying herself while casting for something in the
waterside area near trees that surround it. There are several other
people visible around this scene who may also have joined together
with others nearby.

LLaVA-1.5
w/ HELPD

LLaVA-1.5

Figure 9: An illustrative case is presented to compare the output of LLaVA-v1.5 and LLaVA-v1.5 with
HELPD.

Describe the content of  the image in detail.

The image features a man with other players in white and blue clothing,
paddling an oar-powered boat through rough water. They are wearing
protective gear such as helmets on their head to ensure safety, while
navigating the rapids of this challenging course with precision
skillfulness required for competitive kayaking. Additionally, there are a
lot of spectators on both sides cheering for them. 

The image features a man in white and blue clothing, paddling an oar-
powered boat through rough water. The man is wearing protective gear
such as helmets to ensure safety, while navigating the rapids of this
challenging course with precision skillfulness required for competitive
kayaking.

mPLUG-Owl2

mPLUG-Owl2
w/ HELPD

Figure 10: An illustrative case is presented to compare the output of mPLUG-Owl2 and mPLUG-Owl2 with
HELPD.
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