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Abstract

Argument relation classification (ARC) iden-
tifies supportive, contrasting and neutral rela-
tions between argumentative units. The current
approaches rely on transformer architectures
which have proven to be more effective than
traditional methods based on hand-crafted lin-
guistic features. In this paper, we introduce
DISARM, which advances the state of the art
with a training procedure combining multi-task
and adversarial learning strategies. By jointly
solving the ARC and discourse marker detec-
tion tasks and aligning their embedding spaces
into a unified latent space, DISARM outper-
forms the accuracy of existing approaches.

1 Introduction

Argument relation classification (ARC) is a crucial
task in argument mining and aims to automatically
identify relations between argumentative units to
understand whether they support each other, are
in opposition, or have no dependency (Toulmin,
2003; Lippi and Torroni, 2016; Stede and Schnei-
der, 2018; Lawrence and Reed, 2019). It can be
applied in various domains, such as political de-
bates, legal and juridical cases, business negotia-
tions. In these scenarios, ARC facilitates the under-
standing and evaluation of complex discussions by
identifying logical connections and assessing their
argumentative coherence and effectiveness.

In literature, ARC is typically conceived as
a classification problem where pairs of argu-
ment units are categorized into predefined relation
classes. For example, an ARC model is asked to
recognize that the sentences in the first row of Ta-
ble 1 support each other (i.e., support relation), the
ones in the second row are in conflict (i.e., attack
relation), and those in the last row have no depen-
dency (i.e., neutral relation).

Traditional ARC approaches rely on the extrac-
tion of hand-crafted linguistic features, which de-
rive from the identification of specific discourse

Table 1: Examples of argumentative units labeled as sup-
port, attack or neutral for the ARC task. The underlined
words indicate discourse markers.

Sentence pair Relation

Exercise reduces stress.
Thus, it’s good for mental health. Support

Social media connects people easily.
However, it often spreads misinformation. Attack

The project deadline is approaching.
Meanwhile, the team is preparing a presentation. Neutral

elements, syntactic elements and lexical struc-
tures (Stab and Gurevych, 2014; Peldszus and
Stede, 2015; Stab and Gurevych, 2017; Wachsmuth
et al., 2018; Gemechu and Reed, 2019), the analysis
of the topics these propositions refer to (Lawrence
et al., 2014; Nguyen and Litman, 2016; Fromm
et al., 2019), or a combination of the two (Lawrence
and Reed, 2015). More recent approaches either ad-
dress multiple argumentative tasks simultaneously
through multi-task learning or integrate common-
sense knowledge into the model. Examples of the
former include the work by Galassi et al. (2021)
and Liu et al. (2023). The first investigates the use
of residual networks and neural attention mecha-
nisms to simultaneously classify argument compo-
nents and their relations. The latter addresses argu-
ment mining as a multi-hop reading comprehension
task where the model is trained to perform classi-
fication and generate a reasoning sequence with
transformer-based architectures (Vaswani et al.,
2017). In terms of integrating common-sense
knowledge, notable methods include ARK (Paul
et al., 2020) and KE-RoBERTa (Saadat-Yazdi et al.,
2023). ARK follows this idea by combining with a
cross-attention layer pairs of sentence representa-
tions generated by distinct BiLSTM architectures.
The representations are then enhanced via external
knowledge coming from both ConceptNet (Speer
and Havasi, 2012) and WordNet (Miller, 1995).

18949



KE-RoBERTa (Saadat-Yazdi et al., 2023), one of
the current state-of-the-art approaches for ARC,
dynamically injects common-sense knowledge in
a RoBERTa-based model via a generative model
called COMET (Hwang et al., 2021).

In this paper, we address the ARC task from a
different perspective: instead of explicitly injecting
external knowledge, we introduce a special training
procedure for fine-tuning a transformer architecture
on the ARC task. This is obtained by combining
multi-task and adversarial learning strategies that
drive the models to learn meaningful sentence rep-
resentations supporting the ARC task. We imple-
ment this idea in DISARM1 (DIScourse markers
and adversarial Argument Relation Mining) which
extends the standard fine-tuning of a RoBERTa
(Liu et al., 2019) transformer architecture with
two main improvements. The first is combining
the classification of argument relations with dis-
course marker discovery (DMD). The second is
applying an adversarial procedure to align the sen-
tence representations across the two tasks into a
single joint latent space. The intuition is that learn-
ing to identify discourse markers (the underlined
words in Table 1) helps the model capture mean-
ingful sentence representation properties that can
be shared with the ARC task (Jernite et al., 2017;
Nie et al., 2017; Malmi et al., 2018). DISARM

exploits the data provided by the Discovery bench-
mark (Sileo et al., 2019), where pairs of sentences
are labeled with the discourse marker connecting
them. A pre-processing task is needed to reduce the
174 discourse markers available in the Discovery
ground truth to the categories of elaborative, infer-
ential and contrastive markers introduced in Fraser
(1999). The experimental evaluation shows that
DISARM outperforms competing approaches.

2 The DISARM approach

DISARM consists of two main components (see
Figure 1), i.e., a RoBERTa-based encoder and a
series of classification heads, which during training
alternatively process data associated with ARC and
DMD tasks.

2.1 Encoder

Consider a dataset for the target ARC task, i.e.,
T (sARC1 , sARC2 , yARC), composed of argumentative
units with associated relation categories, and an

1The code is available at https://github.com/
softlab-unimore/disarm

equal sized dataset extracted from Discovery, i.e.,
S(sDMD1 , sDMD2 , yDMD), made up of sentences and the
category of the discourse marker that connects
them. We format each input as

xk = <s> sk1 </s><s> sk2 </s> with k ∈ {ARC, DMD}

and feed it into a roberta-base encoder fe. It
generates a set of embeddings hkl = fe(x

k) =
(hkl,1, ..., h

k
l,n) with n being the number of tokens

inside xk and l indicating the output of the last
encoder block. Building on previous work (Jawa-
har et al., 2019), which show that shallow trans-
former blocks capture superficial linguistic fea-
tures, whereas deeper ones encode more complex
semantic information, we average the embeddings
of the last layer hkl with those of the first hki in order
to capture both syntactic and semantic features.

hk = avg([hk
i , h

k
l ]) (1)

We apply cross-attention to further emphasize
the comparison of the two sentences.

K = W1e1(h
k), V = W2e1(h

k), Q = W3e2(h
k)

h̃k = avg(softmax

(
QKT

√
d

)
V ) (2)

where ej extracts the embeddings of the j-th sen-
tence. Then, the resulting embeddings are averaged
to yield the final sentence representation h̃k.

2.2 Classification heads
Three classification heads process the encoder out-
put:

• HeadARC, which classifies the samples of T in
support / attack / neutral;

• HeadDMD, which classifies the samples of S in
elaborative / inferential / contrastive;

• Headdomain which classifies each embedding
into its own original dataset (i.e., S or T ).

While the first two heads encourage knowledge
sharing between the ARC and DMD tasks, the third
aligns the two embedding spaces. To implement
the latter we exploit a Gradient Reversal Layer
(GRL) (Ganin and Lempitsky, 2015). By multi-
plying the gradient by a negative scalar −λ during
backpropagation, GRL forces the model to learn in-
variant features between the ARC and DMD tasks,
pushing the embeddings into a joint latent space.
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Figure 1: Overview of the DISARM architecture.

Table 2: Descriptive statistics for ARC and DMD data.
The last column reports the frequency of support, attack
and neutral for ARC datasets and that of elaborative,
inferential and contrastive classes for Discovery.

Task Train Dev Test Target
freq (%)

SE ARC 3,070 1,142 1,100 90/10/-
DB ARC 6,486 2,163 2,162 50/50/-
M-ARG ARC 3,283 410 411 9/3/88
Discovery DMD 1.56M 87K 87K 32/29/39

2.3 Loss function

The model uses cross-entropy to calculate the
losses LARC, LDMD, Ldomain of the ARC, DMD and
domain classifiers respectively. The total loss is
given by their scaled sum:

L = LARC + βLDMD + γLdomain β, γ ∈ [0, 1] (3)

3 Experimental evaluation

3.1 Datasets and Competing Approaches

We consider three datasets, typically used in the
literature to evaluate the ARC task: Student Es-
say (SE) (Stab and Gurevych, 2017), Debatepedia
(DB) (Paul et al., 2020) and M-ARG (Mestre et al.,
2021). Table 2 reports some descriptive statistics.
While in SE and DB the sentence pairs are labeled
with two classes (i.e., support or attack), in M-
ARG there are 3 classes (i.e., support, attack, and
neutral). In general, the support class is the most
frequent one and the DB dataset is twice the size
of the other benchmarks. We selected two state-
of-the-art approaches as representative competitors
for DISARM: ARK (Paul et al., 2020) and KE-
RoBERTa (Saadat-Yazdi et al., 2023).

3.2 Experimental setup and execution

DISARM was fine-tuned on the ARC benchmarks
for 30 epochs, with a batch size of 64, AdamW
optimizer with weight decay 1e− 2, learning rate
1e−5 and λ = 1e−2. To manage class imbalance
we used a class weighting of 1 : 10, 1 : 1 and
9.375 : 30 : 1 for the two and three classes of
SE, DB and M-ARG respectively. The results are
averaged across six different runs. We performed a
grid search in the interval [0, 1] with a step size of
0.2 on the validation set to determine the optimal
weights γ and β for the domain adaptation and
discourse marker detection losses.

3.3 Effectiveness

The analysis of the results shown in Table 3 al-
lows us to answer two main questions, concerning:
(1) the effectiveness of our approach compared to
state-of-the-art methods, and (2) whether the good
performance derives from the knowledge of dis-
course markers or our special training.

Comparison with state-of-the-art. The last row of
Table 3 shows that DISARM outperforms the refer-
ence approaches listed in the first two rows. The
last column in the same table shows that the av-
erage improvement in F1 score across the three
datasets compared to KE-RoBERTa is 1.22.

Discourse markers vs special training. An abla-
tion study allowed us to understand the reasons
for such an improvement. RoBERTa+ is a simpli-
fied version of DISARM obtained by removing both
multi-task and adversarial learning processes (i.e.,
both HeadDMD and Headdomain are removed). Ta-
ble 3 shows that RoBERTa+ achieves surprisingly
good results on two of the three datasets tested (a
similar conclusion was obtained in Ruiz-Dolz et al.,
2021). The results are close to KE-RoBERTa that,
we recall, relies on external common-sense knowl-
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Table 3: Accuracy (F1 score). Bold values indicate the
best results, underlined values the second-best ones. ∆
values indicate the average accuracy difference wrt KE-
RoBERTa. The results for ARK and KE-RoBERTa
are taken from Saadat-Yazdi et al. (2023). Values
for RoBERTa+, RoBERTa+ INJ, DISARM (MTL) and
DISARM represent the average of 6 seeds, with standard
deviations in brackets.

SE DB M-ARG ∆

ARK 60.00 64.00 -
KE-RoBERTa 70.00 75.00 49.00

RoBERTa+ 65.15 (2.1) 74.7 (0.6) 50.37 (3.7) -1.26
RoBERTa+ INJ 65.83 (1.7) 74.97 (0.8) 49.35 (2.7) -1.28
DISARM (MTL) 69.74 (1.8) 76.14 (0.7) 50.88 (2.5) +0.92
DISARM 70.1 (1.6) 76.22 (0.7) 51.34 (3.2) +1.22

edge. The marked improvement of DISARM over
KE-RoBERTa and RoBERTa+ highlights the funda-
mental role of multi-task and adversarial learning
in enhancing performance.

Building on this research, we performed a sec-
ond study to understand whether the key contri-
bution comes from utilizing discourse markers or
from the specific training that encourages knowl-
edge sharing between the two tasks. To investigate
this, we implemented RoBERTa+ & INJ, a variant
of RoBERTa+ that explicitly injects, into the in-
put, the discourse markers predicted from another
roberta-base model trained exclusively on Dis-
covery. The results show a decrease of around 1%
compared to KE-RoBERTa and let us conclude that
injecting discourse markers into the input text can
carry superficial knowledge distracting the model
from the content of the analyzed propositions, as
reported also in Opitz and Frank (2019). How-
ever, we observe that DISARM (MTL) achieves
a significant improvement of about 1% on aver-
age compared to KE-RoBERTa when trained in a
multi-task setting without adversarial learning (i.e.,
including only HeadDMD and HeadARC). This re-
sult suggests that the method used for injecting this
knowledge into the model significantly impacts per-
formance. Therefore, we conclude that the prefer-
able approach is to inject this knowledge by solv-
ing the DMD task rather than explicitly inserting it
into the input. Further refining this conclusion, we
find that an even more effective method is to com-
bine multi-task learning with adversarial learning.
This combined approach used by DISARM fosters
deeper knowledge sharing, directly enhancing the
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Figure 2: Impact of adversarial training on embedding
space. Upper plots show the t-SNE projection of the
embedding space produced by RoBERTa+ (top left)
and DISARM (top right) on SE. The bottom plot shows
the embeddings produced by DISARM on Discovery.
DISARM aligns specific classes from ARC and DMD
closer together in the embedding space, such as the
attack class and the contrastive class.

expressiveness of the embedding space generated
by the encoder component.

3.4 Impact of adversarial training on the
embedding space

We assess the impact of adversarial learning on the
embedding space by (1) observing how sentence
representations change when the model is trained
with and without this technique, and (2) analyz-
ing whether the embedding spaces of the ARC and
DMD tasks align into a joint latent space. Regard-
ing the first point, we extract the sentence embed-
dings generated by both DISARM and RoBERTa+
on the SE dataset (see the upper plots in Figure 2).
As expected, the adversarial training produces dis-
criminative sentence embeddings that are clearly
separated into the support and attack classes. Re-
garding the second point, we compare the embed-
dings generated by DISARM on both SE and Dis-
covery datasets (see the upper right and bottom
plots in the Figure). We observe that sentence em-
beddings associated with the attack class in the
SE dataset and those related to sentences contain-
ing constrastive discourse markers in the Discov-
ery dataset are mapped into the same space. This
demonstrates that adversarial training generates dis-
criminative sentence embeddings by aligning the
embedding spaces of the ARC and DMD tasks.
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4 Conclusion

We presented DISARM, an argument relation clas-
sifier that injects knowledge of discourse markers
into a pre-trained RoBERTa model via multi-task
and adversarial learning. The experimental evalu-
ation shows that this model outperforms previous
state-of-the-art methods and learns discriminative
sentence embeddings supporting the task.

Limitations

The experiments do not report cross-domain eval-
uations where the proposed model is trained on
training data from a given domain and tested on
a different domain. Therefore, the robustness of
the model on out-of-domain data has not been fully
evaluated. Furthermore, we observe higher stan-
dard deviation on smaller datasets (e.g. M-ARG).
Such reduced dimensionality makes training more
unstable (as also discussed in Devlin et al., 2019).

The proposed approach solves an argument re-
lation classification task by integrating the knowl-
edge of discourse markers that are extracted from
the Discovery dataset. Given the low dimension-
ality of the ARC datasets, we integrated a subset
of the data from Discovery. This allows us to bet-
ter align the two tasks, avoiding domain balancing
problems. Therefore DISARM does not make ex-
tensive use of Discovery data. We plan to address
these limitations in future works.

Risks

The primary risk with using DISARM is the poten-
tial for misuse of the prediction model. Users could
leverage DISARM to highlight misleading patterns
in the relation between argumentative units, exploit-
ing claims to further their own views.
Another issue is data scarcity and underrepresenta-
tion of certain social groups and languages. These
biases could be amplified during model training,
leading to distorted predictions. As a prototype,
DISARM should be integrated into a broader frame-
work that includes other argument mining tasks and
systems to mitigate harmful predictions.
Finally, it is unclear how specific discourse cues
impact the model’s performance. In this paper, we
have shown how discourse markers can be lever-
aged for the ARC task. Yet, we did not investigate
the ambiguity of these markers and their potential
for adversarial attacks. Addressing these gaps is a
goal for future research.

Use of AI assistants

In the process of writing this paper, we used AI
assistants to help in translating text from other
languages to English, as well as generating ini-
tial drafts for some of the paragraphs. The AI-
generated content was used exclusively as a start-
ing point, with significant additional work done
by the authors. Finally, during the development
of DISARM, we used AI assistants to aid in the
debugging of our code.
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