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Abstract

We introduce a new dynamic vocabulary for
language models. It can involve arbitrary text
spans during generation. These text spans act
as basic generation bricks, akin to tokens in the
traditional static vocabularies. We show that,
the ability to generate multi-tokens atomically
improve both generation quality and efficiency
(compared to the standard language model, the
MAUVE metric is increased by 25%, the la-
tency is decreased by 20%). The dynamic vo-
cabulary can be deployed in a plug-and-play
way, thus is attractive for various downstream
applications. For example, we demonstrate that
dynamic vocabulary can be applied to differ-
ent domains in a training-free manner. It also
helps to generate reliable citations in question
answering tasks (substantially enhancing cita-
tion results without compromising answer ac-
curacy). 1

1 Introduction

Vocabulary, which defines basic bricks (tokens) for
composing new sentences, bridging different lan-
guages, and alleviating harmful generations, is es-
sential for language models (Stahlberg, 2020; Lam-
ple and Conneau, 2019; Liu et al., 2020; Kirk et al.,
2022; Weidinger et al., 2021). In modern develop-
ment, vocabularies are often obtained by training
tokenizers with a pre-defined vocabulary size on a
pre-defined corpus. Once built, they are kept un-
changed in the following model construction and
deployment (Sennrich et al., 2015; Radford et al.,
2019).

Though it is sufficient for basic language model-
ing, this static setting makes vocabulary be quietly
ignored in advanced generation tasks (Gao et al.,
2023; Rozière et al., 2024; Fried et al., 2023; Dagan
et al., 2024). For example, it can not be augmented

1Our source code is publicly available at
https://github.com/Maniyantingliu/generation_
with_dynamic_vocabulary
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Figure 1: Generation with dynamic vocabulary. The
model’s vocabulary dynamically changes based on the
input text, with phrases serving as basic blocks both for
input and output.

with new phrases for better adapting to an unseen
domain (Koehn and Knowles, 2017; Jin et al., 2020;
Chen et al., 2022) or verbatim reference text spans
for better inline evidence generation (Menick et al.,
2022; Gao et al., 2023). To bring vocabulary back
to the stage, it is natural to ask whether prior con-
straints posted by tokenization corpus and fixed
vocabulary size can be relaxed.

Here, we explore vocabulary in a new dynamic
setting. Instead of being a fixed token table, dy-
namic vocabulary is required to be able to include
arbitrary text spans on demand. This setup brings
new challenges to the language model. On the
input side, using a single embedding layer is no
longer feasible as the full table can not be enu-
merated. On the output side, the model needs a
stronger next-token predictor as the model allows
multiple oracles (tokenized to different granularity)
for a single string.

In this work, we build a dynamic vocabulary
by building a dynamic phrase encoder. Akin to
the embedding layer, the encoder maps arbitrary
text spans (called phrases) to the input space of
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language models. It can be trained with existing
language models in the same self-supervised man-
ner, despite that multiple tokens (in the original
static vocabulary) can be input or output at a single
step. Though the paradigm is almost unchanged,
supporting dynamic tokens needs non-trivial modi-
fication on data curation. Specifically, we find that,
to prevent the learned model from either biased
towards full static token outputs or towards full
new phrase outputs, it is crucial to make the two
properly interleaved in training samples. We also
show that the phrase encoder is hard to learn with-
out informative negative samples. We thus develop
two retrieval-based and generation-based methods
for accelerating the learning of the dynamic phrase
encoder.

The obtained dynamic vocabulary can be de-
ployed in the way of plug-and-play: the underly-
ing architecture (and backbone parameters) of lan-
guage models are kept, and those new on-demand
phrases can be used as ordinary tokens during the
generation. To evaluate the dynamic vocabulary,
we investigate three exemplar applications, includ-
ing basic language modeling, domain adaptation,
and generating citations for question answering.
Results show that the new flexibility of vocabulary
both improve basic generation performances (e.g.,
stronger fluency and diversity scores on WikiText-
103 (Merity et al., 2016) with lower latency) and
provide a new tool to handle advanced language
modeling tasks (e.g., generating more accurate ci-
tations with QA scores also increased).

2 The Approach

2.1 Problem Definition

Given a language model LM, denote V as its vo-
cabulary, and x = x1, x2, ..., xn as a tokenized
sentence according to V (xi is a token in V ). A
dynamic vocabulary V ′ = V ∪ P augments V
with arbitrary phrases (text spans) P . The same
sentence x now can be tokenized to a different se-
quence x′1, x

′
2, ..., x

′
m, where x′i ∈ V ′. The usage

of dynamic vocabulary V ′ is identical to the vanilla
static vocabulary V : the language model LM can
accept any token in V ′ as input and choose output
tokens from V ′.

Supporting arbitrary phrase set P and integrating
V ′ with language models are two cruxes to imple-
ment dynamic vocabularies. For the first one, it is
possible to support new phrases by fine-tuning the
language model with V ′, but it requires updating

the model when P changes which can hardly be
used in real applications. We will also see that,
for the second crux, simply replacing V with V ′

fails to learn the language model due to the decod-
ing ambiguity introduced by P . We elaborate our
solutions in the following sections.

2.2 Dynamic Phrase Encoder

Instead of fine-tuning the language model for ev-
ery possible P to support arbitrary phrase sets,
we build a parametric encoder for those dynamic
phrases. Once the encoder is learned, it can be
deployed with the model.

Specifically, the dynamic phrase encoder is built
with a causal Transformer. To get the represen-
tation of a phrase p ∈ P , it first tokenizes p =
w1, w2, ..., ws according to the static vocabulary V ,
and after going through several causal Transformer
layers followed by an MLP, the hidden vector of
the last token hs is the vector representation of p.

The above setting is different from existing work
in three ways (Lan et al., 2023; Teehan et al., 2024).
First, it is common to use a Transformer encoder
(full attention) to build the phrase encoder, while
we apply a Transformer decoder (causal masking).
The choice is mainly guided by efficient negative
sampling (see Section 2.4 for further details).

Second, the dynamic phrase encoder adopts the
same tokenizer of LM (which is used to build the
static vocabulary V ). Sharing tokenizers means
the language model doesn’t need to load additional
vocabularies and tokenizers during inference. 2

Third, to further unify the new phrase encoder
and the LM, we use a non-contextualized repre-
sentation of phrases, which makes the new phrases
more like the original tokens in V . Contextualized
representations can also be used (Joshi et al., 2020;
Lan et al., 2023), but it means that, besides the
phrases themselves, the contexts of them should
also be included in the dynamic vocabulary.

To summarize, the considerations above aim to
make the dynamic phrase encoder align with the
embedding layer as much as possible: both of them
map tokens (phrases) into the input space of the
language model, one by lookup operations, and
another by running the phrase encoder.

2As a comparison, the phrase encoder in CoG (Lan et al.,
2023) is BERT, and one should load both the BERT vocabulary
and GPT-2 vocabulary when testing.
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2.3 Inference with Dynamic Vocabulary

In testing time, the new dynamic vocabulary can
be used as the ordinary vocabulary. We take an
auto-regressive language model LM as an exam-
ple. For a set of new phrases P 3, we run the
learned dynamic phrase encoder to get representa-
tions of its phrases, denoted by a matrix P. The
language model’s input and output embedding ma-
trices Wemb,in,Wemb,out are expanded with these
embeddings,

W′
emb,in = [Wemb,in,P],

W′
emb,out = [Wemb,out,P].

At each auto-regressive decoding step, the lan-
guage model LM outputs a hidden vector h<i rep-
resenting current prefix x′<i, the probability of next
token is

P(x′i = k|x′<i) = Z−1 exp(h<i · ekout) (1)

Z =
∑

k′∈V
exp(h<i · ek

′
out) +

∑

k′∈P
exp(h<i · ek

′
out),

where ekout is the k-th column of W′
emb,out. When

the i-th token is selected, no matter whether it is
a token in V or a phrase in P , its embedding is
looked up from W′

emb,in as the input of the next
decoding step. 4

2.4 Training with Dynamic Vocabulary

Building Samples To train the dynamic phrase
encoder, we follow the same self-supervision
regime as the training of language models. The
key difference here is that, besides tokens in V , we
need to organize phrases (text spans) in a training
sample for learning the phrase encoder. In partic-
ular, 1) the diversity of training-time in-domain
phrases would influence the generalization of the
learned phrase encoder, and 2) the distribution of
phrases in samples would influence how the lan-
guage model switches between tokens and phrases.

For building phrases, we test the following two
methods.

3The phrase set P can change at each decoding step. Here,
for simplicity, we assume it is kept unchanged during testing,
and we can run the dynamic phrase encoder only once.

4When decoding a phrase, another option adopted by (Joshi
et al., 2020; Lan et al., 2023) is to unfold tokens in the phrase
and input them individually. Despite the inconsistency be-
tween input and output vocabulary (our experiments indicate
a negative influence on performances), this setting may also
slow the decoding speed (or generate shorter texts given a
fixed length budget) even if it can predict a phrase.

• “real” phrases. We can use classical chunking
algorithms to recognize phrases in a sentence.
The resulting phrases can be recognized as single
grammatical units or as common word colloca-
tions. Here, we follow Lan et al. (2023) to use an
unsupervised chunker forward maximum match-
ing (FMM). Basically, FMM recognizes phrases
that frequently appear in a support corpus and as
long as possible. The algorithm (and other exter-
nal chunkers) may need additional time costs to
compile samples (e.g., in our experiments, FMM
needs ≈ 15 hours to build its phrase table).

• Ngrams. Another candidate set of phrases is
ngrams, which is much simpler to build than in-
volving external chunkers. Though a ngram may
not carry a meaning, it could be a stronger learn-
ing target for the phrase encoder: the connec-
tions between ngrams and its contexts are more
complex than “real” phrases (as they usually fol-
low the simple patterns which are used to extract
them). We study two settings, ngrams of words
and ngrams of tokens (denoted by N-words and
N-ids respectively). Taking N-words as an ex-
ample, a word tokenizer 5 first recognizes words
in a sentence, then randomly sequences of 2-5
consecutive words are grouped into phrases.

Next, given a sentence and a set of candidate
phrases, we need to determine the distribution of
phrases. One may build samples with full ngrams
phrases, but they could be both hard to learn (the
learning ignores the prior knowledge of original
vocabulary V in the model), and hard to apply (the
setting is rare in applications). In our practice, to
accelerate learning and prevent unnecessary data
bias, it is crucial to make phrases and tokens prop-
erly interleaved in training samples. Therefore, we
control the interval between two phrases to be at
least five tokens.

Negative Phrases After building training sam-
ples, we can directly optimize the log-probability
defined in Equation 1, which requires the correct
next token in V ′ = V ∪ P has the largest logit
than other tokens in V and P (negative tokens).
However, the number of phrases in the training
set would be large, and it is prohibitive to include
all of them in the loss function. 6 A common

5N-words uses the word tokenizer in the NLTK toolkit,
and N-ids uses GPT-2’s tokenizer.

6It is worth noting that all training time phrases are dropped
after learning the encoder. For ngram phrases (N-words and
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Boulter starred in the play Citizenship written by Mark Ravenhill. He appeared on a 2006 episode of the television series , Doctors , followed by a role in the 2007 
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Figure 2: The overall architecture of our proposed dynamic vocabulary. During training, there are four sources of
negative phrases: pre-batch, corpus-retrieval, self-retrieval, and generation. Phrases are embedded by the dynamic
phrase encoder with an additional linear layer. The hidden layer of the last token serves as the phrase embedding. In
the model input layer, phrases are treated as a basic brick without splitting into tokens.

workaround is to include only in-batch and pre-
batch phrases in P (Gao et al., 2021). Unfortu-
nately, it doesn’t help learning the phrase encoder.
Specifically, we find that the model struggles to
correctly transit from a phrase token to an ordinary
token and vice versa. More concretely, when pre-
dicting a phrase p = w1, w2, ..., ws, the dynamic
phrase encoder has trouble on distinguish p from
1) phrases which are prefixes of that phrase (e.g.,
w1w2 and w1w2w3) and 2) phrases which have p as
their prefix (e.g., pws+1 and pws+1ws+2). There-
fore, we also manually add the above phrases to P
in each batch (we call them informative negative
phrases).

For the first type, we can simply enumerate all
prefixes of p. For the second type, we develop
retrieval-based and generation-based methods for
getting successor tokens of p,

• retrieval-based continuation finds appearances of
p in a support corpus and takes p and its suc-
cessor tokens there as negative phrases (corpus-
retrieval). 7 One simplification is only consid-
ering p’s successor tokens in the current sample
(self-retrieval).

• generation-based continuation, instead of search-

N-ids), phrases are built on the fly in the batching process, and
there is no global training time P .

7Due to the time complexity of matching phrases, we only
adopt corpus-retrieval when phrases are obtained by FMM,
and keep the efficiency of Ngram phrases.

ing corpus, tries to get synthetic negative phrases
by employing a language model. 8 The model is
prompted with p and the following generations
are included in P (generation).

Finally, regarding getting embeddings of these
informative negative phrases, recall that we adopt
an causal Transformer as the phrase encoder and
use the hidden state of the final token to represent
p, the embeddings of negative phrases could be
efficiently obtained by feeding the longest phrase
to the encoder.

Loss Functions The first part of the training loss
is defined by Equation 1 (with negative samples
added to P ), which we denote by Lp. We also
add a special setting of Lp in the loss (denoted by
Lt), in which P = ∅ (i.e., the vanilla language
modeling). It helps to maintain generation ability
with the static vocabulary V .

We can further align the above two settings by re-
quiring their next token distributions at each token
position are close (measured by KL divergence).
Concretely, given a sentence x, recall that (Section
2.1) the oracle of training Lp is x′1, x

′
2, ..., x

′
m, the

oracle of training Lt is x1, x2, ..., xn. Assume a
function σ which aligns x′i to a token position in
Lt’s oracle: if x′i is a token in V , it is mapped to
the same token position, otherwise, x′i is mapped

8Here we use GPT-2, stronger models can also be applied.
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to its last token’s position.

Lkl =
1

m

m∑

i=0

KL(P(x′i|x′<i)||P(xσ(x′
i)
|x<σ(x′

i)
)).

The final loss function is L = Lp + Lt + Lkl.

3 Experiments

3.1 Setups

Configurations For a fair comparison with base-
lines, we use GPT-2 (Radford et al., 2019) to initial-
ize both the language model and dynamic phrase
encoder. To collect phrases for each test sample,
k related documents are retrieved by the semantic
matching model, DPR (Karpukhin et al., 2020) and
the vector search toolkit, FAISS (Johnson et al.,
2019). In our paper, the value k is set to 32.

We experiment with several negative sampling
and sample-building methods and set N-words with
“self-retrieval + generation” as default. Besides, we
initialize the language model with two models of
different scales, GPT-2 and Tinyllama (Zhang et al.,
2024), to verify the effectiveness of our proposed
method. We employ full-parameter fine tuning for
GPT-2 and LoRA (Hu et al., 2021) for Tinyllama.
Please refer to Appendix B for more details.

Baselines We compare the proposed method with
the following state-of-the-art models as baselines:

Transformer (Vaswani et al., 2023) is the stan-
dard token-level language model. We fine-tune the
pre-trained GPT2 in our experiments.

KNN-LMs (Khandelwal et al., 2020) extends
a pre-trained neural language model by linearly
interpolating it with a k-nearest neighbors(KNN)
model.

RETRO (Borgeaud et al., 2022) is a retrieval-
enhanced transformer that combines a frozen Bert
retriever, a differentiable encoder, and a chunked
cross-attention mechanism.

CoG (Lan et al., 2023) decomposes text genera-
tion into a series of copy-and-paste operations. It
first retrieves semantically relevant documents and
then considers all n-grams within them as candidate
phrases 9.

MWT (Gee et al., 2023) propose to expand vo-
cabulary with top-k frequent n-grams in support

9CoG adopts a two-stage search strategy (document re-
trieval followed by phrase extraction) while CoG-2 (Cao et al.,
2024) generates text directly through phrase retrieval. How-
ever, CoG-2 fails to provide any code, thus precluding any
comparative analysis.

corpus. Rather than expanding vocabulary dynami-
cally, it still focuses on building a static vocabulary.

Metrics We use four automatic evaluation met-
rics to measure the quality of the generated texts
(Lan et al., 2023; Cao et al., 2024),: (i) MAUVE
(Pillutla et al., 2021) measures the distribution simi-
larity between the reference text and generated text;
(ii) Rep-n (Welleck et al., 2019) reflects the repeti-
tion at different n-gram levels in the generated text;
(iii) Diversity (Welleck et al., 2019) evaluates the
variety of generated content; and (iv) Perplexity
measure the difficulty in predicting the next word
in a sequence. In addition, we also compare the
average time cost of different methods to decode a
continuation consisting of 128 tokens given a prefix
of 32 tokens, referred to as latency. The details for
these metrics can be found in Appendix C

We investigate three applications: basic lan-
guage modeling, domain adaptation, and gener-
ating citations for question answering.

3.2 Basic Language Modeling
We use GPT-2 and WikiText-103 (Merity et al.,
2016) for evaluating open-ended language genera-
tion. For each test sample, we provide the first 32
tokens as a context prefix, and both the baselines
and our model will generate the subsequent 128
tokens (tokens are in GPT-2’s original vocabulary).

The results are listed in Table 1. We find that,

• Regarding generation quality, language models
with dynamic vocabulary can outperform stan-
dard Transformer with 5.22% MAUVE score
(better fluency). Meanwhile, our model achieves
47.44% diversity, which is much better than other
baselines.

• Regarding generation efficiency, dynamic vocab-
ulary achieves the best latency. The reason is that
a single phrase contains several tokens, which
translates to fewer decoding steps for a given
decoding length budget.

• the perplexity of dynamic vocabulary (our model
and CoG) is higher than that of the Transformer.
This discrepancy could potentially stem from the
fact that during testing, the input prefixes are
strictly composed of tokens from a fixed vocabu-
lary, whereas the model is not subjected to such
constraints during training, which results in an in-
consistency between the training and testing data
distributions, potentially leading to the observed
difference in perplexity scores.
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Model MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 ↓ Diversity ↑ Latency(s)↓ PPL ↓
Transformer 20.47 41.96 36.82 33.74 24.30 1.10 3.60

RETRO 19.59 43.78 38.58 35.35 22.33 4.43 3.96
KMM-LM∗ 19.92 43.79 38.76 35.69 22.13 10.36 3.48

CoG 21.61 34.77 30.67 28.35 32.41 1.04 7.89
MWT 24.74 33.78 26.72 22.76 37.48 1.13 5.58
Ours 25.69 27.77 20.80 17.08 47.44 0.99 8.03

Table 1: The automatic evaluation on the test set of WikiText-103. ∗ indicates that we directly utilize the results from
the CoG paper for KNN-LM due to limited GPU memory. Additionally, our method retrieves only 32 documents
for phrase segments during evaluation, whereas CoG retrieves 1024. Gee et al. (2023) apply MWT to encoder-only
model but we implement MWT with GPT-2.

Ours versus (∗) Better No Prefer Worse

Overall Evaluation
Transformer 0.57 0.22 0.21
MWT 0.55 0.21 0.24
CoG 0.53 0.22 0.25

Comparasion in * aspect
Fluency 0.41 0.31 0.28
Coherence 0.44 0.28 0.28
Informativeness 0.56 0.18 0.26
Grammar 0.32 0.43 0.25

Table 2: Overall human evaluation on WikiText-103 and
detailed comparison with GPT-2 in the four aspects. In
the overall evaluation, we regard the four aspects as a
whole and hence there is a single score. “Better” repre-
sents that our proposed model’s output is superior; “No
prefer” indicates that the performance is comparable;
and “worse” denotes that our model’s output is inferior.

We also evaluate the generation results under nu-
cleus sampling and attempt real-time adaptability.
The details are located in Appendix A, D separately.
Moreover, the analysis of memory and computa-
tional resources occupation during inference can
be found in Appendix E.

Human Evaluation To gain further assessment,
we also run human evaluation on a random sample
of 100 generations. For each test sample prefix,
the annotators are given two continuations gener-
ated by the baseline and our model respectively
in random order. Annotators are asked to choose
which one is better (in terms of fluency, coherence,
informativeness, and grammar). When annotators
make different decisions on the same sample, they
will discuss and make the final decision. We regard
the four aspects as a whole in the overall evaluation
and also score in each aspect. As shown in Table 2,
dynamic vocabulary outperforms the Transformer
with better cases of 57 and 21 cases of slight in-
feriority and wins more cases in all four aspects,

especially coherence and informativeness. The re-
sults are consistent with MAUVE, which shows
that the model with dynamic vocabulary possesses
a stronger generation capability and the outputs
from our method often have a tighter connection
with the preceding text.

We also employ GPT-4 (Achiam et al., 2023)
for further assessment. Detailed implementations
and prompts are in Appendix G. The results are
consistent with the aforementioned evaluations.

Case Study To provide more proof of the effec-
tiveness of our proposed model and the quality of
its generation, we conduct some case studies and
compare texts generated by our proposed model
and GPT-2. As illustrated in Figure 3, the contin-
uation of our model consists of both tokens and
phrases (such as the phrase “significantly modified”
highlighted in blue at the first decoding step) and
its content embodies further details about the mod-
ernization of the ship, including the equipment of
a pair of torpedo tubes, their positions, and the
maximum load. While GPT-2 repeatedly generates
completely identical sentences, which is parallel
with its low diversity score of 24.30%. More cases
are provided in Appendix F.

Sequence Compression Sequence compression
reflects the length of text that a model can accom-
modate within the same window size. Following
Dagan et al. (2024), we measure the two compres-
sion metrics, normalized sequence length (NSL)
and the average number of Bytes per Token. NSL
is the token count of a tokenized sequence from the
tokenizer T . Given that our model does not incor-
porate a genuine tokenizer, we take the outputs of
each decoding step as the tokenization results. We
report scores from tokenizers of GPT-2 and MWT
on our model’s outputs.

As shown in the table 3, our proposed model
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During the ships' modernization during the 1930s, their forward superstructures were enlarged with multiple platforms added 
to their tripod foremasts. Both ships were also

significantly modified to accommodate the addition of a new funnel. The ships were also equipped with a pair of torpedo 
tubes, one on each broadside, with twin torpedoes. The torpedo tubes were significantly modified to allow the ships to carry a 
maximum of 12 metric tons ( 12 metric tons ) of torpedoes. The ships were also equipped with a pair of torpedo tubes, one on 
each broadside, for additional torpedoes.

equipped with a pair of torpedo tubes. The ship was also equipped with a pair of machine guns. The ship was also equipped 
with a pair of torpedo tubes. The ship was also equipped with a pair of machine guns. The ship was also equipped with a pair 
of torpedo tubes. The ship was also equipped with a pair of machine guns. The ship was also equipped with a pair of machine 
guns.

Case Input

The Generation of our Proposed Model

The Generation of GPT-2

Figure 3: A comparison between texts generated by our proposed model and GPT-2. The tokens highlighted in blue
are from dynamic vocabulary while others are from fixed token ones.

Model NLS ↓ UTF-8 Bytes ↑
Transformer 127.72 4.28

MWT 114.84 4.77
Ours 101.38 5.54

Table 3: Compression on WikiText-103. Since CoG,
KNN-LM, and RETRO do not modify the model’s tok-
enizer or input vocabulary, the compression results are
the same with the Transformer.

holds the highest information content per token,
averaging 101.38 tokens or phrases per sequence
and 5.54 UTF-8 bytes per token, and necessitates
fewer tokens or phrases to generate the identical
text. In other words, with an equivalent number
of context window sizes, our method encodes a
more substantial amount of text. This is a natural
consequence of the fact that the dynamically added
phrases contain more tokens.

Scale Up For a comprehensive evaluation of our
method, we deploy the dynamic vocabulary with
TinyLlama (Zhang et al., 2024), which is a 1.1B
LLaMA-style backbone, to assess the performance
as the scale of LM increases. As shown in table 4,
our proposed model outperforms Standard TinyL-
lama with 1.09% MAUVE and 21.46 % Diversity,
which indicates the better fluency and higher diver-
sity of generation from our method. The results
are consistent with the experimental conclusion in
section 3.2 and the preliminary findings indicate
the effectiveness of our approach on larger models.

3.3 The Influence of Negative Phrases
As discussed, we have designed several negative
sampling strategies and explored their influence on

Model MAUVE ↑ Diversity ↑ Latency(s)↓ PPL ↓
TinyLlama 20.64 32.53 4.92 5.20

Ours 22.54 53.99 3.82 12.88

Table 4: The automatic evaluation on the test set of
WikiText-103. In this experiment, we use GPT-2 and
TinyLlama to initialize the dynamic phrase encoder and
the language model, respectively. We utilize parameter-
efficient fine-tuning approach-LoRA on TinyLlama and
set r, alpha, and dropout as 8, 32, 0.1, separately.

the generation. As reported in table 5, we have
observed that the choice of the negative phrases
method significantly impacts the fluency and qual-
ity of the generated text.

• Specifically, compared with the remaining nega-
tive sampling methods, the vanilla in-batch and
pre-batch negative sampling methods result in a
markedly higher PPL (approximately 10 points
and 3 points higher in the FMM setting) 10. The
results indicate that strong negative phrases are
crucial for the model’s generation quality.

• Regarding generation-based and retrieval-based
negative phrases, there is no significant perfor-
mance difference. However, these methods take
additional time costs compared to self-retrieval,
as the generation-based approach necessitates
continuous generations for the provided phrases,
and corpus-retrieval requires retrieving from the

10We have observed that there is a positive correlation be-
tween Diversity and PPL, which means that the higher the
Diversity, the higher the PPL values tend to be as well. We
believe that this phenomenon occurs because the model tends
to increase the probability of repeating previous sentences (Xu
et al., 2022), leading to a lower PPL and Diversity.
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Negative Samples MAUVE ↑ Diversity ↑ PPL ↓
FMM

in-batch 21.95 57.92 16.48
in-batch + pre-batch 22.28 48.91 9.02
generation 22.87 42.19 6.34
corpus-retrieval 21.98 41.32 6.40
self-retrieval 21.65 41.67 6.39
self-retrieval + generation 21.25 42.40 6.62

N-words
in-batch 24.67 64.15 17.01
in-batch + pre-batch 23.98 61.80 14.60
generation 24.99 49.03 8.51
self-retrieval 24.83 48.46 8.13
self-retrieval + generation 25.69 47.44 8.03

N-ids
in-batch 23.96 68.44 21.53
in-batch + pre-batch 23.66 61.16 14.83
generation 23.91 46.40 8.07
self-retrieval 23.64 48.38 8.36
self-retrieval + generation 24.85 47.08 8.21

Table 5: The automatic evaluation on different negative
samples and training samples. During testing, each
phrase is constrained to 2-8 tokens. Here, the pre-batch
method contains prefixes of gold phrases as well and
the number of preceding batches is set to 1.

related corpus. Self-retrieval method may be op-
timal in this perspective.

• Furthermore, among all negative phrases sam-
pling strategies, the perplexity of the FMM set-
ting is consistently lower than that of the N-words
and N-ids ones. This phenomenon occurs per-
haps because phrases obtained with FMM are
relatively meaningful. Interestingly, the average
MAUVE values for the N-words and N-ids are
approximately 1% higher than that of FMM. The
observation indicates that the way to construct
train samples has a substantial influence on the
text quality.

3.4 Domain Adaptation

The plug-and-play property of the dynamic phrase
encoder motivates us to explore the performance
on a different domain in a training-free man-
ner. Specifically, we investigate the model trained
on the WikiText-103 dataset while tested on the
LawMT (Koehn and Knowles, 2017) dataset which
is an English-German translation dataset in the le-
gal domain. Following (He et al., 2021a; Alon et al.,
2022; Lan et al., 2023), we treat the English por-
tion of this dataset as a retrieval corpus. As shown
in table 6, only equipped with dynamic vocabu-
lary extracted on the target domain, the model can
outperform the transformer fine-tuned on LawMT
datasets (3.29% on MAUVE and 2.78% Diversity).

Model MAUVE ↑ Diversity ↑ Latency(s)↓ PPL ↓
Transformer w/o FT 22.97 72.12 1.03 3.21
Transformer w/ FT 23.06 80.21 1.02 3.54

RETRO 19.07 72.68 5.72 3.78
KMM-LM∗ 23.32 19.85 - -

CoG 19.46 81.93 1.39 6.74
MWT 24.55 77.45 1.10 5.38
Ours 26.35 82.99 1.09 7.61

Table 6: The automatic evaluation on Law-MT. In this
experiment, we retrieve 512 documents for each sample.
To guarantee a fair comparison, we also evaluate the
performance of the Transformer model both with and
without further fine-tuning on LawMT.

Thus, the learned phrase encoder could be an ef-
ficient tool for lightweight domain generalization.
We also calculate the sequence compression ratio
and conduct GPT-4 Evaluation. The details are in
Appendix G, H.

3.5 Generation with Citations

Considering that we can develop a dynamic vo-
cabulary tailored to our needs, and recognizing
that each potential phrase is uniquely associated
with a specific document, our proposed model is
designed to be effectively employed in the genera-
tion of citations. The task is formalized as follows:
given a query q and a few documents D, the model
is required to generate an answer with embedded
in-line citations of documents in D. We run the
experiments on the long-form QA dataset, ASQA
(Stelmakh et al., 2022) further processed by Gao
et al. (2023), where candidate documents for each
query have already been retrieved. We first label
each document with a unique ID marker starting
from 1 and then extract phrases from documents
with the corresponding marker, such as “dynamic
vocabulary[1]” from the document with mark “[1]”.
Therefore, phrases in the generated answers could
reflect the citation process.

Results We evaluate the generated results from
two perspectives: QA accuracy and citation qual-
ity. For QA accuracy, we evaluate Exact-Match,
F1-score, and Rouge-L and we calculate Recall
and Precision in terms of citation quality. Refer
to their detailed definitions provided in Gao et al.
(2023) for an in-depth understanding. Following
(Gao et al., 2023), we provide the model with the
k documents and leverage in-context learning to
instruct it to cite accordingly.

The results demonstrate a significant boost in the
citation capability of our model with citation recall
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Model(shot-1) Citation_rec Citation_prec QA-EM QA-F1 Rouge-L

TinyLlama 0.62 1.54 6.00 8.78 25.43

ours
w/ n-grams 9.76 29.30 8.88 11.83 30.06
w/ parsing 2.94 9.17 9.87 13.06 30.16
w/o phrases 0.20 0.44 8.81 11.81 29.60

Table 7: The automatic evaluation on ASQA. In this experiment, we opt for TinyLlama as the language model to
imbue the model with in-context learning capabilities. All baseline models are configured in a one-shot setting, with
the number of candidate documents set to 3. Parsing denotes that we use Stanza parser (Qi et al., 2020) to extract
phrases from candidate documents, which ensures that the phrases possess a relatively complete and well-defined
meaning.

and precision surpassing TinyLlama baseline by
9.14% and 27.76%, respectively. However, phrase
collections have a significant impact on the cita-
tion results. The phenomenon occurs potentially
due to the extensive collection of phrases by the
n-grams approach and thus more suitable phrases
could align with the generated text.

Furthermore, our model exhibits a superior QA
performance with an EM score of 9.87% and an F1
of 13.06%. Due to our model’s further fine-tuning
on WikiText-103 and the property that responding
to a query in ASQA necessitates Wikipedia-based
information, our model’s QA performance is ex-
pected to be excellent with the absence of phrases
(i.e., the setting of ours w/o phrases).

4 Related Work

Tokenizer Tokenizer is an essential component
of language models (Dagan et al., 2024; Mielke
et al., 2021), responsible for transforming raw text
into a sequence of tokens. Byte-Pair Encoding
(BPE) is commonly used to build tokenizer (Rad-
ford et al., 2019; Liu et al., 2019; Lewis et al., 2019;
He et al., 2021b) and, there exist other tokeniza-
tion algorithms, such as Unigram (Kudo, 2018)
and WordPiece tokenization used in BERT (De-
vlin et al., 2019). However, these tokenizations are
limited to subwords or whole words. Kumar and
Thawani (2022) and Gee et al. (2023) generalize
the BPE algorithm to multi-words and multi-tokens
separately. Whereas these approaches necessitate
training the tokenizer and remain static.

CoG (Lan et al., 2023) and CoG-2 (Cao et al.,
2024) both employ a “dynamic vocabulary” by ex-
panding vocabulary with phrases extracted from re-
lated documents. However, these two methods only
employ dynamic vocabulary in the output module
and split phrases into tokens in the input. In this

paper, we treated phrases as atomic units same as
tokens, and dynamically expanded vocabulary both
in input and output layers.

Sequence Compression Language models are
constrained by the limited length of input se-
quences they can process. Increasing this length
results in a prohibitive computational overhead. A
series of techniques have been proposed to com-
press sentences into one or a few tokens or latent
representations (Qin and Van Durme, 2023; Cheva-
lier et al., 2023; Bulatov et al., 2022; Mu et al.,
2024). MWT (Gee et al., 2023) enhances compres-
sion by retraining the tokenizer, incorporating the
most frequent n-grams of a support corpus into the
vocabulary. In contrast to the static vocabulary of
MWT, our method dynamically adapts the model’s
vocabulary to the input text, resulting in a more
flexible and efficient adaptation.

5 Conclusion

In this paper, we propose a novel approach for dy-
namically adjusting the model’s vocabulary based
on the input text. It is a plug-and-play approach that
can be simultaneously performed with pre-training
tasks. We investigated standard language modeling,
domain adaptation, and citation generation, and
discussed the impact of different training samples
and negative phrase construction methods on the
quality of generated text. Our experimental results
show that our proposed model can rapidly generate
high-quality, high-compression text compared to
baselines.

Limitations

In this paper, we propose a method to dynami-
cally expand the vocabulary based on the input text.
While our approach can improve generation speed
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and increase the effective length of the generated
text, our model does not modify the underlying
tokenizer. As a result, it cannot reduce the token
numbers for known input information like prompts
or questions. The dynamic vocabulary is, therefore,
limited to the subsequent content generated by the
model.

Furthermore, to obtain embedding representa-
tions for phrases, a dynamic phrase encoder is nec-
essary. This encoder has a more intricate structure
compared to the model’s linear embedding layer
and requires additional memory allocation during
implementation.

Lastly, our method relies on external techniques,
such as a retriever, to obtain relevant documents
and extract phrases from them during testing. This
adds complexity to the preparation process.
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A Full Results

We show the full results of our experiments in Ta-
bles 8, 9, 10, 11.

B More Implementation Details

The training of our proposed model was carried
out on two NVIDIA RTX 3090 GPUs, each with
24GB of memory, over a total of 400,000 training
steps. During the training process, we implemented
a gradient accumulation step of 2, with a batch size
of 4. We also used a linear learning rate schedule
with a warmup, alongside the AdamW optimizer
(Loshchilov and Hutter, 2019), maintaining the de-
fault beta values. The initial learning rate was set
at 5e-5. Additionally, we applied gradient clipping
with a clipping value of 1.0 to ensure training sta-
bility. When conducting nucleus sampling, we set
the p to 0.95.

For each test sample, we retrieve top-k docu-
ments that have similar topics with the sample pre-
fix and extract candidate phrases to construct the
dynamic vocabulary. In our experiments, the value
of k is set to 32 by default and the candidate phrase
is restrained to the length of 2-8 tokens.

We initialize the language model with two mod-
els of different scales, GPT-2 and Tinyllama (Zhang
et al., 2024), to verify the effectiveness of our pro-
posed method. We employ full-parameter fine-
tuning for GPT-2 and LoRA fine-tuning (Hu et al.,
2021) for Tinyllama. When fine-tuning TinyLlama
with LoRA, we set r as 8 and alpha as 32.

The experiments of MWT in paper (Gee et al.,
2023) are conducted on encoder-only models such
as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019). In our implementation, we modify the
foundation model to GPT2 (Radford et al., 2019),
a decoder-only model, and add the top 10000 most
frequent 2-grams to the original GPT-2 Tokenizer.
The embeddings for newly added words are initial-
ized using Fast Vocabulary Transfer (FVT) (Gee
et al., 2022). MWT is trained for a total of 150000
steps on the WikiText103 dataset.

C More Details of Automatic Evaluation

In this section, we provide a detailed introduction
to the automatic evaluation metrics.

• MAUVE. Pillutla et al. (2021) measures how
closely the token distribution in the generated
text matches that in human-written text across
the entire test set. We follow prior work and

leverage the GPT2-large model to generate
the scores. In our implementation, the scaling
factor is set as 2.0.

• Rep-n. Welleck et al. (2019) measures the
repetition at different n-gram levels in the
generated text. It is defined as 100 × (1.0 −
|uniquen−gram(x)|
|totaln−gram(x)| ). Higher Rep-n represents

the severe degeneration problem in genera-
tions.

• Diversity. Welleck et al. (2019) evaluates the
variety of generated content, which is formu-
lated as

∏4
n=2(1− Rep−n

100 ). More informative
generations get higher Diversity scores.

• Perplexity is a measure of the uncertainty or
difficulty in predicting the next word in a se-
quence. A lower perplexity score indicates
that the model is more certain about its predic-
tions.

D Real-time Adaptability

We have attempted to verify the efficiency when the
proposed model adapts its vocabulary in real-time
scenarios where new phrases continuously emerge.
We give a simulated experiment with dynamic vo-
cabulary updates in real time. Specifically, we first
use a document retriever to retrieve top-k-related
documents for each given prefix. Then, the candi-
date phrases P are collected from these documents
for selection. Unlike the full off-line computation
(the setting in section 3.2), we gradually expand the
vocabulary during the model’s generation. Specif-
ically, we added 5% of the phrases from P to the
vocabulary for every 10 tokens generated.

Obviously, the computational and memory costs
are linear to the size of on-demand vocabularies,
which we believe is reasonable since 1) the en-
coding of phrases could be computed in the way
of parallel and off-line; 2) the prediction over the
new phrase table could also be paralleled using the
tilling trick (Milakov and Gimelshein, 2018); 3)
in practice, the size of dynamic vocabulary could
be controlled by dynamically off-loading unused
phrases. As shown in table 12, the increase in la-
tency can be successfully controlled.

E Memory and computational resources

We control the number of phrases in dynamic vo-
cabulary to illustrate its impact on total FLOPs
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Model Decoding MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 ↓ Diversity ↑ Latency(s)↓ PPL ↓

Transformer greedy 20.47 41.96 36.82 33.74 24.30 1.10 3.60
nucleus 25.05 5.40 1.44 0.51 92.76 1.15 31.01

RETRO greedy 19.59 43.78 38.58 35.35 22.33 4.43 3.96
nucleus 20.77 5.83 1.91 0.83 91.61 5.43 39.74

KMM-LM∗ greedy 19.92 43.79 38.76 35.69 22.13 10.36 3.48
nucleus 22.50 3.33 0.69 0.21 95.8 10.42 78.01

CoG greedy 21.61 34.77 30.67 28.35 32.41 1.04 7.89
nucleus 25.96 5.43 1.53 0.67 92.50 1.06 36.66

GPT+MWT greedy 24.74 33.78 26.72 22.76 37.48 1.13 5.58
nucleus 25.66 4.18 0.90 0.29 94.68 1.17 55.02

Ours greedy 25.69 27.77 20.80 17.08 47.44 0.99 8.03
nucleus 24.34 4.59 1.03 0.28 94.16 1.00 51.38

Table 8: The automatic evaluation on the test set of WikiText-103. ∗ denotes that the results are obtained from CoG
(Lan et al., 2023) paper. For each sample, the first 32 tokens are provided and models are tasked with generating the
subsequent 128 tokens. We can observe that our proposed model achieves the best scores in most metrics.

Negative Samples Decoding MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 ↓ Diversity ↑ Latency(s)↓ PPL ↓
FMM

in-batch
greedy 21.95 23.42 15.29 10.71 57.92 0.94 16.48
nucleus 23.17 4.17 0.92 0.29 94.67 0.84 78.20

pre-batch
greedy 22.28 26.90 20.07 16.29 48.91 0.95 9.02
nucleus 20.59 4.62 1.07 0.35 94.03 0.88 56.28

generation
greedy 22.87 31.17 23.82 19.55 42.19 1.20 6.34
nucleus 20.33 4.35 1.01 0.31 94.39 1.06 49.51

corpus-retrieval
greedy 21.98 31.47 24.39 20.26 41.32 1.12 6.40
nucleus 20.52 4.36 1.00 0.32 94.38 1.08 51.60

self-retrieval
greedy 21.65 31.33 24.15 20.00 41.67 1.15 6.39
nucleus 20.63 4.37 1.00 0.35 94.34 1.04 49.93

self-retrieval + generation
greedy 21.25 30.89 23.73 19.57 42.40 1.16 6.62
nucleus 20.34 4.24 0.96 0.29 94.57 1.04 52.27

N-words

in-batch
greedy 24.67 20.80 12.22 7.72 64.15 0.88 17.01
nucleus 24.24 4.76 1.16 0.40 93.76 0.81 68.25

pre-batch
greedy 23.98 19.58 13.63 11.02 61.80 1.16 14.60
nucleus 23.60 5.71 1.82 0.92 91.73 1.11 47.17

generation
greedy 24.99 26.72 19.95 16.41 49.03 0.94 8.51
nucleus 24.85 4.64 1.07 0.31 94.04 0.94 50.65

self-retrieval
greedy 24.83 27.21 20.23 16.54 48.46 0.96 8.13
nucleus 24.51 4.57 1.05 0.33 94.12 0.94 51.85

self-retrieval + generation
greedy 25.69 27.77 20.80 17.08 47.44 0.99 8.03
nucleus 24.34 4.59 1.03 0.28 94.16 1.00 51.38

N-ids

in-batch
greedy 23.96 18.63 10.30 6.22 68.44 0.81 21.53
nucleus 23.17 4.77 1.18 0.43 93.71 0.70 81.06

pre-batch
greedy 23.66 19.81 13.96 11.36 61.16 1.12 14.83
nucleus 22.84 5.17 1.52 0.67 92.77 0.92 54.52

generation
greedy 23.91 28.12 21.45 17.82 46.40 0.99 8.07
nucleus 24.50 4.41 0.97 0.29 94.38 0.96 53.98

self-retrieval
greedy 23.64 27.29 20.33 16.49 48.38 1.02 8.36
nucleus 23.85 4.43 0.94 0.27 94.41 0.88 55.76

self-retrieval + generation
greedy 24.85 27.85 21.04 17.36 47.08 1.01 8.21
nucleus 23.91 4.41 0.96 0.28 94.40 0.98 53.03

Table 9: The automatic evaluation on different negative samples with greedy and nucleus sampling (top-p: 0.95)
decoding algorithms on the WikiText103 dataset. The constructions of training samples and negative phrases have a
significant influence on the generated text.
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Model Decoding MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 ↓ Diversity ↑ Latency(s)↓ PPL ↓

Transformer w/o FT greedy 22.97 13.36 9.69 7.84 72.12 1.03 3.21
nucleus 24.15 4.05 1.62 0.80 93.64 1.05 31.48

Transformer w/ FT greedy 23.06 9.74 6.45 5.00 80.21 1.02 3.54
nucleus 25.12 4.36 1.73 0.87 93.17 1.08 14.94

RETRO greedy 19.07 13.19 9.34 7.66 72.68 5.72 3.78
nucleus 21.26 3.30 1.18 0.55 95.03 5.54 57.40

KMM-LM∗ greedy 23.32 - - - 19.85 - -
nucleus 24.75 - - - 94.60 - -

CoG greedy 19.46 9.29 5.68 4.24 81.93 1.39 6.74
nucleus 24.45 4.57 1.58 0.72 93.25 0.89 32.01

GPT+MWT greedy 24.55 11.59 7.34 5.46 77.45 1.10 5.38
nucleus 22.68 3.15 1.01 0.39 95.49 1.16 68.55

Ours greedy 26.35 9.26 5.21 3.52 82.99 1.09 7.61
nucleus 24.80 3.63 1.17 0.48 94.78 0.93 60.70

Table 10: The automatic evaluation on LawMT. We directly retrieve 512 documents for each sample in this
experiment. Our proposed model even outperforms the Transformer further fine-tuned on the LawMT corpus.

Negative Samples Decoding MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 ↓ Diversity ↑ Latency(s)↓ PPL ↓
FMM

pre-batch
greedy 23.65 9.39 5.00 3.03 83.48 0.90 13.86
nucleus 22.73 4.82 1.87 0.85 92.60 0.84 68.31

pre-batch
greedy 25.00 8.71 4.76 3.16 84.20 0.98 8.26
nucleus 23.19 3.71 1.19 0.50 94.66 0.83 60.34

generation
greedy 22.87 11.00 6.76 4.85 78.96 1.26 6.17
nucleus 22.50 3.50 1.13 0.48 94.95 1.07 65.26

Retrieval-samples
greedy 23.00 10.45 6.36 4.53 80.06 1.21 6.11
nucleus 23.24 3.43 1.01 0.46 95.07 1.02 68.26

self-retrieval
greedy 23.41 10.98 6.80 4.92 78.89 1.20 6.11
nucleus 23.22 3.48 1.05 0.43 95.10 0.98 67.14

self-retrieval + generation
greedy 24.15 10.50 6.31 4.49 80.08 1.22 6.24
nucleus 22.55 3.40 1.16 0.53 94.98 1.04 69.40

N-words

in-batch
greedy 24.27 10.07 5.31 3.16 82.47 0.86 15.28
nucleus 25.48 5.36 2.12 1.00 91.71 0.80 61.90

pre-batch
greedy 26.15 6.53 3.11 1.92 88.82 0.61 14.40
nucleus 25.15 4.07 1.41 0.61 94.00 0.53 45.79

generation
greedy 26.35 9.26 5.21 3.52 82.99 1.09 7.61
nucleus 24.66 3.53 1.16 0.48 94.89 0.92 62.58

self-retrieval
greedy 23.65 8.92 4.88 3.29 83.87 1.04 8.05
nucleus 24.71 3.54 1.09 0.42 95.00 0.81 62.51

self-retrieval + generation
greedy 26.35 9.26 5.21 3.52 82.99 1.09 7.61
nucleus 24.80 3.63 1.17 0.48 94.78 0.93 60.70

N-ids

in-batch
greedy 25.77 9.12 4.44 2.47 84.70 0.81 17.49
nucleus 26.04 5.19 2.06 0.95 91.98 0.70 66.18

pre-batch
greedy 25.08 6.70 3.14 1.87 88.68 0.62 14.49
nucleus 23.93 4.25 1.46 0.65 93.74 0.43 47.94

generation
greedy 22.55 9.24 5.21 3.55 82.98 1.04 8.03
nucleus 23.14 3.59 1.14 0.49 94.85 0.85 61.89

self-retrieval
greedy 24.63 9.46 5.43 3.71 82.44 1.05 7.86
nucleus 24.19 3.58 1.11 0.44 94.94 0.78 63.87

self-retrieval + generation
greedy 23.18 9.31 5.25 3.59 82.85 1.07 7.57
nucleus 24.63 3.57 1.10 0.46 94.93 0.87 60.32

Table 11: The automatic evaluation on different negative samples with greedy decoding and nucleus sampling(top-p:
0.95) on the LawMT dataset.
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Settings MAUVE ↑ Diversity ↑ Latency(s)↓ PPL ↓
Ours(70) 25.27 46.11 1.03 7.78

Ours(70) + real-time 24.42 47.05 1.31 7.99
Ours(100) 25.69 47.44 0.99 8.04

Table 12: The results of real-time adaptability. (x) represents that we construct dynamic vocabulary with x% of P
and real-time denotes the real-time scenarios.

required to generate text of the same number of
tokens after being tokenized by GPT-2.

Despite the addition of 65,536 phrases (more
than 50,257 tokens in GPT-2), our model can still
save a significant amount of FLOPs compared to
the baseline (phrase number = 0 in this table).

Phrase num FLOPS (Rel) (T) Avg Tokens Memory (Rel) (GB)

0 4.07(1×) 128 1.2411(1.00×)
32 2.63(0.65 ×) 88 1.2412(1.00 ×)
128 2.06(0.51 ×) 98 1.2415(1.00 ×)
2048 2.12(0.52 ×) 95 1.2529(1.01 ×)
8192 1.98(0.49 ×) 96 1.2880(1.04 ×)
16384 2.39(0.59 ×) 89 1.3349(1.08 ×)
65536 2.64(0.65 ×) 73 1.6161(1.30 ×)

Table 13: The impacts of dynamic Vocabulary on
FLOPs and Memory occupation.

The following is a theoretical analysis.

Memory Overhead. The additional memory
overhead mainly involves the memory occupation
of the dynamic phrase encoder and the phrase em-
bedding. The former is fixed and the latter is lin-
early related to the number of new phrases added.
Assuming that the memory occupation of phrase en-
coder and language model is Mp and Ml separately,
then the proportion of additional memory overhead
is as follows: Mp+p∗d∗4B/(Mp+p∗d∗4B+Ml).
p is the number of newly added phrases and d de-
notes the dimension of token embeddings. There-
fore, different sizes of language models lead to
varying overheads and the overhead is trivial when
choosing a larger model, such as Tinyllama.

Computational cost. Compared to the Trans-
former, our proposed model requires additional
computation on output embeddings during one-step
generation: 2pdn (n represents the sentence length).
Since phrase embeddings can be obtained offline,
this item is excluded from the computational cost.

The computational cost of a single forward prop-
agation is 2(n(V + p)d+ (24nd2 + 4nd)L). And
V is the vocabulary size of the language model and
L notes the layer numbers.

Therefore, the percentage of additional compu-
tational resources for one forward propagation is
p/(V + p+ (12d+ 2n)L).

When the dynamic phrase encoder is set as
GPT2(124M) and the Language model is initial-
ized with Tinyllama(1.1B), then the percentage of
additional memory and computational resources is
approximately 10

Although our model will increase minor com-
putational costs on one-step generation, more than
one forward process can be saved when generating
a phrase with two or more tokens.

F Case Study

In this section, we present some generated exam-
ples of our proposed model and GPT-2. As illus-
trated in Figure 4 and 5, it can be observed that
the generations of our model are more informative
and more diverse than those of GPT-2. For exam-
ple, as shown in Figure 4, our content introduces
the television series played by Boulter and the ac-
tors co-played with Boulter while GPT-2 merely
repeats the TV series “The Bill”. Moreover, Figure
5 presents that the generated text from our proposed
model describes richer features about each series
than GPT-2.

G GPT-4 Evaluation

Although human evaluation is considered the gold
standard for assessing human preferences, it is
slow and costly. Zheng et al. (2023) have demon-
strated that strong LLMs, such as GPT-4, can match
most human preferences well , achieving over 80%
agreement, which is the same level of agreement
between humans. Therefore, LLM-as-a-judge is
an interpretable approach to approximating human
preferences. We random sample 100 cases and
evaluate the results of the Baselines and our model.
GPT-4 is asked to evaluate the generated texts by
considering fluency, coherence, informativeness,
and grammar. Owing to GPT4’s sensitivity to the
order of the two candidate sentences (Wang et al.,
2023), we adhere to the approach employed in
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The Generation of our Proposed Model
He also appeared in the television series The Bill in 2003. Boulter has previously worked with actors such as John Barrymore,
Ben Willbond, and John Barrymore, and has appeared in numerous television series, including The Bill, The Hound of the 
Baskervilles, The Bill, and The Bill & Wally in the Series. He has also appeared in the television series The Bill, the television 
series The Bill, and the television series The Bill & Wally in the Series. He has also appeared in the television series The Bill, 
the television series The Bill, and the television series The Bill & the TARDIS. He has also

Robert Boulter is an English film, television and theatre actor. He had a guest @-@ starring role on the television series The 
Bill in 2000.

He has appeared in several television series, including The Bill, The Bill 2, The Bill 3, The Bill 4, The Bill 5, The Bill 6, The 
Bill 7, The Bill 8, The Bill 9, The Bill 10, The Bill 11, The Bill 12, The Bill 13, The Bill 14, The Bill 15, The Bill 16, The Bill 
17, The Bill 18, The Bill 19, The Bill 20, The Bill 21, The Bill 22, The Bill 23, The Bill 24, The Bill 25, The Bill 26, The Bill 
27, The Bill 28, The Bill 29, The Bill 30

Case Input

The Generation of GPT-2

Figure 4: A comparation between texts generated by our proposed model and GPT-2. The tokens highlighted in
blue are from dynamic vocabulary while others are from fixed token ones.

1932 by Marvell Press, and were followed by a series of short stories, Four Elegies, in March 1932 by The Times. The first, A
City Sunset, describes a young woman who is impressed by the beauty of the city and the beauty of the sky. In theme, the 
woman is inspired by the beauty of the sky and thinks that she can make it beautiful by ating the sky with her own mind and 
by the power of her imagination. The second, A City Sunset, describes a woman who is inspired by the beauty of the sky and 
the power of her imagination. The third, A Vision, is a short story about

The origins of Imagism are to be found in two poems, Autumn and A City Sunset by T. E. Hulme. These were published in 
January

1891, and were followed by a series of poems, Autumn and A City Sunset, in which Hulme's poems were the first to be 
published. The poems were published in the same year as the first of the two poems, Autumn and A City Sunset, and were 
followed by a series of poems, Autumn and A City Sunset, in which Hulme's poems were the first to be published. The poems 
were published in the same year as the first of the two poems, Autumn and A City Sunset, and were followed by a series of 
poems, Autumn and A City Sunset, in which Hulme

Case Input

The Generation of our Proposed Model

The Generation of GPT-2

Figure 5: A comparation between texts generated by our proposed model and GPT-2. The tokens highlighted in
blue are from dynamic vocabulary while others are from fixed token ones.

You are a helpful and precise assistant for checking the quality of the text.
[Prefix]
{prefix}
[The Start of Assistant 1's Generation]
{Generation_1}
[The End of Assistant 1's Generation]
[The Start of Assistant 2's Generation]
{Generation_2}
[The End of Assistant 2's Generation]
[System]

We would like to request your feedback on the performance of two AI assistants in response to the user prefix displayed 
above.Please rate the fluency, coherence, informativeness, and grammar. Each assistant receives an overall score on a 
scale of 1 to 10, where a higher score indicates better overall performance.
Please first provide a comprehensive explanation of your evaluation, avoiding any potential bias and ensuring that the 
order in which the responses were presented does not affect your judgment. Then, output two lines indicating the scores 
for Assistant 1 and 2, respectively.

Output with the following format:
Evaluation evidence: <your evluation explanation here>
Score of the Assistant 1: <score>
Score of the Assistant 2: <score>

Figure 6: The GPT-4 evaluation template with three slot {prefix}, {Generation_1} and {Generation_2}.
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Wang et al. (2023) and determine the final result
by calculating the average of the outcomes from
interchanging the order of the candidate sentences.

Figure 6 shows the detailed prompt used
for GPT-4. Despite the template emphasizing
that the order should not affect the results (red
text), large language models still exhibit a sig-
nificant positional bias. Therefore, for each
triplet (prefix, <generation_1>, <generation_2>),
we include another corresponding triplet (prefix,
<generation_2>, <generation_1>). This is done to
mitigate the impact of the order of the two genera-
tions on GPT-4 evaluation.

Table 14 is the full results of our evaluation using
GPT-4. It can be seen that our model is capable of
producing generations that are comparable or even
superior to the baselines.

Comparison (VS) Better No Prefer Worse

WikiText103
Transformer 0.61 0.05 0.34
MWT 0.58 0.02 0.40
CoG 0.58 0.08 0.34

LawMT
Transformer 0.46 0.02 0.52
MWT 0.67 0.07 0.26
CoG 0.50 0.05 0.45

Table 14: GPT-4 evaluation on WikiText-103. Due to
the sensitivity of GPT-4 to the order of two candidates,
we got the final result by calculating the average scores
by changing the order of the two candidates.

H Sequence Compression On LawMT

Model NLS UTF-8 Bytes

WikiText103
Transformer 127.72 4.28
MWT 114.84 4.77
Ours 101.38 5.54

LawMT
Transformer 128.79 5.22
MWT 124.94 5.39
Ours 105.38 6.53

Table 15: Compression on WikiText-103 and LawMT.
Our model compresses text in a larger margin than
MWT in the specific domain.

Analogous to the section 3.2, we calculate the
compression ratio of LawMT. The conclusion
aligns with those from section 3.2, indicating that
our model could yield the highest information den-
sity per token. And for an equal number of to-

kens, our model encompasses a longer effective
text length.
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