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Abstract

Extracting and aggregating information from
clinical trial registries could provide invaluable
insights into the drug development landscape
and advance the treatment of neurologic dis-
eases. However, achieving this at scale is ham-
pered by the volume of available data and the
lack of an annotated corpus to assist in the de-
velopment of automation tools. Thus, we intro-
duce NeuroTrialNER, a new and fully open cor-
pus for named entity recognition (NER). It com-
prises 1093 clinical trial summaries sourced
from ClinicalTrials.gov, annotated for neuro-
logical diseases, therapeutic interventions, and
control treatments. We describe our data col-
lection process and the corpus in detail. We
demonstrate its utility for NER using large lan-
guage models and achieve a close-to-human
performance. By bridging the gap in data re-
sources, we hope to foster the development of
text processing tools that help researchers navi-
gate clinical trials data more easily.

1 Introduction

Despite substantial investment, developing new
treatments for human diseases is a challenging and
often unsuccessful endeavour, especially for neu-
rological conditions (Seyhan, 2019). For example,
more than 99% of drugs tested in clinical trials for
Alzheimer’s disease fail (Cummings et al., 2014).
At the same time it has been estimated that nearly
3.40 billion people, or roughly 40% of the global
population, were affected by nervous system con-
ditions in 2021 (Steinmetz et al., 2024).

In this context, the synthesis of evidence from
clinical trials is critical for researchers developing
therapies, offering insights into the effectiveness
and safety of interventions (Sutton et al., 2009).
This process entails systematically evaluating data
from clinical studies to form reliable conclusions
about healthcare practices. Public clinical trial reg-

istries, such as ClinicalTrials.gov1, are fundamental
to this effort, fostering transparency and accessibil-
ity in clinical research (Laine et al., 2007).

However, extracting information from these re-
sources is challenging due to large data volume, in-
complete and unstructured reporting, variability in
terminology, and data quality concerns (Tse et al.,
2018). Computational methods, in particular nat-
ural language processing (NLP), can streamline
information extraction with techniques for data
structuring, standardization, as well as semantic
analysis, ultimately facilitating the synthesis of clin-
ical evidence (Marshall et al., 2017; Thomas et al.,
2017). Named entity recognition (NER) is one
such technique that identifies and categorizes key
elements in text, such as drug names, and enables
downstream tasks such as relationship extraction
and question answering (Wang et al., 2018). Yet,
there is a scarcity of publicly available annotated
corpora for clinical trial registries, hindering NLP’s
effectiveness in processing trial data.

Here we bridge this gap by introducing a new
gold standard annotated dataset for clinical trial
registry data in the domain of neurology/psychiatry.
The corpus comprises 1093 clinical trial summaries
from ClinicalTrials.gov, one of the largest interna-
tional clinical trial registries (Zarin et al., 2019).
It has been annotated by two to three annotators
for key trial characteristics, i.e., condition (e.g.,
Alzheimer’s disease), therapeutic intervention (e.g.,
aspirin), and control arms (e.g., placebo).

We demonstrate the corpus’s suitability for the
NER task using models based on BERT (Bidirec-
tional Encoder Representations from Transform-
ers) and GPT (Generative Pre-trained Transform-
ers). Additionally, we compare the performance
of these models against simple baseline methods
and human experts. All resources are available on

1https://clinicaltrials.gov/
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GitHub2 and the corpus is being integrated into the
BigBio library of biomedical NLP datasets3 (Fries
et al., 2022).

2 Related Work

The Aggregate Analysis of ClinicalTrials.gov
database (AACT)4 was released in 2011 to enhance
access to clinical trial registry data (Tasneem et al.,
2012). This database provides disease and inter-
vention information in two forms: (1) directly from
data contributors, and (2) through Medical Subject
Headings (MeSH) terms (Rogers, 1963) extracted
using a National Library of Medicine (NLM) al-
gorithm (Mork et al., 2013). Direct contributions
vary widely in terms of terminology and data qual-
ity, making the aggregation of results challenging.
The NLM’s rule-based algorithm applies MeSH
ontology to derive terms, yet this method has lim-
itations, such as missing non-ontological entities
and lacking a coherent strategy for classifying and
analyzing trials across broad disease categories.
Furthermore, MeSH term annotation often fails to
capture disease context and specificity, potentially
overlooking critical clinical nuances—for instance,
not distinguishing between mild and severe cases of
COVID or between early and late stages of cancer
(Tasneem et al., 2012).

The main focus of existing work in NER for clin-
ical trial data has been on PubMed abstracts. In
Marshall et al. (2020), the authors extract PICO
(Population, Intervention, Control, Outcome) ele-
ments from PubMed abstracts of clinical trial pub-
lications, as well as from trial registry data from
the World Health Organization International Clin-
ical Trials Registry Platform (ICTRP)5. For both
PubMed and ICTRP, the models were trained on the
EBM-NLP dataset (Nye et al., 2018), an annotated
corpus of PubMed abstracts describing clinical tri-
als for cardiovascular diseases, cancer, and autism.
Yet, there is no evaluation provided on how this
approach performed for NER from the clinical trial
registry data.

Another widely distributed dataset is the
BC5CDR corpus to support the task of recogni-
tion of chemicals/diseases and mutual interactions
(Li et al., 2016a). It consists of 1500 articles sam-

2https://github.com/Ineichen-Group/
NeuroTrialNER

3https://github.com/bigscience-workshop/
biomedical/pull/944

4https://aact.ctti-clinicaltrials.org/
5https://www.who.int/clinical-trials-registry-platform

pled from the CTD-Pfizer corpus, which covers a
large sample of PubMed articles related to different
disease classes (Davis et al., 2013).

Existing annotated corpora of clinical trial reg-
istries are primarily focused on the eligibility cri-
teria sections to enhance the trial recruitment pro-
cess (Deleger et al., 2012; Kang et al., 2017; Kury
et al., 2020). Additionally, a dataset specifically for
Spanish has been released (Campillos-Llanos et al.,
2021).

To the best of our knowledge, our dataset offers
several unique characteristics that distinguish it
from existing resources. First, we double-annotate
the titles and summary sections of prospectively
registered clinical trial entries rather than published
abstracts of completed trials. Second, our dataset
specifically targets neurological diseases, which
represent a significant portion of the global disease
burden, whereas existing corpora generally focus
on a broader range of medical conditions. Finally,
our resource includes highly detailed annotations
on aspects such as disease stages and severity, as
well as a variety of intervention categories. These
annotations enable more granular analysis, further
enhancing its value for medical research.

3 The Corpus

3.1 Data Collection
The latest available copy of the AACT database was
downloaded6 and ingested into a local PostgreSQL
database. The total number of unique clinical trials
from this snapshot was 451,860.

First, we identified trials in neurological and
psychiatric diseases. Since the AACT database
does not provide a classification of the diseases to
broader categories, we compiled a reference list of
neuropsychiatric diseases. For this, we combined
two sources - the International Classification of Dis-
eases 11th Revision7 (ICD-11) and the MeSH terms
list8. This resulted in a list of 16,520 unique dis-
ease names (including synonyms and lexical varia-
tions) in categories such as “Mental, behavioural
or neurodevelopmental disorder”, and “Neurologic
Manifestations”. The full list with its generation
code is available on our GitHub repository.

Subsequently, we used this disease list to filter
the records from the AACT database, resulting in

6Accessed on May 12 2023 from https://aact.ctti-
clinicaltrials.org/snapshots.

7https://icd.who.int/icdapi
8Version 2023 obtained as an XML file from

https://www.nlm.nih.gov/databases/download/mesh.html.
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40,842 unique trials. We further selected only the
interventional trials (35,969) based on the corre-
sponding study type field in the database. From this
set, we randomly sampled 1,000 entries (title and
trial summary) for the annotation step, from which
we annotated 893. In a subsequent enrichment of
the corpus, in order to mitigate class imbalances,
we sampled another 200 trials, which were not of
“DRUG” intervention type as indicated by the cor-
responding AACT field.

3.2 Data Annotation
3.2.1 Annotation Guidelines
Our annotation rules were harmonized with the
PICO framework (Huang et al., 2006). Within this
context, the annotators were informed by the fol-
lowing questions:

• Disease (=Population): “Who is the group of
people being studied?”

• Intervention: “What is the intervention being
investigated?”

• Control: “To what is the intervention being
compared?”

Furthermore, we aligned our annotation conven-
tions for drug names with previous work (Li et al.,
2016b; Krallinger et al., 2015).

We labelled the following entity types - six cate-
gories covering a broad range of common interven-
tions (DRUG, BEHAVIOURAL, SURGICAL, RA-
DIOTHERAPY, PHYSICAL, OTHER), one dis-
ease category (CONDITION) and one control inter-
vention category (CONTROL). Examples for each
entity type can be found in Table 2.

The annotation guidelines were iteratively re-
fined to ensure maximum clarity and optimize inter-
rater agreement. The final guidelines can be found
in Appendix H.

3.2.2 Annotation Process
The annotation was performed by three indepen-
dent annotators - one medical doctor with > 15
years experience (BVI), one senior medical student
(AEC), and a PhD candidate in the Life Sciences
PhD Program (SED). There were three rounds of
annotation. A first batch of 488 annotations was
performed by all three annotators. 405 additional
randomly selected clinical trials, and 200 non-drug
intervention trials were annotated by two annota-
tors (BVI and SED).

The annotators used the browser-based tool
Prodigy (Montani and Honnibal, 2017) to perform

the manual annotation. One clinical trial example
from our dataset is shown in Figure 1. To enhance
annotation quality in case of unknown entities, the
curators were encouraged to crosscheck informa-
tion from reference sources such as Wikipedia,
DrugBank and the ICD library.

Figure 1: Annotation example shown in the annotation
tool Prodigy. Blue labels indicate annotated DRUG
entities and orange labels denote CONDITION entities.

To compile the final dataset, all conflicts were
resolved by discussion. Further details about the
resulting corpus can be found in section 3.4.

3.2.3 Annotation Data Formats

We provide the tokenized version of the trial reg-
istry texts together with the list of corresponding
annotations in BIO (Beginning, Inside or Outside
of an entity span) format (Tjong Kim Sang and
Buchholz, 2000). Additionally, we give the anno-
tated entities from each trial as a tuple consisting
of (start character index, end character index, en-
tity type, entity words) like (228, 243, ’DRUG’,
’botulinum toxin’).

3.3 Inter-Annotator Agreement

3.3.1 Results

Table 1 shows the pairwise inter-annotator agree-
ment (IAA) using the Cohen’s kappa statistic9

across all entity types. We also report the 95%
confidence intervals (Cohen, 1960).

The overall agreement was around 0.77 across
all rounds and entity types, indicating a substantial
IAA. The score was highest for DRUG (range 0.83-
0.87) and for CONDITION (range 0.81-0.84). The
lowest agreement with most variable results was
achieved for the entities BEHAVIOURAL (range
0.28-0.53) and SURGICAL (range 0.06-0.54).

9Calculated with sklearn.metrics.cohen_kappa_score.
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Annotation Round 1 (488 annotations)
Annotators Overall CONDITION OTHER DRUG PHYSICAL BEHAVIOURAL SURGICAL RADIOTHERAPY CONTROL
SED;AEC 0.77 (0.76, 0.77) 0.82 (0.81, 0.83) 0.66 (0.64, 0.67) 0.85 (0.83, 0.87) 0.65 (0.61, 0.68) 0.42 (0.37, 0.48) 0.19 (0.06, 0.31) 0.91 (0.82, 1.00) 0.58 (0.53, 0.63)
AEC;BVI 0.76 (0.75, 0.77) 0.83 (0.82, 0.84) 0.63 (0.61, 0.64) 0.85 (0.83, 0.86) 0.50 (0.45, 0.54) 0.34 (0.28, 0.41) 0.46 (0.38, 0.54) 0.97 (0.91, 1.00) 0.59 (0.54, 0.64)
SED;BVI 0.76 (0.75, 0.77) 0.82 (0.81, 0.83) 0.64 (0.62, 0.65) 0.86 (0.84, 0.87) 0.60 (0.56, 0.64) 0.45 (0.39, 0.51) 0.18 (0.08, 0.28) 0.94 (0.86, 1.00) 0.68 (0.64, 0.72)

Annotation Round 2 and 3 (605 annotations)
SED;BVI 0.77 (0.76, 0.78) 0.84 (0.84, 0.85) 0.62 (0.60, 0.63) 0.85 (0.84, 0.87) 0.64 (0.61, 0.67) 0.48 (0.44, 0.53) 0.28 (0.21, 0.35) 0.82 (0.77, 0.87) 0.68 (0.65, 0.72)

Table 1: Overview of inter-annotator agreement reported as the Cohen’s Kappa score (95% confidence interval
lower bound, upper bound).

3.3.2 Examples of Annotation Disagreements
During the preparation of the final annotated
dataset, conflicts were resolved by two annotators.
We observed several patterns of discrepancies:

• Span Disagreement: Discrepancies in entity
boundaries occurred, such as one annotator
including punctuation marks. Additionally,
there were differences in detail; for example,
one annotator annotated “amnestic mild cogni-
tive impairment” while another only annotated
“mild cognitive impairment”. We decided to
include “amnestic” as it is important for diag-
nosis and treatment.

• Missed Entities: In cases involving longer
texts, one annotator overlooked tagging cer-
tain entities.

• Label Disagreement: Cases when annotators
assigned different labels to the same entity.
For example, one annotator classified “IGF-1”
as OTHER, while another annotator labeled it
as DRUG.

Figure 2 presents the confusion matrix for each
entity class between two of the annotators. Notably,
SED annotated a broader range of entities across
all categories, whereas BVI more frequently clas-
sified these as “0” (no entity), suggesting a more
conservative approach to annotation. Additionally,
there was a notable disagreement where 30% of
the instances SED categorized as BEHAVIOURAL
were labeled as OTHER by BVI. Disagreements
also occurred for SURGICAL and PHYSICAL,
which again were annotated as OTHER by BVI, at
rates of 13-15%. We further reviewed examples of
discrepancies in the annotation of the SURGICAL
class and observed that biological products, such
as “autologous incubated macrophages” and “hu-
man placental-derived stem cells”, were commonly
labeled as SURGICAL by one annotator and as
OTHER by the other. Since the annotation guide-
lines defined tissue-based therapies as part of the
SURGICAL class, we determined that the correct
label for these substances should be SURGICAL.

0

DR
UG

BE
HA

VI
OU

RA
L

SU
RG

IC
AL

PH
YS

IC
AL

RA
DI

OT
HE

RA
PY

OT
HE

R

CO
ND

IT
IO

N

CO
NT

RO
L

BVI

0

DRUG

BEHAVIOURAL

SURGICAL

PHYSICAL

RADIOTHERAPY

OTHER

CONDITION

CONTROL

SE
D

0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.11 0.87 0.00 0.00 0.00 0.00 0.01 0.01 0.00

0.26 0.00 0.42 0.00 0.01 0.00 0.30 0.00 0.00

0.21 0.00 0.00 0.46 0.00 0.09 0.12 0.12 0.00

0.21 0.00 0.01 0.00 0.61 0.00 0.15 0.00 0.02

0.02 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00

0.27 0.02 0.03 0.08 0.03 0.00 0.57 0.00 0.00

0.14 0.00 0.00 0.00 0.00 0.00 0.01 0.84 0.00

0.24 0.01 0.00 0.00 0.05 0.01 0.08 0.01 0.60
0.0

0.2

0.4

0.6

0.8

Figure 2: Confusion matrix between the labels assign-
ments by the two independent annotators (SED and
BVI). Zero (0) represents a non-entity token. For en-
hanced readability and comparison, the values in the
matrix have been normalized by the total number of
instances for each class row-wise.

3.4 Corpus Overview

Our final annotated corpus contains 1093 trial ti-
tles/trial summaries in total (referred to as abstracts,
and with a unique NCTID). It comprises of 147,377
words (12,829 unique) with an average number of
135 (min: 17, max: 829) words per trial. The
most frequent entities were CONDITION (dis-
ease) which is annotated 4936 times, followed by
OTHER and DRUG with a count of 1806 and 1636,
respectively. On the other hand, the least frequent
entity class was RADIOTHERAPY, which has a
count of 77, with 30 unique instances across 19
NCTIDs (see Table 2).

The entity classes also vary in their average char-
acter lengths. The entity class with the longest
average character number is SURGICAL, averag-
ing 26.96 characters (range: 7.83 to 46.09). In
contrast, the entity class with the shortest average
character number is DRUG, with an average of
11.78 characters (range: 3.20 to 20.36). Appendix
A provides an overview of the most frequently an-
notated entities in each entity type across the entire
corpus.
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Entity Type Count Unique NCTIDs Avg. Character Number Annotation Examples
CONDITION 4936 1612 1032 19.23 (7.11, 31.35) “chronic inflammation”, “stroke”
OTHER 1806 1047 456 25.32 (9.27, 41.37) “air stacking”, “homeopathic remedies”
DRUG 1636 601 385 11.78 (3.20, 20.36) “empagliflozin”, “guanidinoacetic acid”
PHYSICAL 594 332 144 25.29 (10.84, 39.74) “passive exoskeleton”, “resistance exercise training”
BEHAVIOURAL 317 214 86 25.47 (9.65, 41.29) “mindfulness”, “habit reversal training”
SURGICAL 173 121 45 26.96 (7.83, 46.09) “car t cells”, “nerve transfer”
RADIOTHERAPY 77 30 19 18.13 (7.29, 28.97) “gamma knife radiosurgery”, “far infrared radiation”
CONTROL 554 218 321 19.62 (7.94, 31.30) “un-enhanced control”, “conventional medical care”
Total Counts 10,093 4175 - - -

Table 2: Summary of entity types with total mention counts, unique instances counts, number of unique trials
containing annotations for the entity type (NCTIDs), average character number, and annotation examples.

4 Experiments

4.1 Named Entity Recognition Methods

We considered two simple baselines. First, a dic-
tionary lookup/ regex approach based on the devel-
oped list of neurological and psychiatric diseases
(see 3.1) and a list of drug names compiled from the
DrugBank10, Wikipedia, Medline Plus, and MeSH
terms11. Following the approach in Wood (2023),
we annotated individual words or pairs of consec-
utive words that matched the lists. This approach
was applicable only to the DRUG and CONDI-
TION entities. Our second baseline consisted of
the condition and intervention entries associated
with each clinical trial from the AACT database.
To address the absence of certain intervention en-
tity types in the database, we mapped some of the
existing labels to our target labels.

For neural NER, we used three BERT-style
models: BERT-base-uncased (Devlin et al.,
2018), BioLinkBERT-base (Yasunaga et al., 2022),
BioBER-v1.1(Lee et al., 2020), and two GPT mod-
els, gpt-3.5-turbo and gpt-412. We fine-tuned each
BERT, BioBERT and BioLinkBERT on a single
GPU in less than an hour. The latter two mod-
els have been pre-trained on biomedical domain
corpora - BioBERT using PubMed abstracts and
PMC full-text articles, and BioLinkBERT leverag-
ing PubMed abstracts and citation links between
PubMed articles. In contrast, BERT-base has been
pre-trained on the generic BookCorpus and English
Wikipedia. BioLinkBERT is notably effective in
biomedical NER, ranking highly in the BLURB
ranking13. We trained the models to classify each
token as either the Beginning (B), Inside (I) or Out-
side (O) of an entity span (Tjong Kim Sang and
Buchholz, 2000). All BERT-based models imple-

10https://go.drugbank.com/
11https://pypi.org/project/drug-named-entity-recognition/
12https://platform.openai.com/docs/models/overview
13https://microsoft.github.io/BLURB/leaderboard.html

mentations were based on the Huggingface Trans-
formers library, using their default parameters, and
Python version 3.9 (Wolf et al., 2019). The fine-
tuning setup is described in detail in Appendix
C. GPT models are highly effective at generating
contextually relevant text for various tasks (Brown
et al., 2020). We used the OpenAI API to employ
these models in a zero-shot setting, without any
fine-tuning. For each clinical trial and entity type,
we queried the model by sending the text along
with a prompt requesting a list of entities. More
details about the setup are available in Appendix
G.

4.2 Evaluation Setup

Our goal was to align the evaluation with a target
application for the dataset, i.e., enabling descriptive
statistics for unique diseases and drug names across
the entire clinical trials corpus. To achieve this, we
prioritized evaluating the model’s performance at
the full-text level, focusing on whether it could
identify relevant entities at least once, rather than
evaluating its accuracy on each individual mention.
For completeness, token-level results are provided
in Appendix F.

Furthermore, we wanted to take into account se-
mantic equivalence. While the model was trained
to recognize abbreviations of named entities, such
as “MS” for “multiple sclerosis”, we wanted to
treat those representations as the same entity. Sim-
ilarly, we aimed to consolidate “Alzheimers” and
“Alzheimers Disease” into a single entity. To ad-
dress the first point, we replaced all abbreviations
in the test dataset with their long forms using the
Schwartz-Hearst algorithm (Schwartz and Hearst,
2002)14. To handle the cases of different spellings
and synonyms, we reused the lists for diseases and
drugs that we compiled for our NER baseline and
mapped each synonym or spelling variation to their
canonical form. Details on the effectiveness of this

14https://github.com/philgooch/abbreviation-extraction
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Entity Type BioLinkBERT-base BioBERT-v1.1 BERT-base-uncased GPT-4 GPT-3.5-turbo AACT RegEx-Dict
CONDITION 0.85 (0.82, 0.89) 0.85 (0.81, 0.88) 0.71 (0.68, 0.75) 0.76 (0.72, 0.80) 0.66 (0.62, 0.70) 0.54 (0.50, 0.58) 0.50 (0.45, 0.55)
OTHER 0.62 (0.56, 0.67) 0.73 (0.67, 0.80) 0.55 (0.50, 0.60) 0.40 (0.34, 0.45) 0.33 (0.27, 0.40) 0.36 (0.29, 0.44) n.a.
DRUG 0.90 (0.85, 0.95) 0.86 (0.81, 0.92) 0.74 (0.67, 0.80) 0.77 (0.71, 0.84) 0.66 (0.58, 0.74) 0.63 (0.55, 0.71) 0.34 (0.27, 0.41)
PHYSICAL 0.71 (0.64, 0.79) 0.74 (0.66, 0.82) 0.72 (0.65, 0.79) 0.38 (0.31, 0.45) 0.39 (0.32, 0.46) 0.10 (0.00, 0.20) n.a.
BEHAVIOURAL 0.68 (0.60, 0.77) 0.77 (0.69, 0.85) 0.46 (0.34, 0.57) 0.38 (0.30, 0.46) 0.32 (0.24, 0.41) 0.27 (0.17, 0.36) n.a.
SURGICAL 0.29 (0.12, 0.46) 0.69 (0.57, 0.81) 0.41 (0.25, 0.57) 0.52 (0.39, 0.65) 0.24 (0.14, 0.33) 0.00 (0.00, 0.00) n.a.
RADIOTHERAPY 0.00 (0.00, 0.00) 0.88 (0.70, 1.05) 0.00 (0.00, 0.00) 0.67 (0.43, 0.90) 0.07 (0.00, 0.16) 0.35 (0.06, 0.65) n.a.
CONTROL 0.85 (0.78, 0.92) 0.84 (0.77, 0.91) 0.68 (0.58, 0.77) 0.64 (0.55, 0.72) 0.49 (0.41, 0.57) 0.42 (0.30, 0.54) n.a.
Micro F1 0.77 (0.75, 0.79) 0.81 (0.79, 0.83) 0.67 (0.65, 0.69) 0.56 (0.54, 0.58) 0.48 (0.46, 0.50) 0.56 (0.54, 0.58) 0.32 (0.29, 0.36)

Table 3: Partial match abstract-level F1 score (95% confidence interval lower bound, upper bound) for the NER
task across all entity types. Values below zero are set to zero.

mapping can be found in Appendix D.

4.2.1 Evaluation Metrics
We employed precision, recall, and F1 score cal-
culated on the test set. We present scores for both
strict and partial matches. A strict match implies
an exact match with the boundaries and entity type
in the gold standard. A partial match requires
the correct entity type and a significant character
overlap between the predicted and target entities,
assessed through a similarity ratio. This similar-
ity assessment is calculated considering both the
number of matching characters and their positions
within the strings to determine the closeness of the
match15. For instance, if the target annotation is
“hemiplegic cerebral palsy”, and the prediction is
“cerebral palsy”, this qualifies as a partial match.
We also report the micro F1 score, which aggre-
gates the contributions of entities from all classes to
compute the average (treating all entities equally)
(Manning et al., 2008). For all metrics we include
their confidence intervals (Gildenblat, 2023).

4.2.2 Data Split
Based on the distribution of NCTIDs across our
target labels, we observed limited data availabil-
ity for certain classes: RADIOTHERAPY (19 tri-
als), SURGICAL (45), BEHAVIOURAL (86), and
PHYSICAL (144). To mitigate potential skewing
of performance metrics due to sparse data, we im-
plemented a two-phase custom data splitting strat-
egy. Initially, trials containing the minority classes
were allocated into training, validation, and test
sets in a 50-25-25 ratio. For instance, of the 19 RA-
DIOTHERAPY trials, 9 were randomly assigned
to train, and 5 each to validation and test sets. Sub-
sequently, the remaining trials were distributed in
an 80-10-10 split. This method ensured that each
label class was represented across the datasets, par-
ticularly in the test set, to provide a more accurate
assessment of model performance. At the end of

15We used the get_close_matches function with cutoff=0.6
from: https://docs.python.org/3/library/difflib.html

this process, our dataset comprised 787 trials in the
training set and 153 trials each in the validation
and test sets. Overview of resulting entities distri-
bution, as well as information about unique and
overlapping entities is provided in Appendix B.

4.3 Results

4.3.1 Abstract-level Partial Match Results
Table 3 and Figure 3 show the partial match F1
scores and their 95% confidence intervals. We pre-
ferred using partial matching because it frequently
accounted for minor variations and errors that do
not significantly alter the meaning of the extracted
entities. The exact match results and a comparison
of both metrics is provided in the Appendix E.

BioBERT had the highest overall performance
with a micro average score of 0.81 (CI: 0.79-0.83),
excelling in RADIOTHERAPY 0.88 (CI: 0.70-
1.05). BioLinkBERT followed with a micro aver-
age of 0.77 (CI: 0.75-0.79), performing especially
well in DRUG 0.90 (CI: 0.85-0.95). When compar-
ing the two models, it stands out that BioLinkBERT
substantially under-performed for RADIOTHER-
APY, SURGICAL and OTHER. For the remain-
ing entities BioLinkBERT’s performance was sim-
ilar to BioBERT’s, with overlapping confidence
intervals. Furthermore, we calculated the IAA on
token-level between BioBERT and our target man-
ual annotations. We reached an overall kappa score
of 0.82 (0.81, 0.83), which shows that the model
achieves a close to human performance.

The GPT models had a weaker performance.
GPT-4 scored 0.56 (CI: 0.54-0.58), doing well in
CONDITION 0.76 (CI: 0.72-0.80) and DRUG 0.77
(CI: 0.71-0.84). GPT-3.5-turbo achieved an aver-
age score of 0.48 (CI: 0.46-0.50).

4.3.2 Impact of training data size
Figure 4 illustrates the impact of increasing train-
ing dataset size on the performance of the BioBERT
model after fine-tuning. The reported metric is the
validation micro F1 score, as computed from the
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Figure 3: Partial match abstract-level F1 score (95% confidence interval lower bound, upper bound). The numbers
below each entity name on the y-axis represent this entity type’s frequency in the (train set, test set).

seqeval library during training (Nakayama, 2018).
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Figure 4: Micro F1 score on the validation data set
versus training data size given as proportion of the full
data set. The mean score (blue line) is calculated from
5 independent training runs. The shaded area shows the
standard deviation.

The performance improved rapidly up to 50%
utilization of the training set, after which the in-
crease became more gradual until reaching 100%
usage. A slight performance reduction at the end
suggests a possible saturation point.

4.3.3 Error Analysis
Our qualitative error-analysis focused on the
abstract-level errors. We consider it to be a good
proxy for the errors on entity-level as it covers all
unique entities found in the trial registries.

CONDITION We observed the following error
patterns in BERT-based classification:

• Excluding relevant tokens, e.g., “abdominal
and lower limb surgeries” instead of “lower
abdominal and lower limb surgeries”.

• Study outcome-related expressions, e.g.,
“ear and hearing health”; “cardio-metabolic
risk”.

• Non-target disease or symptom names that
were usually mentioned to give context to the
study, but were not the subject of investigation
or were too generic, e.g., “dyslexia”; “cerebral
lesions”; “cannot walk”.

• Missed entities include instances missed by
the model, like “increased body mass index"
and “immunosuppression", as well as those
missed by human annotators but correctly
identified by the model, such as "pain".

Furthermore, in BioBERT we noticed an issue re-
lated to the segmentation of words into sub-tokens
for labelling, reported also in related work (Chen
et al., 2020). For example in one case the word
“chronic” was split into “ch” and “##ronic”, and
for both sub-parts the assigned labels were “B-
CONDITION”. This misclassification resulted in
the the wrong grouping of entities. To address this,
we used a simple strategy: taking the label of the
first token of a beginning entity and merging it
with subsequent sub-tokens of the same entity type.
However, more sophisticated approaches recom-
mend modifying the model architecture by replac-
ing the last softmax layer with a BiLSTM+CRF
layer (Chen et al., 2020).
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GPT frequently extracted the trial outcome and
intervention words together with the conditions, e.g.
"quality of life", "functional status", "education
outcomes". Also, generic terms were returned, e.g.
"symptoms", "sleep".

We also noticed instances where the model made
correct annotations that the human annotators have
missed. For example, BioLinkBERT annotated “ag-
itated delirium” while the human annotator marked
only “delirium”.

DRUG We observed the following error patterns
in the BERT-based classification:

• Incorrect labels annotating “soybean oil” and
“fish oil” incorrectly as DRUG instead of the
expected OTHER.

• Non-target drugs, e.g. “Remimazolam com-
bines the safety of midazolam and [...] of
propofol.” While “remimazolam” is the target
drug of the trial, the other two are only there to
provide context and should not be annotated.

GPT often returned non-drug interventions such
as “chamomile”, “acupuncture”, and “speech ther-
apy”. There were also overall correct extractions,
yet too specific according to our annotations guide-
lines. For example, GPT returned “diazepam nasal
spray” and “diazepam rectal gel”, while we would
only annotate “diazepam”.

OTHER ENTITIES We observed the following
error patterns in the BERT-based classification:

• Incorrect labels, e.g., annotating “bypass
surgery” as OTHER instead of SURGERY.
This error type was especially pronounced for
the RADIOTHERAPY and SURGICAL enti-
ties. In many of the abstracts BioLinkBERT
had correctly identified the relevant tokens,
but with the incorrect label OTHER, while
BioBERT had both correct.

• Generic therapy mentions, e.g., “therapy”
instead of “meditation relaxation therapy”.

• Including irrelevant tokens, e.g., including
the word “and” or closing brackets like “cbt)”.

Commonly observed error patterns from GPT
models included returning the same entities for
different entity types and combining interventions
that should be separated. For example it extracted
“onc206 in combination with radiation therapy” as

a single entity for both the OTHER and RADIO-
THERAPY categories. The correct annotations
should have been DRUG for “onc206” and RA-
DIOTHERAPY for “radiation therapy”. Addition-
ally, in many cases, GPT provided excessive details,
such as “7 weeks of outdoor walking”, instead of
“outdoor walking”.

4.4 Discussion

BioLinkBERT and BioBERT emerged as the top-
performing models for both drug and disease
recognition. An interesting observation was that
BioBERT demonstrated a higher capability of
learning from fewer training examples and out-
performed BioLinkBERT for the minority entities
SURGICAL and RADIOTHERAPY. Comparing
the performance of these models with inter-rater
agreements showed that the models achieved hu-
man like performances. The lower performance of
BERT-base highlights the importance of domain-
aware pre-training, as biomedical texts contain spe-
cialized terminology and complexities that generic
language models might struggle to capture.

Additionally, our study highlighted the chal-
lenges in zero-shot NER with GPT models. While
many results were close to our entities of interest,
these models often returned unnecessary details
and noise. However, we believe their output can
be enhanced with more precise guidance and exam-
ples. Future work may focus on refining prompts,
enriching the model context, and exploring few-
shot training methods (Jimenez Gutierrez et al.,
2022; Karkera et al., 2023). Furthermore, it could
be beneficial to investigate the performance when
all entities are returned in a single API call instead
of making separate calls for each entity type.

We observed that the dictionary-lookup/ regex
approach fell short, particularly in recall, suggest-
ing a propensity to miss relevant entities. This un-
derlines the importance of leveraging more sophis-
ticated models for the proposed entity recognition
tasks.

Finally, we also showed that the training data
size has a large impact on the model’s performance
and we expect to see small improvements with
more annotations.

5 Conclusion and Outlook

We have presented NeuroTrialNER, a new, openly
available corpus comprising 1093 clinical trial reg-
istry abstracts annotated for diseases, interventions,
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and controls. We further demonstrated that the
dataset was effective in training neural NER mod-
els and analyzed their performance. Specifically,
BioBERT emerged as the top-performing model
with results as good as a human rater. With this,
our dataset provides a fundament to enhance our
understanding of disease and intervention relation-
ships in neurological and psychiatric diseases and
improve downstream tasks, such as biomedical lit-
erature summarization, ultimately improving the
development of new interventions.

As future work, we plan on expanding the dataset
with other disease types, including annotations for
trial outcomes, and applying the NER models to
other clinical trial registries or even PubMed ab-
stracts. We are also exploring a more advanced
entity normalization technique to better align the
entities with a common knowledge base. Finally,
we aim to conduct a comprehensive analysis of clin-
ical trial research and envision integrating our work
into the services provided by the AACT database.

Limitations

Dataset Construction. In order to select clinical
trials from the neurological field, we employed a
comprehensive disease terminology list, linking it
to the "conditions" field of the AACT table. Despite
our efforts, this method carries inherent limitations,
such as potential mismatches between the terminol-
ogy list and the database entries, as well as possible
incomplete or inaccurate listings in the AACT "con-
ditions" field. While we have mitigated these issues
through manual validation by a medical expert, the
possibility of residual inaccuracies persists. These
might slightly affect the dataset’s representation of
certain conditions, but are unlikely to have a big
impact the overall study outcomes.

The choice to utilize a random sample from the
AACT database, rather than stratifying by disease,
aimed to test the generalizability of our model
across various conditions. Our test dataset included
unique entities not seen during training, which were
correctly classified, demonstrating the model’s ca-
pacity to identify diseases beyond those it was ex-
plicitly trained on. This outcome suggests that a
non-stratified sampling approach has the potential
to highlight the robustness and adaptability of our
dataset and methodology. However, it’s important
to note that this sampling method might not suffi-
ciently represent less common conditions.

Finally, the random split between training and

test datasets could include related trials (e.g.,
follow-up studies), potentially complicating the
evaluation of the model’s performance. However,
identifying such relationships within trials is chal-
lenging due to the absence of explicit trial link-
ages in the database and ambiguous indicators
within trial descriptions. Based on our experience
with ClinicalTrials.gov, we believe that such occur-
rences are infrequent.

Evaluation Setup. Our custom data splitting
strategy, designed to balance NCTIDs across target
labels, may result in a test set that does not fully
reflect the true data distribution.

A more robust evaluation method, such as cross-
validation, could better capture dataset variability.
However, we did not implement cross-validation
due to practical constraints. Cross-validation can
be computationally expensive and time-consuming.
Additionally, the complexity of our custom split-
ting strategy and resource limitations influenced
our decision to use a fixed split strategy.

It’s worth noting that approximately 74% of the
trials (807 out of 1093) were split using an 80-10-
10 ratio. This suggests that our fixed split method
may still offer a reasonable compromise between
computational feasibility and model evaluation re-
liability.

Comparison to GPT. We acknowledge that use
of GPT models in a zero-shot setting for compar-
ison with BERT-based models, which were fine-
tuned, may not constitute a fair comparison. The
decision to not fine-tune the GPT models was
driven by limited resources, and the limited ex-
periments with prompting was influenced by recent
research suggesting that GPT models, even with
advanced prompt engineering and fine-tuning, typi-
cally underperform compared to fine-tuned BERT
models in information extraction tasks such as NER
(Jimenez Gutierrez et al., 2022; Ngo and Koopman,
2023; Hu et al., 2024).

Entity Availability. Our methodology primar-
ily focused on extracting entity names from the
abstract or title of clinical trial records, effectively
capturing a vast majority of relevant data. However,
we also identified instances where essential infor-
mation was located within the AACT database’s
condition and intervention fields. This highlights
the need for future work to address these scenarios
and potentially adapt our methodology.

18876



Acknowledgments

We thank Emma-Lotta Säätelä from the Karolinska
Institute University Library for her assistance in
developing the initial MeSH term list for neurologi-
cal conditions, which was used to filter for relevant
clinical trials.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Franz Calvo, Bryant T Karras, Richard Phillips,
Ann Marie Kimball, and Fred Wolf. 2003. Diagnoses,
syndromes, and diseases: a knowledge representation
problem. In AMIA annual symposium proceedings,
volume 2003, page 802. American Medical Informat-
ics Association.

Leonardo Campillos-Llanos, Ana Valverde-Mateos,
Adrián Capllonch-Carrión, and Antonio Moreno-
Sandoval. 2021. A clinical trials corpus annotated
with umls entities to enhance the access to evidence-
based medicine. BMC medical informatics and deci-
sion making, 21:1–19.

Miao Chen, Fang Du, Ganhui Lan, and Victor S
Lobanov. 2020. Using pre-trained transformer deep
learning models to identify named entities and syn-
tactic relations for clinical protocol analysis. In AAAI
Spring Symposium: Combining Machine Learning
with Knowledge Engineering (1), pages 1–8.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

Jeffrey L Cummings, Travis Morstorf, and Kate Zhong.
2014. Alzheimer’s disease drug-development
pipeline: few candidates, frequent failures.
Alzheimer’s research & therapy, 6(4):1–7.

Allan Peter Davis, Thomas C Wiegers, Phoebe M
Roberts, Benjamin L King, Jean M Lay, Kelley
Lennon-Hopkins, Daniela Sciaky, Robin Johnson,
Heather Keating, Nigel Greene, et al. 2013. A CTD–
Pfizer collaboration: manual curation of 88 000 sci-
entific articles text mined for drug–disease and drug–
phenotype interactions. Database, 2013:bat080.

Louise Deleger, Qi Li, Todd Lingren, Megan Kaiser,
Katalin Molnar, Laura Stoutenborough, Michal
Kouril, Keith Marsolo, Imre Solti, et al. 2012. Build-
ing gold standard corpora for medical natural lan-
guage processing tasks. In AMIA Annual Symposium
Proceedings, volume 2012, page 144. American Med-
ical Informatics Association.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Jason Fries, Leon Weber, Natasha Seelam, Gabriel Al-
tay, Debajyoti Datta, Samuele Garda, Sunny Kang,
Rosaline Su, Wojciech Kusa, Samuel Cahyawijaya,
Fabio Barth, Simon Ott, Matthias Samwald, Stephen
Bach, Stella Biderman, Mario Sänger, Bo Wang,
Alison Callahan, Daniel León Periñán, Théo Gi-
gant, Patrick Haller, Jenny Chim, Jose Posada, John
Giorgi, Karthik Rangasai Sivaraman, Marc Pàmies,
Marianna Nezhurina, Robert Martin, Michael Cul-
lan, Moritz Freidank, Nathan Dahlberg, Shubhan-
shu Mishra, Shamik Bose, Nicholas Broad, Yanis
Labrak, Shlok Deshmukh, Sid Kiblawi, Ayush Singh,
Minh Chien Vu, Trishala Neeraj, Jonas Golde, Albert
Villanova del Moral, and Benjamin Beilharz. 2022.
BigBio: A framework for data-centric biomedical
natural language processing. In Advances in Neural
Information Processing Systems, volume 35, pages
25792–25806. Curran Associates, Inc.

Jacob Gildenblat. 2023. A python library for confi-
dence intervals. https://github.com/jacobgil/
confidenceinterval.

Yan Hu, Qingyu Chen, Jingcheng Du, Xueqing Peng,
Vipina Kuttichi Keloth, Xu Zuo, Yujia Zhou, Zehan
Li, Xiaoqian Jiang, Zhiyong Lu, et al. 2024. Im-
proving large language models for clinical named
entity recognition via prompt engineering. Journal
of the American Medical Informatics Association,
page ocad259.

Xiaoli Huang, Jimmy Lin, and Dina Demner-Fushman.
2006. Evaluation of PICO as a knowledge represen-
tation for clinical questions. In AMIA annual sympo-
sium proceedings, volume 2006, page 359. American
Medical Informatics Association.

Bernal Jimenez Gutierrez, Nikolas McNeal, Clayton
Washington, You Chen, Lang Li, Huan Sun, and
Yu Su. 2022. Thinking about GPT-3 in-context learn-
ing for biomedical IE? think again. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 4497–4512, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Tian Kang, Shaodian Zhang, Youlan Tang, Gregory W
Hruby, Alexander Rusanov, Noémie Elhadad, and
Chunhua Weng. 2017. Eliie: An open-source infor-
mation extraction system for clinical trial eligibility
criteria. Journal of the American Medical Informat-
ics Association, 24(6):1062–1071.

18877

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480257/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480257/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480257/
https://doi.org/https://doi.org/10.1186/s12911-021-01395-z
https://doi.org/https://doi.org/10.1186/s12911-021-01395-z
https://doi.org/https://doi.org/10.1186/s12911-021-01395-z
https://api.semanticscholar.org/CorpusID:218623194
https://api.semanticscholar.org/CorpusID:218623194
https://api.semanticscholar.org/CorpusID:218623194
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1186/alzrt269
https://doi.org/10.1186/alzrt269
https://doi.org/10.1093/database/bat080
https://doi.org/10.1093/database/bat080
https://doi.org/10.1093/database/bat080
https://doi.org/10.1093/database/bat080
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540456/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540456/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540456/
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://proceedings.neurips.cc/paper_files/paper/2022/file/a583d2197eafc4afdd41f5b8765555c5-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a583d2197eafc4afdd41f5b8765555c5-Paper-Datasets_and_Benchmarks.pdf
https://github.com/jacobgil/confidenceinterval
https://github.com/jacobgil/confidenceinterval
https://doi.org/10.1093/jamia/ocad259
https://doi.org/10.1093/jamia/ocad259
https://doi.org/10.1093/jamia/ocad259
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839740/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839740/
https://doi.org/10.18653/v1/2022.findings-emnlp.329
https://doi.org/10.18653/v1/2022.findings-emnlp.329
https://doi.org/10.1093/jamia/ocx019
https://doi.org/10.1093/jamia/ocx019
https://doi.org/10.1093/jamia/ocx019


Nikitha Karkera, Sathwik Acharya, and Sucheendra K
Palaniappan. 2023. Leveraging pre-trained language
models for mining microbiome-disease relationships.
BMC bioinformatics, 24(1):1–19.

Michael H. Kottow. 1980. A medical definition of dis-
ease. Medical Hypotheses, 6(2):209–213.

Martin Krallinger, Obdulia Rabal, Florian Leitner,
Miguel Vazquez, David Salgado, Zhiyong Lu, Robert
Leaman, Yanan Lu, Donghong Ji, Daniel M. Lowe,
and et al. 2015. The CHEMDNER corpus of chemi-
cals and drugs and its annotation principles. Journal
of Cheminformatics, 7:1–17.

Fabrício Kury, Alex Butler, Chi Yuan, Li-heng Fu,
Yingcheng Sun, Hao Liu, Ida Sim, Simona Carini,
and Chunhua Weng. 2020. Chia, a large annotated
corpus of clinical trial eligibility criteria. Scientific
data, 7(1):281.

Christine Laine, Richard Horton, Catherine D DeAn-
gelis, Jeffrey M Drazen, Frank A Frizelle, Fiona
Godlee, Charlotte Haug, Paul C Hébert, Sheldon
Kotzin, Ana Marusic, et al. 2007. Clinical trial regis-
tration: looking back and moving ahead. The Lancet,
369(9577):1909–1911.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J Mattingly, Thomas C Wiegers, and
Zhiyong Lu. 2016a. BioCreative V CDR task corpus:
a resource for chemical disease relation extraction.
Database, 2016.

Jiao Li, Yueping Sun, Robin J. Johnson, Daniela Sci-
aky, Chih Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J. Mattingly, Thomas C. Wiegers, and
Zhiyong Lu. 2016b. BioCreative V CDR task corpus:
a resource for chemical disease relation extraction.
Database: The Journal of Biological Databases and
Curation, 2016:68.

Christopher D. Manning, Prabhakar Raghavan, and Hin-
rich Schütze. 2008. Introduction to Information Re-
trieval. Cambridge University Press.

Iain J Marshall, Joël Kuiper, Edward Banner, and By-
ron C Wallace. 2017. Automating biomedical evi-
dence synthesis: RobotReviewer. In Proceedings of
the conference. Association for Computational Lin-
guistics. Meeting, volume 2017, page 7. NIH Public
Access.

Iain J Marshall, Benjamin Nye, Joël Kuiper, Anna
Noel-Storr, Rachel Marshall, Rory Maclean, Frank
Soboczenski, Ani Nenkova, James Thomas, and By-
ron C Wallace. 2020. Trialstreamer: A living, auto-
matically updated database of clinical trial reports.
Journal of the American Medical Informatics Associ-
ation, 27(12):1903–1912.

Ines Montani and Matthew Honnibal. 2017. Prodigy:
A modern and scriptable annotation tool for creating
training data for machine learning models.

James G Mork, Antonio Jimeno-Yepes, Alan R Aron-
son, et al. 2013. The NLM Medical Text Indexer Sys-
tem for Indexing Biomedical Literature. BioASQ@
CLEF, 1.

Hiroki Nakayama. 2018. seqeval: A python framework
for sequence labeling evaluation.

Duy-Hoa Ngo and Bevan Koopman. 2023. From free-
text drug labels to structured medication terminology
with bert and gpt. In AMIA Annual Symposium Pro-
ceedings, volume 2023, page 540. American Medical
Informatics Association.

Benjamin Nye, Junyi Jessy Li, Roma Patel, Yinfei Yang,
Iain Marshall, Ani Nenkova, and Byron Wallace.
2018. A corpus with multi-level annotations of pa-
tients, interventions and outcomes to support lan-
guage processing for medical literature. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 197–207, Melbourne, Australia. Association
for Computational Linguistics.

Frank B Rogers. 1963. Medical subject headings. Bul-
letin of the Medical Library Association, 51:114–116.

Ariel S Schwartz and Marti A Hearst. 2002. A simple
algorithm for identifying abbreviation definitions in
biomedical text. In Biocomputing 2003, pages 451–
462. World Scientific.

Attila A Seyhan. 2019. Lost in translation: the val-
ley of death across preclinical and clinical divide–
identification of problems and overcoming obstacles.
Translational Medicine Communications, 4(1):1–19.

Jaimie D Steinmetz, Katrin Maria Seeher, Nicoline
Schiess, Emma Nichols, Bochen Cao, Chiara Servili,
Vanessa Cavallera, Ewerton Cousin, Hailey Hagins,
Madeline E Moberg, et al. 2024. Global, regional,
and national burden of disorders affecting the ner-
vous system, 1990–2021: a systematic analysis for
the global burden of disease study 2021. The Lancet
Neurology, 23(4):344–381.

Alexander J Sutton, Nicola J Cooper, and David R Jones.
2009. Evidence synthesis as the key to more coher-
ent and efficient research. BMC medical research
methodology, 9(1):1–9.

Asba Tasneem, Laura Aberle, Hari Ananth, Swati
Chakraborty, Karen Chiswell, Brian J McCourt, and
Ricardo Pietrobon. 2012. The database for aggregate
analysis of ClinicalTrials. gov (AACT) and subse-
quent regrouping by clinical specialty. PloS one,
7(3):e33677.

James Thomas, Anna Noel-Storr, Iain Marshall, Byron
Wallace, Steven McDonald, Chris Mavergames, Paul
Glasziou, Ian Shemilt, Anneliese Synnot, Tari Turner,

18878

https://doi.org/10.1186/s12859-023-05411-z
https://doi.org/10.1186/s12859-023-05411-z
https://doi.org/https://doi.org/10.1016/0306-9877(80)90085-7
https://doi.org/https://doi.org/10.1016/0306-9877(80)90085-7
https://doi.org/10.1186/1758-2946-7-S1-S2
https://doi.org/10.1186/1758-2946-7-S1-S2
https://doi.org/https://doi.org/10.1038/s41597-020-00620-0
https://doi.org/https://doi.org/10.1038/s41597-020-00620-0
https://doi.org/10.1056/NEJMe078110
https://doi.org/10.1056/NEJMe078110
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/database/baw068
https://doi.org/10.1093/database/baw068
https://doi.org/10.1093/database/baw068
https://doi.org/10.1093/database/baw068
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://doi.org/10.18653/v1/P17-4002
https://doi.org/10.18653/v1/P17-4002
https://doi.org/10.1093/jamia/ocaa163
https://doi.org/10.1093/jamia/ocaa163
https://prodi.gy/
https://prodi.gy/
https://prodi.gy/
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://doi.org/10.18653/v1/P18-1019
https://doi.org/10.18653/v1/P18-1019
https://doi.org/10.18653/v1/P18-1019
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC35238/
https://doi.org/10.1186/s41231-019-0050-7
https://doi.org/10.1186/s41231-019-0050-7
https://doi.org/10.1186/s41231-019-0050-7
https://doi.org/https://doi.org/10.1016/S1474-4422(24)00038-3
https://doi.org/https://doi.org/10.1016/S1474-4422(24)00038-3
https://doi.org/https://doi.org/10.1016/S1474-4422(24)00038-3
https://doi.org/https://doi.org/10.1016/S1474-4422(24)00038-3
https://doi.org/10.1186/1471-2288-9-29
https://doi.org/10.1186/1471-2288-9-29
https://doi.org/10.1371/journal.pone.0033677
https://doi.org/10.1371/journal.pone.0033677
https://doi.org/10.1371/journal.pone.0033677


et al. 2017. Living systematic reviews: 2. combin-
ing human and machine effort. Journal of clinical
epidemiology, 91:31–37.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000. In-
troduction to the CoNLL-2000 shared task chunking.
In Fourth Conference on Computational Natural Lan-
guage Learning and the Second Learning Language
in Logic Workshop.

Tony Tse, Kevin M Fain, and Deborah A Zarin. 2018.
How to avoid common problems when using Clini-
calTrials.gov in research: 10 issues to consider. Bmj,
361.

Yanshan Wang, Liwei Wang, Majid Rastegar-Mojarad,
Sungrim Moon, Feichen Shen, Naveed Afzal, Sijia
Liu, Yuqun Zeng, Saeed Mehrabi, Sunghwan Sohn,
et al. 2018. Clinical information extraction appli-
cations: a literature review. Journal of biomedical
informatics, 77:34–49.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Thomas A Wood. 2023. Drug named entity recognition
(computer software), version 1.0.1. To appear.

Michihiro Yasunaga, Jure Leskovec, and Percy Liang.
2022. LinkBERT: Pretraining language models with
document links. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 8003–8016,
Dublin, Ireland. Association for Computational Lin-
guistics.

Deborah A Zarin, Kevin M Fain, Heather D Dobbins,
Tony Tse, and Rebecca J Williams. 2019. Ten-year
update on ClinicalTrials. gov Results Database. The
New England journal of medicine, 381(20):1966.

A Corpus Details

Figure 5 outlines the top 10 annotations across the
different entity categories based on frequency. In
the CONDITION category, prevalent conditions
like stroke (196 occurrences) and Parkinson’s dis-
ease (130 occurrences) are featured, shedding light
on major themes within the dataset. The OTHER
category encompasses various treatments and tech-
niques, with transcranial direct current stimula-
tion (tdcs) and continuous positive airway pressure
(cpap) being the most frequent. In the DRUG cate-
gory, medications and treatments such as melatonin
(19 occurrences) and risperidone (18 occurrences)
are listed, indicating a focus on pharmacological
interventions. The PHYSICAL category outlines

physical and rehabilitative therapies, with exer-
cise being the most present (41 occurrences). BE-
HAVIOURAL shows therapeutic approaches such
as cognitive-behavioral therapy (cbt) and action ob-
servation therapy, with frequencies ranging from 9
to 4. SURGICAL presents various surgical meth-
ods, with car t cells and carotid endarterectomy
among the top, showcasing specialized medical
interventions. RADIOTHERAPY covers radiation-
based treatments, with radiation therapy having the
highest frequency (12 occurrences). Lastly, CON-
TROL describes control conditions in experiments,
with placebo (217 occurrences) leading, underscor-
ing its common use in controlled studies.

B Data Split Details

Table 4 displays the frequency and uniqueness of
the different entity types across training, validation,
and testing datasets.

CONDITION, OTHER, and DRUG are the most
frequently annotated entity types, with relatively
moderate novelty in the test data; CONDITION
features 25% (171/683) unique entities and DRUG
has 36% (77/213). It also stands out that while
OTHER is the second most frequently annotated
entity, around 62% (103/167) of the test entities are
unique for the test set. This is due to the nature of
this label - it captures anything that does not fit in
the other categories.

On the other hand, PHYSICAL and BE-
HAVIOURAL have fewer annotations but exhibit
higher novelty, with 46% (60/130) and 60% (55/91)
of their test entities being unique, respectively. At
the lower end, SURGICAL and RADIOTHERAPY
have the fewest annotations but also a substantial
portion of novel entities in the test datasets, 69%
(37/54) and 23% (5/22) respectively. This configu-
ration underscores different challenges for predic-
tive models, ranging from handling familiar entities
to adapting to largely unseen ones in testing.

C Fine-Tuning Setup

The datasets used for training, validation, and test-
ing were loaded from JSON files. The tokenization
process utilized the HuggingFace AutoTokenizer
and ensured that the tokens are aligned with their
corresponding labels. Padding, truncation, and
a maximum sequence length of 512 tokens was
applied to ensure consistent input sizes. The la-
bels were mapped to integer IDs using a dictionary,
where each unique label in the dataset was assigned
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Entity Type Train Total Train Unique Valid Total Valid Unique Test Total Test Unique Train ∩ Valid Train ∩ Test Test ∩ Valid Train ∩ Valid ∩ Test

CONDITION 3524 1068 729 191 683 171 123 110 63 57
OTHER 1361 749 278 164 167 103 17 18 10 7
DRUG 1205 415 218 62 213 77 25 26 8 6
PHYSICAL 326 191 138 63 130 60 13 4 5 2
BEHAVIOURAL 156 105 70 48 91 55 4 3 1 1
SURGICAL 83 58 36 24 54 37 1 1 0 0
RADIOTHERAPY 30 13 25 7 22 5 3 4 4 3
CONTROL 396 138 74 37 84 31 7 10 5 5

Table 4: “Train Total”, “Valid Total”, and “Test Total” represent total entity counts in the training, validation, and
test datasets, respectively. “Train Unique”, “Valid Unique”, and “Test Unique” indicate unique entity counts in these
datasets. “Train ∩ Valid”, “Train ∩ Test”, and “Test ∩ Valid” denote entity overlaps between training-validation,
training-test, and test-validation sets, respectively. “Train ∩ Valid ∩ Test” shows entities common to all three
datasets.
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Figure 5: Top 10 most frequent annotated entities per entity type in the complete dataset.

a unique index.

The model architecture was based on the
pre-trained AutoModelForTokenClassification
from HuggingFace, initialized from the different
model’s checkpoint. The configuration was ad-
justed to match the number of labels in the dataset.
Label-to-ID and ID-to-label mappings were pro-
vided during the initialization to ensure correct
classification during training and evaluation.

The TrainingArguments class from the Hug-
gingFace Transformers library was utilized to con-
figure the training process. Below, we detail the

key parameters used in the experiments16:

• Training Epochs: The model was trained for
a total of 15 epochs.

• Batch Size: A batch size of 16 was used for
training on each device, and a batch size of 64
was used during evaluation.

• Warmup Steps: A warmup ratio of 10% of
the total training steps was applied to gradu-

16The code is available at https://github.com/
Ineichen-Group/NeuroTrialNER/blob/main/models/
bert/train_script.py
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ally increase the learning rate at the beginning
of training.

• Weight Decay: A weight decay of 0.01 was
employed to regularize the model and prevent
overfitting.

• Logging and Evaluation: Logging, evalu-
ation, and model saving were configured to
occur at the end of every epoch.

• Model Selection: The best model was
selected based on the evaluation loss
(eval_loss), with lower values indicating
better performance.

• Checkpointing: To limit the storage space
used by checkpoints, a maximum of two
checkpoints were saved. The best checkpoint
was always retained, and older checkpoints
were deleted when new ones were created.

• Reporting: The training process was tracked
and reported using the Weights and Biases
(wandb) platform.

D Entity Mapping Details

As described in Section 4.2 we used a basic map-
ping technique to link entities recognized by dif-
ferent NER models to their canonical forms in a
target dictionary. Here we present a brief eval-
uation about how well this technique performed.
Table 5 details the results of applying our mapping
technique to the aggregated unique abstract-level
entities, obtained from the various NER methods.

The RegEx-Dict method, employing regular
expression-based dictionary matching, shows a
100% success rate in mapping both DRUGs
and CONDITIONs. This perfect mapping is at-
tributable to the source of these annotations, which
are derived directly from the same dictionaries used
for mapping.

The results further revealed that, generally,
DRUG entities were mapped more successfully
to the dictionary compared to CONDITION enti-
ties. This disparity could be due to the inclusion of
additional information related to CONDITIONS,
such as severity and stage, in the manual and there-
fore fine-tuned model extractions. These detailed
attributes make CONDITION entities more com-
plex and harder to map accurately to the dictionary.
In contrast, the AACT database typically contains
high-level condition descriptions that exclude such

detailed attributes, resulting in higher mapping suc-
cess (61.5%) as these broader terms align better
with the dictionary entries.

For DRUG entities, the highest number of suc-
cessful mappings was produced by entities identi-
fied using BioLinkBERT-base (49.1%), followed
closely by the GPT models, with GPT-4 mapping
56 out of 120 processed entities (46.7%) and GPT-
3.5-turbo mapping 44 out of 99 (44.4%). Interest-
ingly, the AACT DRUG entities were mapped in
only 35.8% of cases.

The results suggest that a more advanced neural
linking approach would be better for entity linking.

E Abstract-level Exact Match Results

Table 6 presents the F1 scores calculated based on
the exact match between target and predicted anno-
tations. The comparative performance of the dif-
ferent models remained consistent: BioLinkBERT
led in DRUG and CONDITION categories, while
BioBERT outperformed in all other entity types.
Notably, there was a drop in performance for the
minority classes: PHYSICAL, BEHAVIOURAL,
SURGICAL, and RADIOTHERAPY.

Table 7 helps interpret the differences between
partial and exact matches taking BioBERT as a ref-
erence model. It provides the target and predicted
named entities from three randomly sampled trials
per entity type where the exact F1 score was lower
than the partial F1 score. The total number of trials
exhibiting this discrepancy is also reported below
each entity type.

We can see that the partial match metric allowed
for flexibility in the span of extracted entities, such
as ignoring additional terms in “aerobic dance train-
ing practice” or minor variations like the suffix
in “seizure rms”. It also disregarded unnecessary
characters added by the model, exemplified by the
erroneus bracket in “meditation-relaxation )”.

However, there were instances where model ex-
tractions missed parts of a word, such as extract-
ing "pre gait training" instead of "precision gait
training." This issue was particularly relevant for
the CONTROL category, where the frequent entity
"placebo" was often reduced to "place." Addition-
ally there were cases where missing a part of the
entity changes the semantic meaning, e.g., extract-
ing only "cannabis" from "cannabis misuse" did not
capture the actual condition. In these cases, the par-
tial match metric was more forgiving, potentially
obscuring some limitations of the model.
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Source Annotations Annotated Drug Matched Drug % Mapped Drug Annotated Condition Matched Condition % Mapped Condition

Manual Target Annotations 100 52 52.0 345 120 34.8
BioLinkBERT-base 112 55 49.1 424 131 30.9
BioBERT-v1.1 121 50 41.3 433 127 29.3
BERT-base-uncased 123 41 33.3 549 125 22.8
GPT-3.5-turbo 99 44 44.4 488 111 22.8
GPT-4 120 56 46.7 268 128 47.8
AACT 81 29 35.8 405 249 61.5
RegEx-Dict 189 189 100.0 126 126 100.0

Table 5: Mapping of abstract level entities to a canonical in a target dictionary. Each row in the table quantifies
the total number of entities identified by the different NER methods (Annotated Drug and Annotated Condition)
and the number that were accurately mapped (Matched Drug and Matched Condition) along with their respective
percentages.

This type of evaluation highlights the trade-offs
between partial and exact matching approaches.
Partial matching can be advantageous for handling
variations and minor errors in entity extraction, of-
fering a more lenient and potentially more infor-
mative measure of model performance. However,
it can also mask inaccuracies and semantic differ-
ences that exact matching would capture.

F Token-level Results

Token-level evaluation assessed the model’s perfor-
mance on a per-token basis, focusing on how well
it correctly labeled individual words within the text.
Table 8 presents the results of token-level evalua-
tion for micro F1 score across different entity types.
Since the GPT models and the AACT database
did not provide token-level annotations, we only
provide the scores achieved by the BERT-based
models.

BioLinkBERT-base achieved an average F1
score of 0.94. BioBERT-v1.1 showed a slightly
higher performance with an average F1 score of
0.95. On the other hand, BERT-base-uncased per-
formed slightly lower with an average F1 score of
0.93.

Notably, BioLinkBERT-base and BioBERT-v1.1
generally exhibited higher performance across
most entity types compared to BERT-base-uncased.
However, there were variations in performance
across different entity types. For instance,
BioBERT-v1.1 outperformed other models in RA-
DIOTHERAPY (F1 score of 0.93) and SURGICAL
(F1 score of 0.74) categories, while BERT-base-
uncased struggled particularly in BEHAVIOURAL
(F1 score of 0.36) and SURGICAL (F1 score of
0.30) categories.

G GPT Setup

Technical Setup The code in Listing 1 shows
the API call we used for each clinical trial. The
gpt_model variable was replaced with the name of
the GPT model, i.e., either gpt-3.5-turbo or gpt-4.
The input_raw_text variable serves as a placeholder
for the actual content of the clinical trial, including
both its title and detailed description. This was the
text from which the GPT model was tasked with
extracting relevant information based on the given
prompt. The nature of the prompt varied depending
on the information extraction task at hand.

completion =
client.chat.completions.create(
model=gpt_model ,
temperature =0.1,
max_tokens =2000,
messages =[

{"role": "system", "content":
"You are an expert

information
extraction assistant from
clinical trials."},
{"role": "user", "content":
prompt + "’’’" +
input_raw_text + "’’’"}

]
)

Listing 1: GPT Chat Completion API Call

We also explored a suggested approach to pre-
vent GPT from generating tokens that are not in
the original input text (Jimenez Gutierrez et al.,
2022). Specifically, by employing logit bias17, we
could add a fixed value to the final probability of
a specified set of tokens, thereby constraining the

17https://platform.openai.com/docs/api-
reference/completions

18882

https://platform.openai.com/docs/api-reference/completions
https://platform.openai.com/docs/api-reference/completions


Entity Type BioLinkBERT-base BioBERT-v1.1 BERT-base-uncased GPT-4 GPT-3.5-turbo AACT RegEx-Dict

CONDITION 0.77 (0.73, 0.81) 0.72 (0.68, 0.76) 0.61 (0.57, 0.64) 0.58 (0.53, 0.63) 0.50 (0.45, 0.55) 0.31 (0.26, 0.35) 0.35 (0.29, 0.41)
OTHER 0.39 (0.33, 0.46) 0.47 (0.40, 0.55) 0.28 (0.21, 0.34) 0.15 (0.09, 0.20) 0.09 (0.04, 0.14) 0.05 (0.01, 0.10) n.a.
DRUG 0.83 (0.77, 0.89) 0.73 (0.66, 0.80) 0.54 (0.46, 0.61) 0.67 (0.60, 0.75) 0.58 (0.50, 0.66) 0.46 (0.37, 0.55) 0.30 (0.23, 0.37)
PHYSICAL 0.41 (0.31, 0.50) 0.45 (0.35, 0.55) 0.41 (0.32, 0.50) 0.14 (0.07, 0.20) 0.11 (0.05, 0.17) 0.03 (0.00, 0.08) n.a.
BEHAVIOURAL 0.32 (0.21, 0.42) 0.50 (0.38, 0.61) 0.22 (0.11, 0.34) 0.07 (0.01, 0.13) 0.04 (0.00, 0.09) 0.02 (0.00, 0.05) n.a.
SURGICAL 0.09 (0.00, 0.22) 0.44 (0.29, 0.59) 0.08 (0.00, 0.19) 0.09 (0.00, 0.20) 0.11 (0.03, 0.19) 0.00 (0.00, 0.00) n.a.
RADIOTHERAPY 0.00 (0.00, 0.00) 0.80 (0.58, 1.02) 0.00 (0.00, 0.00) 0.13 (0.00, 0.37) 0.05 (0.00, 0.12) 0.13 (0.00, 0.37) n.a.
CONTROL 0.69 (0.59, 0.78) 0.58 (0.49, 0.68) 0.05 (0.00, 0.12) 0.40 (0.30, 0.50) 0.22 (0.14, 0.30) 0.30 (0.18, 0.43) n.a.

Micro F1 0.66 (0.64, 0.68) 0.68 (0.66, 0.70) 0.54 (0.52, 0.56) 0.42 (0.40, 0.44) 0.37 (0.35, 0.39) 0.45 (0.43, 0.47) 0.25 (0.21, 0.28)

Table 6: Exact-match F1 score (95% confidence interval lower bound, upper bound) for the NER task across all
entity types.

tokens that GPT can generate. However, we ob-
served a substantial amount of new noise in the
outputs, and due to time constraints, we did not fur-
ther investigate this approach. Instead we defined
some post-processing rules based on the observed
outputs as described later.

Prompting Strategy Only briefly we experi-
mented with a simpler (v1) and more sophisticated
(v2) prompt formulations for the DRUG (Listing 2)
and CONDITION (Listing 3) entities. Curiously,
we observed that the simpler prompt versions for
both entity types resulted in better results for GPT-
4. For GPT-3 the opposite was true, and the outputs
produced using the more complex prompts seemed
to be better. We leave a more systematic evaluation
of the prompt strategies and their impact to future
research.

interventions_prompt_v1 = "List the drug
names mentioned in the following

sentences separated with the |
symbol. If none is found , return
only the word none.: "

interventions_prompt_v2 = "Review the
clinical trial document enclosed
within triple quotes. Extract only
the names of drugs that are actively
being investigated in the trial.

List these names separated by the
’|’ symbol without any additional
text or explanation. Exclude drugs
merely mentioned and not under
investigation. If there are no drugs
actively investigated , simply

respond with ’none ’. Focus solely on
the drug names for clarity and

precision."

Listing 2: DRUG Extraction Prompts

conditions_prompt_v1 = "List the
diseases mentioned in the following
sentences separated with the |
symbol. If none is found , return
only the word none.: "

conditions_prompt_v2 = "Examine the
clinical trial document within the

triple quotes. Identify and list
only the names of diseases and
related symptoms under investigation
. Format this list with each name or
symptom separated by the ’|’ symbol

, omitting any additional
descriptions or text. Exclude
diseases and symptoms that are only
mentioned but not investigated. If
there are no diseases or symptoms
actively investigated , answer with ’
none ’. The response should strictly
contain the list of names and
symptoms."

Listing 3: CONDITION Extraction Prompts

The prompt strategies for PHYSICAL, BE-
HAVIOURAL, SURGICAL, RADIOTHERAPY,
CONTROL entities followed the same template
as illustrated in Listing 4. In each case, only the
relevant portion highlighted in orange was utilized
from the prompt template.

prompt_template = "Extract the therapeutic
physcial | therapeutic behavioural |
surgical | radiotherap |
comparator interventions from the
following clinical trial and return
them in a list separated with the |
symbol. If none is found , return
only the word none."

Listing 4: Different Entities Prompt

Finally, for the OTHER category, we instructed
GPT to identify interventions that didn’t fit into any
other predefined category, see Listing 5.

prompt_other = "Extract any other
therapeutic interventions from the
following clinical trial , which are
not behavioural , surgical ,
radiotherapy or physical. Return
them in a list separated with the |
symbol. If none is found , return
only the word none."

Listing 5: Different Entities Prompt

Post-processing Our post-processing rules were
developed based on observation of the model’s out-
puts. These rules guided the following steps:
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Entity Type
(Diff Cases)

Target Entities Predicted Entities Exact F1 Partial F1

CONDITION
(40)

emergent seizure,
seizure

emergent seizure rm,
seizure| seizure rm,
seizure rms

0.33 1.00

drug abuse,
spm

drug abuse,
drug use,
dual disordered,
spmi,
substance abuse

0.57 0.75

cannabis misuse,
misuse cannabis,
schizophrenia

cannabis,
schizophrenia

0.40 1.00

OTHER
(21)

electromagnetic tracking,
electromagnetic tracking system

electromagnetic tracking tracking 0.00 1.00

imaginal exposure sessions,
imaginal exposure therapy,
online format of ie

imaginal exposure,
imaginal exposure therapy,
online format of

0.33 1.00

environmental enrichment
online spatial navigation

online spatial navigation intervention
remotely delivered environmental
enrichment intervention

0.00 1.00

DRUG
(13)

pasireotide,
somatostatin analogues

pasireotide,
pasireotide lar,
somatostatin analogue

0.40 1.00

lanreotide,
octreotide

lanreotide autogel,
lanreotidegel,
octreotide

0.40 1.00

lithium,
lurasidone,
lurasidone hcl

lithium,
lurasidone

0.80 1.00

PHYSICAL
(16)

inspiratory muscle strengthening exercise,
inspiratory muscle training

inspiratory muscle strengthening exercise,
inspiratory muscle training care

0.50 1.00

aerobic dance training,
aerobic dance training with home practice

aerobic dance training,
aerobic dance training practice,
physical exercise

0.40 0.86

precision gait retraining pre gait retraining 0.00 1.00

BEHAVIOURAL
(9)

brief talking therapy
brief intervention,
talking therapy

0.00 0.80

meditation relaxation therapy,
meditation-relaxation,
mr therapy

meditation-relaxation (,
meditation relaxation therapy,
mr therapy

0.67 1.00

prevention prompts tailored to familial risk,
tools for health promotion and
disease prevention

familial risk assessment and prevention prompts tailored
to familial risk

0.00 0.80

SURGICAL
(4)

femoral derotation osteotomies,
femoral derotation osteotomy

femoral derotation osteotomy,
transversal plane femoral derotation
osteotomies tracking

0.50 1.00

biostar septal repair implant,
patent foramen ovale closure,
pfo closure

biostar septal repair implant,
biostar septal repair implant system,
patent foramen ovale closure,
pfo closure

0.85 1.00

(autologous) stem cells,
stem cell transplant,
syngeneic or autologous hematopoietic
cell transplantation

stem cell transplant,
stem cell transplant (autologous) stem cells,
syngeneic or autologous hematopoietic cell transplantation

0.67 1.00

RADIOTHERAPY
(1)

3d conformal palliative rt,
3d conformal radiotherapy,
3d crt,
radiotherapy,
stereotactic body radiotherapy

3d conformal palliative rt,
3d conformal radiotherapy,
3d crt,
stereotactic body radiotherapy

0.88 1.00

CONTROL
(14)

placebo place 0.00 1.00

standard of care
standard of care method,
standard of care techniques

0.00 1.00

the usual post-transplant care,
usual care

usual post-liver transplant care,
usual post-transplant care

0.00 0.85

Table 7: Examples of cases for BioBERT where where the exact F1 score was lower than the partial score. Below
each entity type the number of trials where this was true is presented. The “Target Entities” column contains the
unique manual annotations, while the “Predicted Entities” are the annotations obtained from the model.

1. Replacement with ’none’: Certain phrases
like "not mentioned," "interventions: none,"
or variations were replaced with "none" to

indicate absence of information.

2. Removal between specific phrases: Remove
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Entity Type BioLinkBERT-base BioBERT-v1.1 BERT-base-uncased
CONDITION 0.89 (0.88, 0.9) 0.88 (0.87, 0.89) 0.85 (0.83, 0.86)
OTHER 0.59 (0.56, 0.62) 0.66 (0.62, 0.69) 0.52 (0.49, 0.56)
DRUG 0.90 (0.88, 0.93) 0.85 (0.82, 0.88) 0.85 (0.81, 0.88)
PHYSICAL 0.70 (0.66, 0.73) 0.77 (0.74, 0.8) 0.69 (0.65, 0.72)
BEHAVIOURAL 0.64 (0.59, 0.69) 0.72 (0.67, 0.76) 0.36 (0.30, 0.43)
SURGICAL 0.31 (0.24, 0.39) 0.74 (0.69, 0.79) 0.30 (0.22, 0.37)
RADIOTHERAPY 0.00 (0.00, 0.00) 0.93 (0.87, 0.99) 0.00 (0.00, 0.00)
CONTROL 0.79 (0.75, 0.84) 0.75 (0.71, 0.8) 0.33 (0.25, 0.41)
Micro F1 0.94 (0.94, 0.95) 0.95 (0.95, 0.95) 0.93 (0.92, 0.93)

Table 8: Token-level evaluation F1 score (95% confidence interval lower bound, upper bound) for all entity types.

text between specific phrases, such as between
"The" and "are," "The" and "are as follows:",
"Therefore" and "is:", "The therapeutic inter-
vention" and "is:", and "not" and "is:".

3. Cleaning text: Various cleaning operations
were applied, such as removing newlines, hy-
phens, redundant spaces, periods, and quotes.

These steps collectively aimed to enhance the
coherence of the GPT-generated text.

H Annotation Guidelines

H.1 General Guidelines

1. The curators are encouraged to crosscheck
information from reference sources such as
Wikipedia, and chemical databases (ChEBI,
DrugBank, etc.) to facilitate the annotation
process and ensure compliance with the guide-
lines.

2. Do not tag unclear cases. If the annotator is
not sure about a given mention, even after
consulting some external sources, the corre-
sponding mention should remain unlabelled.

3. Mentions should be annotated considering the
context in which they are used and only if
fulfill the definitions for Condition and Inter-
vention described in later chapters. E.g. While
the word Immunotherapy is a valid Interven-
tion in some cases, it is not to be annotated in
the sentence "The Efficacy and Safety of the
United Allergy Service (UAS) Immunother-
apy Protocol", as it has a different semantics
in this context. If the text mentions the same
intervention/condition in another context, e.g.
existing research such as animal studies, it
should be annotated. Example of the latter is

the text: "Different Efficacy Between Rehabil-
itation Therapy and Umbilical Cord Derived
Mesenchymal Stem Cells Transplantation in
Patients With Chronic Spinal Cord Injury in
China | [...] However, it can not repair the
damaged nerve function. Studies show that
mesenchymal stem cell transplantation can re-
markably improve the neurological function
of SCI in animals without any severe side ef-
fect." Here the tokens "mesenchymal stem cell
transplantation" and "SCI" should be labeled
in the last sentence.

4. Conditions are more reliably maintained in
AACT than Interventions. Therefore we have
a more broad inclusion criteria for Interven-
tions than Conditions, which need to be more
specific to be annotated. If there is an over-
lap in the phrase, we prefer annotating for
the intervention rather than the condition, e.g.
in "Clinical Assessment of Perfusion Tech-
niques During Surgical Repair of Coarctation
of Aorta With Aortic Arch Hypoplasia in In-
fants" the phrase "Surgical Repair of Coarcta-
tion of Aorta With Aortic Arch Hypoplasia"
should be annotated as INTERVENTION.

5. Conditions and Interventions should be anno-
tated only if they appear in relation to the tar-
get study population or intervention. E.g. in
"Pain is a common symptom of Multiple Scle-
rosis. In the present study we assess whether
aspirin relieves headache." the words "Pain"
and "Multiple Sclerosis" should not be anno-
tated, while "aspirin" (DRUG) and "headache"
(CONDITION) should be annotated.

6. Interventions or Conditions mentioned within
the context of the study name, should not be
annotated. E.g. "Nova Scotia Chronic Pain
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Collaborative Care Network: A Pilot Study"
should result in no annotations.

7. If there are multiple CONDITION or INTER-
VENTION mentioned which are separated
with "versus", "vs", "and", "or", "/" or simi-
lar, annotate preferably as separate entities. A
positive example is "Rehabilitation program
by rhythmic auditory cueing" - here "Reha-
bilitation program" and "rhythmic auditory
cueing" should be annotated separately. How-
ever, if the words can’t stand by themselves,
the whole phrase should be annotated as one
entity. E.g. "Moderate and Severe Dementia",
"early versus standard AR therapy" should be
annotated together. In "Multimodal Opiate-
sparing Analgesia Versus Traditional Opiate
Based Analgesia", the two INTERVENTIONs
can be clearly separated in two entities: "Mul-
timodal Opiate-sparing Analgesia" and "Tra-
ditional Opiate Based Analgesia".

8. If possible, the labeled word string should not
be a combination of terms with and without
brakets. E.g. "oral appliance (OA) device"
should result in two labeled words "oral appli-
ance" and "OA".

9. Typing errors or formatting errors should be
labelled, unless they have impact on the to-
kenization provided by Prodigy and would
result in wrong entity span.

H.2 Condition Mention Annotation

Our working definition for a Condition is any
"state labeled as diseases by virtue of consensus on
prevalent sociocultural and medical values". It has
to have "clearly identifiable diagnostic features and
disease progression, and response to specific treat-
ment." (Calvo et al., 2003) In contrast, we do not
label the symptomatic manifestation of a disease,
that is the "self-conscious sensation of dysfunction
and/or distress that is felt to be limitless, menacing
and aid-requiring." (Kottow, 1980)

Whenever possible we will follow closely the
annotations presented in (Li et al., 2016b).

What to annotate?

1. As a general guideline, annotated should be
conditions that have an ICD-11 code 18.

18https://icd.who.int/browse11/l-m/en

2. We annotate conditions even in the absences
of an intervention or if a diagnostic/explo-
rative method was investigated in the trial.

3. Further defining characteristics should be
included: Acute/Chronic; Active/Inactive;
Mild/Moderate/Severe; End Stage/Early
Stage; Drug-resistant; Total/Partial; Inter-
mittent/Relapsing and others. Similarly,
"Post-stroke" should be annotated instead
of only "stroke" because it refers to the
phase after the acute stroke. This includes
genotypes further specifying diseases, e.g.
"GBA-associated Parkinson’s Disease."

4. Annotate deficiencies of one or more essential
vitamins, e.g. "Vitamin B deficiency", "Zinc
deficiency".

5. Annotate words like "pain" and "cognitive dys-
function", only if is a clear target for the inter-
vention. It should not be annotated if its role
is an OUTCOME, e.g. In the case of "Test
if [...] offer a better pain relief.", the word
"pain" should not be annotated.

6. Compound strings like "PwMS" (Person with
Multiple Sclerosis) should not be annotated.

7. Symptoms should be annotated only if they
are a clear target of the Intervention, e.g. in
"depressive symptoms after stroke" both "de-
pressive symptoms" and "stroke" should be
annotated separately.

8. Annotate the most specific disease mentions.
For instance, the complete phrase “partial
seizures” should be preferred over “seizures”
as it is more specific.

9. Annotate minimum necessary text spans for
a disease. For example, select “hypertension”
instead of “sustained hypertension.”

10. Annotate all mentions of a disease entity in an
abstract. All occurrences of the same disease
mention should be marked, including dupli-
cates within the same sentence.

11. Annotate abbreviations.Abbreviations
should be annotated separately. For in-
stance,“Huntington disease (HD)”should be
separated into two annotations: “Huntington
disease” and “HD”.
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12. Annotate mentions with morphological vari-
ations such as adjectives. Only when the ad-
jective describes a specific disease. For in-
stance, “hypertensive” should be annotated as
it comes from “hypertension.”

13. Annotate all words from a composite disease
mention should be annotated. For example in
"ovarian and peritoneal cancer", "ovarian and
peritoneal cancer" should be annotated as one
entity.

What not to annotate?

1. Do NOT annotate words that define how a
disease is expressed, e.g. plaque in "plaque
psoriasis".

2. Do NOT annotate patient demographics, e.g.
"elderly people".

3. Do NOT annotate the word "patient", e.g.
"knee surgery patients".

4. Do NOT include species names as part of a dis-
ease. Organism names such as “human” are
generally excluded from the preferred men-
tion unless they are critical part of a disease
name. Viruses, bacteria, and other organism
names are not annotated unless it is clear from
the context that the disease is caused by these
organisms. e.g. “HIV-1-infected” means the
disease caused by the organism “HIV”.Thus,
“HIV” should be included.

5. Do NOT annotate symptoms, e.g. stomach
ache, headache, arm weakness. Unless it’s a
clear target of the Intervention, e.g. in "depres-
sive symptoms after stroke" both "depressive"
and "stroke" should be annotated separately.

6. Do NOT annotate general terms that occur
individually and are not specific, such as: dis-
ease, syndrome, deficiency, complications,
etc.

7. Do NOT annotate references to biological pro-
cesses such as “tumorigenesis” or “canceroge-
nesis”.

8. Do not annotate the condition if it is within
another linguistic expression. For example, in
"Total Tic Severity Index", "Tic" should not
be annotated.

H.3 Intervention Mention Annotation
Our working definition of Intervention includes
any "treatment, procedure, or other action taken to
prevent or treat disease, or improve health in other
ways."19.

For the annotation on Drug/Chemical-based ther-
apies, we follow closely the guidelines of construct-
ing CHEMDNER corpus for annotating chemical
mentions (Krallinger et al., 2015), as well as (Li
et al., 2016b). The basic rule for chemical entity an-
notation is that the chemical should have a specific
structure.

General guidelines:

1. Annotate both the tested intervention and
its control intervention, e.g. "home visits
(OTHER) vs out-patient visits (CONTROL)"
results in two annotations. A special label for
CONTROL is provided.

2. In the case of a non-drug intervention, anno-
tate all further specifying terms. E.g. in the
sentence "[...] a single injection Transmuscu-
lar Quadratus Lumborum (TQL) block, when
compared to [...]", the whole phrase "single in-
jection Transmuscular Quadratus Lumborum
(TQL) block" should be annotated. Words in
parenthesis that give further details about the
intervention should not be annotated, e.g. in
"remote visit (via phone or videochat)" only
"remote visit" is to be annotated. An excep-
tion are abbreviations or a clear synonym of
the intervention. E.g. in "Brindley technique
(anterior sacral root stimulation with poste-
rior rhizotomy) is the only technique" both
"Brindley technique" and the defintion in the
brackets should be annotated.

3. Prophylaxis and prevention related Interven-
tions should be annotated as "OTHER". E.g.
in "safe and efficacious ischemic stroke pro-
phylaxis for [...]." the phrase "ischemic stroke
prophylaxis" is to be annotated. This holds
only if there is no other more specific interven-
tion stated. E.g in "Migrane prevention using
Short Pulswave Therapy", "migrane" should
be annotated as CONDITION while the IN-
TERVENTION is "Short Pulswave Therapy".

4. Monitoring and diagnostic procedures should
not be annotated as interventions, e.g. in

19https://www.cancer.gov/publications/
dictionaries/cancer-terms/def/intervention

18887

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/intervention
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/intervention


"The aim of this study is to evaluate nocturnal
hypertension with 24-hour ambulatory blood
pressure [...]" the phrase "24-hour ambulatory
blood pressure" is not an intervention.

5. We annotate any interventions that aim at im-
proving the health quality outcomes, even if
the population/condition is not of immediate
relevance. E.g. in "Evaluation of Computer-
based Training to Educate Japanese Physi-
cians in the Methods of Interpreting PET
Scans." the terms "Computer-based Training"
should be labeled.

6. Words that can not stand alone as a specific in-
tervention outside of the study context should
not be annotated, e.g. "stimulation", "rehabili-
tation" alone should not be included. At the
same time "rehabilitation treatment" should
be annotated. An exception should be made
if the generic word is the only mention of the
tested intervention in the text.

7. Both umbrella terms, and more specific anno-
tations (if eligible) should be annotated, e.g.
If those two terms appear in different posi-
tions of the sentence, "rehabilitation treatment
[...] yoga exercise", both need to be anno-
tated. Equally valid in "Mitoxantrone (MITO,
Novantronae), a synthetic anthracenedione ap-
proved for [...]", both "Mitoxantrone" and "an-
thracenedione" should be annotated.

8. If the intervention is part of an accepted ther-
apeutic regiment, e.g. "radio-chemotherapy",
all involved interventions need to be annotated
as such. E.g. In "study will evaluate whether
the dosage of 1500 mg/m2 of capecitabine is
tolerable after radiation" both "capecitabine"
(DRUG) and "radiation" (RADIOTHERAPY)
should be annotated.

What to annotate?
I. DRUG

1. Below are general guidelines for Chemical
annotation that should help identify entities
for annotation. Chemicals’ sub-types are rep-
resented in Fig. 6. They are to be annotated
with the single label DRUG. :

(a) Chemical Nouns convertible to:
-A single chemical structure diagram: sin-
gle atoms, ions, isotopes, pure elements

and molecules such as: Calcium(Ca),
Iron(Fe), Lithium (Li),Potassium(K),
Oxygen(O2),
-A general Markush diagram with R
groups such as: Amino acids

(b) General class names where the definition
of the class includes information on some
structural or elemental composition such
as: steroids, sugars, fatty acids, saturated
fatty acids

(c) Small Biochemicals
- Monosaccharides, disaccharides and
trisaccharides: Glucose, Sucrose...
- Peptides and proteins with less than 15
aminoacids: Angiotensin II...
- Monomers, dimmers, trimmers of nu-
cleotides: e.g. ATP, cAMP...
- Fatty acids and their derivatives exclud-
ing polymeric structures. e.g. Choles-
terol, glycerol, prostaglandin E1

(d) Synthetic Polymers such as: Polyethy-
lene glycol

(e) Special chemicals having well-defined
chemical compositions. E.g. “ethanolic
extract of Daucus carota seeds (DCE)”;
“grape seed proanthocyanidin extract”

(f) Other substances, that cannot be associ-
ated to a clear molecular structure, such
as Olive Oil, Herbal Extracts, Cannabis,
Tea, are to be annotated as OTHER.

2. For combined drugs, mark them separately,
e.g. "levodopa/carbidopa" should be two enti-
ties "levodopa" and "carbidopa".

3. Chemicals that are compared in a study and
separated with a "vs" should be annotated sep-
arately, e.g. "GLP-1 analogues vs DPP4 in-
hibitors for the treatment of type 2 diabetes
mellitus".

4. Annotate all mentions of a chemical entity in
an abstract.

5. Annotate the word "Vaccine" together with
the immunogenic component.

6. Annotate abbreviations. Some abbreviations
are ambiguous by convention. Take “Nitric
Oxide (NO)” as an example, “NO” could also
be interpreted as a negative response. Ambi-
guity should be avoided using context, i.e. in
this case "NO" should not be annotated.
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7. If a DRUG mention is present that is already
part of the patient treatment (but is not the
primary target of investigation), it should still
be label as DRUG, as it is part of the overall
treatment.

II. Other interventions
The below mentions represent individual labels.

1. BEHAVIOURAL, e.g. meditation, cognitive
behavioural therapy, or other education related
interventions.

2. SURGICAL (incl. tissue-based therapy), e.g.
organ transplantation, stem cell transplanta-
tion. Injections and transfusions do not fall
into this category and should be annotated as
"OTHER" instead.

3. RADIOTHERAPY, e.g. proton beam ther-
apy, radioactive iodine.

4. PHYSICAL, interventions requiring active
participation from the study population e.g.
cardiovascular strengthening. In case the in-
tervention does not clearly state that active
participation is required, but it could involve
it based on the intervention description, the
label PHYSICAL should be used, e.g. "Kine-
siology".

5. OTHER, other types of interventions that
should be annotated in a more inclusive/broad
way e.g. gluten-free diet, clear liquid di-
ets, gene therapy, Virtual Reality, medical
massage. An example for a broad inclusion
is "Ultrasound-guided Erector Spinae Plane
Block".

6. CONTROL, The most specific mention of
the control interventions should be annotated,
e.g. in "sham product (vitamins)" the word
"vitamins" should be annotated. However if
there is no specific mention, general words
such as "placebo", "sham product" should be
labeled. Drugs should be annotated as drugs
even if they are a control intervention. If in
doubt about whether something is a control in-
tervention, annotate as "Other" (or the respec-
tive intervention class). e.g., "Test catheters
compared to SL catheters".

What not to annotate?
1. Do NOT annotate words that describe how

an intervention is delivered, unless it is an

essential part of the intervention. For ex-
ample Household Water Treatment Device in
"Trial of a Household Water Treatment De-
vice as a Delivery System for Zinc in Zinc
Defficient children." should NOT be anno-
tated, while computer-guided interpositional
sandwich osteotomy should be annotated in
"The aim was to assess the efficiency of the
computer-guided interpositional sandwich os-
teotomy [...]." Other examples include "Vita-
min B (DRUG) supplement (not annotated)",
"THC (DRUG) infusion (not annotated)"

2. Do NOT annotate other terms different from
chemical nouns. Adjective forms of chem-
ical names are also excluded. For instance,
muscarinic, adrenergic and purinergic.

3. Do NOT annotate chemical nouns named for
a role or similar, that is, nonstructural con-
cepts (e.g. anti-HIV agents, anticonvulsants,
anticholinesterase drug, antipsychotic, antico-
agulant, etc).

4. Do NOT annotate very nonspecific structural
concepts.e.g. Atom, Ion, Molecular, Lipid,
Protein. Exception is when some of these
workds are part of a longer specific chemical
name, e.g. "chloride ion", "thiol dimers".

5. Do NOT annotate words that are not chemi-
cals in context, even if they are co-incidentally
the same set of characters (synonyms and
metaphors). For instance,“Gold” should not
be annotated if it appears in “gold standard.”
This applies also to general drug names, e.g.
cellulose, glucocorticoid.

6. Do NOT annotate general vague compositions.
For instance, according to Wikipedia, the term
opiate describes any of the narcotic opioid al-
kaloids found as natural products in the opium
poppy plant, Papaver somniferum, and thus
should be excluded.

7. Do NOT annotate special words not to be la-
beled by convention (e.g. Water, saline, juice,
etc).

8. Do NOT tag acronyms that are of 1 letter in
length.

9. Do NOT include trademark symbols, e.g.
Mesupron®should result in the annotation
"Mesupron".
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Figure 6: Overview of chemical-based interventions, adapted from (Krallinger et al., 2015) and other types of
interventions of interest.
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