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Abstract
Pretrained transformers such as BERT (Devlin
et al., 2019) have been shown to be effective in
many natural language tasks. However, they are
under-explored for character-level sequence-to-
sequence tasks. In this work, we investigate
pretraining transformers for the character-level
task of morphological inflection in several lan-
guages. We compare various training setups
and secondary tasks where unsupervised data
taken directly from the target task is used. We
show that training on secondary unsupervised
tasks increases inflection performance even
without any external data, suggesting that mod-
els learn from additional unsupervised tasks
themselves—not just from additional data. We
also find that this does not hold true for specific
combinations of secondary task and training
setup, which has interesting implications for
unsupervised training and denoising objectives
in character-level tasks.

1 Introduction

Transformers have been shown to be an effective ar-
chitecture for various natural language processing
tasks (Vaswani et al., 2017), facilitating the ubiqui-
tous method of pretraining on some unsupervised
task with an abundance of data and then finetun-
ing to a specific supervised task. Transformers
have also been shown to be an effective architec-
ture for character-level tasks such as grapheme-
to-phoneme conversion (G2P) and morphological
inflection (Wu et al., 2021).

However, very little work has explored the appli-
cation of pretrained models to character-level tasks,
which likely require different inductive biases than
the more semantically-oriented tasks where pre-
training is typical. For instance, Xue et al. (2022,
ByT5), a multilingual pretrained transformer using
byte inputs, showed impressive performance on
several semantically-oriented benchmarks, as well
as on some character-level tasks including morpho-
logical inflection. However, it still under-performs

the best two shared task submissions for the inflec-
tion benchmark (Vylomova et al., 2020).

The computational morphology community is
frequently interested in low-resource languages –
languages that do not have sufficient data available
to apply standard NLP techniques. This is harder
for morphologically complex languages, where the
large set of inflectional patterns lead to an explo-
sion in possible words, which become difficult to
model with a small dataset. For these reasons, there
is interest in building tools to aid in expanding mor-
phological resources for language education tools,
research, and documentation. Using NLP methods
to build systems for analyzing and applying mor-
phology in generalizable way to unseen words is
thus a useful goal. Several shared tasks have been
held to this end (Cotterell et al., 2016, 2018; Vy-
lomova et al., 2020; Pimentel et al., 2021; Kodner
et al., 2022), where a machine learning model that
performs well can be seen as competently repre-
senting the underlying system of morphology for a
given language.

In this work, we explore utilizing secondary un-
supervised tasks – tasks similar to language mod-
eling which can serve as auxiliary tasks in a multi-
tasking setup or pretraining tasks in a pretraining
setup – when training encoder-decoder transform-
ers for the task of morphological inflection. We in-
vestigate the benefits of pretraining (PT) beyond ex-
panding the vocabulary distribution during training
and also compare it to multi-task learning (MTL).
Following Kann and Schütze (2017), we use au-
toencoding (AE) as an unsupervised secondary
task and additionally compare it to the denoising
task of character-level masked language modeling
(CMLM) (Wiemerslage et al., 2023; Devlin et al.,
2019). We explore these methods in data-scarce
settings to investigate their potential impact in the
low-resource setting. Our data samples and code
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are available publicly.1

We specifically investigate the following re-
search questions:

• RQ1: Is training on secondary unsupervised
tasks an effective method for low-resource in-
flection, even without introducing any new
words to the dataset? This allows us to mea-
sure the impact that unsupervised tasks have
on a model outside of the obvious benefit of
increasing data diversity.

• RQ2: Are denoising tasks a better alternative
to autoencoding for morphological inflection?

• RQ3: When training a model for the given tar-
get task, does multi-task learning outperform
pretraining?

Our results show that both unsupervised PT and
MTL are effective for morphological inflection,
even with samples prepared exclusively from the
supervised data itself. We find that simply autoen-
coding the training words is more effective than
CMLM in these data-scarce settings. Though the
best method on average seems to be MTL with AE
in our experiments, this is not consistent across
every language. We also find that, in the MTL
setup, CMLM actually performs worse than the
baseline—though this is quickly reversed if we use
out-of-distribution data for the secondary task.

2 Background Work

2.1 Character-level Sequence-to-Sequence
Tasks

Character-level sequence-to-sequence tasks, some-
times referred to as character transduction tasks,
are a special case of neural sequence-to-sequence
learning problems that deal with approximately
word-sized sequences. They are characterized by
small vocabularies Σ∗ and short source and target
strings. Given source strings S ∈ Σ∗, target strings
Y ∈ Σ∗, and optionally some features τ to condi-
tion on, the goal of this task is to learn a mapping

f(S, τ) → Y (1)

where f(·) is typically parameterized by a neural
network. In this work, we focus on morphological
inflection: a character-level task where a particular
s ∈ S is typically a lemma, t ∈ τ is a bundle of

1https://github.com/Abhishek-P/
inflection-unsupervised-tasks

tags specifying inflectional features, and y ∈ Y
is a surface word of the lemma that expresses the
specified morphological features, e.g.,:

f(cry,PST) → cried

Morphological inflection is an active area of re-
search in NLP. Many shared tasks in the compu-
tational morphology community (Cotterell et al.,
2017; Goldman et al., 2023) have spurred progress
on this task, which can be considered a good proxy
for measuring the extent to which machine learning
models can acquire the system of morphology in
a language. Wu et al., 2021 trained a transformer
(Vaswani et al., 2017) for several character-level
transduction tasks resulting in state-of-the-art re-
sults. We follow their training methodology for
inflection models as our baseline in this work.

2.2 Transfer Learning

Additional data for tasks different from the target
task can be used to learn representations that benefit
some target task via transfer learning. This often
entails training on an unsupervised secondary task
like language modeling, due to the large availability
of unannotated text and the high cost of attaining
annotations for specific target tasks. There has also
been a great deal of research in transfer learning
with supervised tasks (Bingel and Søgaard, 2017;
Phang et al., 2018; Pruksachatkun et al., 2020).

We explore two different setups for this, both
of which are unsupervised. Multi-task learn-
ing (Caruana, 1997, MTL) refers to training some
task(s) together with the target task by including
samples from both in a single training run and com-
bining the loss from each (Luong et al., 2016). In-
tuitively, a well-chosen secondary task will benefit
the target task by encouraging a model to learn
a representation that minimizes the loss for both
tasks simultaneously (Fifty et al., 2021). Pretrain-
ing (PT) refers to an alternative training setup in
which models are first trained solely on secondary
task(s) to encourage learning representations in-
dependent of the target task and then finetuned to
some target task (Peters et al., 2018). Though both
setups are similar, MTL relies on the joint opti-
mization of multiple objectives, requiring a model
to resolve all tasks at the same time. On the other
hand, PT attempts to learn a representation that can
be finetuned to a task later, by way of leveraging
general encodings, or drawing upon an inductive
bias learned in the pretraining phase.

18956

https://github.com/Abhishek-P/inflection-unsupervised-tasks
https://github.com/Abhishek-P/inflection-unsupervised-tasks


ISO-639-2 Language UD Treebank used

afb Arabic, Gulf Arabic-PADT
amh Amharic Amharic-ATT
arz Arabic, Egyptian -
bel Belarusian Belarusian-HSE
dan Danish Danish-DDT
deu German German-GSD
eng English English-Atis
fin Finnish Finnish-FTB
fra French French-GSD
grc Ancient Greek Ancient_Greek-Perseus
heb Hebrew Hebrew-HTB
heb(_unvoc) Hebrew, Unvocalized -
hun Hungarian Hungarian-Szeged
hye Eastern Armenian Armenian-ArmTDP

ISO-639-2 Language UD Treebank used

ita Italian Italian-ISDT
jpn Japanese Japaese-GSD
kat Georgian -
klr Khaling -
mkd Macedonian -
nav Navajo -
rus Russian Russian-GSD
san Sanskrit Sanskrit-UFAL
sme Sami North_Sami-Giella
spa Spanish Spanish-AnCora
sqi Albanian -
swa Swahili -
tur Turkish Turkish-Atis

Table 1: The 27 typologically diverse languages (Subsection 4.1) from the 2023 shared task, all of which are
investigated in this work. We use some UD Treebanks for our analytical experiments in Subsection 6, the specific
treebanks are listed in the final column.

We also explore two secondary tasks: Autoen-
coding (AE) is a simple and surprisingly effective
method for representation learning. Here, an input
is encoded with a model, and then decoded back
to its original form. For word level tasks such as
inflection, this means sampling a word, and then
simply predicting that same word, e.g.,:

tried → tried. (2)

Denoising methods involve adding some noise to
an input and then decoding the original form as it
was before the noising step (Vincent et al., 2010),
e.g.,: given tried, we might have

tr@e@ → tried, (3)

where @ is a noise token that is applied in a data
preprocessing step, and which the model must learn
to replace with the original token. Many denois-
ing strategies have been proposed for pretraining
language models (Devlin et al., 2019; Raffel et al.,
2019; Lewis et al., 2020), which may have advan-
tages for particular downstream tasks.

2.3 Transfer Learning for Character-level
Tasks

Kann and Schütze (2017) investigated the effec-
tiveness of AE in an MTL setup by autoencod-
ing with additional out-of-distribution words along
with the target inflection task. Recently, Wiemer-
slage et al. (2023) pretrained various neural models
on a character-level masked language modeling
(CMLM) task, which follows the objective from
Liu et al. (2019, RoBERTa), finding it can increase
robustness to noise in the training data without

the addition of new words. We follow them and
use CMLM as the denoising task in our experi-
ments. Similarly, Dong et al. (2022) pretrained a
transformer encoder with a grapheme-based mask-
ing objective before finetuning to a downstream
grapheme-to-phoneme (G2P) task and showed im-
provements for some datasets (Ashby et al., 2021).

2.4 Data Diversity and Multi-task Learning

The (word-level) token distribution for data in an
MTL setup has been shown to have a strong impact
on model performance (Martínez Alonso and Plank,
2017). In an exploration of supervised secondary
tasks, Bingel and Søgaard (2017) found that, when
training with MTL for many NLP tasks, the out-of-
vocabulary rate in the auxiliary task is positively
associated with performance. This can also trans-
late to unsupervised training for character-level
tasks, where external data can positively impact
model training regardless of the task for training
on that data. Bjerva et al. (2019) perform MTL
on many supervised tasks annotated for the same
input examples. They train on the predictions for
auxiliary tasks on the test set in a transductive learn-
ing setup, which increases performance. Krishna
et al. (2023) found reusing downstream task data
for unsupervised pretraining – which they refer to
as self pretraining – to be an effective alternative to
pretraining on external data. In experiments, they
show that this often outperformed finetuning an
off-the-shelf model that was pretrained on external
data.

Similarly, in this work, we explore how data di-
versity impacts performance. That is, we compare
secondary task words drawn from the target task to
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external data. This isolates secondary task impact
from the effect of increased data diversity.

3 Architecture and Training

In this section we discuss our training methodology
including architecture, training setups, and tasks.

3.1 Architecture

All of our experiments utilize the character encoder-
decoder transformer from Wu et al. (2021). We use
4 encoder and 4 decoder layers, 4 attention heads,
embedding size 256, and a feed-forward layer with
hidden size 1024. We also follow their methodol-
ogy for selection of the best checkpoint, where the
highest accuracy on a validation set is selected out
of 50 checkpoints. For all hyperparameters, refer
to Wu et al. (2021).

3.2 Training Tasks

Morphological Inflection In this work, morpho-
logical inflection is the only supervised task con-
sidered, and it is the target task for all experiments.
We formulate the inflection task identically to prior
work (Kann and Schütze, 2016; Wu et al., 2021).

CMLM We follow Wiemerslage et al. (2023)
in implementing CMLM for the denoising sec-
ondary task, where masking hyperparamters follow
RoBERTa, though we increase the mask sampling
rate. Specifically, we sample m = 20% of all input
characters for masking. Then, for each character,
with probability pm = 0.8 we replace it with a
special mask token, with probability pr = 0.1 we
replace it with another character randomly sampled
from the vocabulary, and with probability pi = 0.1
we leave the character unchanged.

AE We additionally compare to autoencoding as
a secondary task, in which we do no denoising at
all: the source and target word are identical.

3.3 Training Setups

We compare three different training setups:
supervised-only, pretrain-finetune (PT) and multi-
task learning (MTL).

Supervised-only This is identical to the training
setup from (Wu et al., 2021), where a model is
trained only for the morphological inflection task.
We follow them in training the model on the target-
task data for 800 epochs and the best of 50 check-
points by validation accuracy is chosen.

Pretrain–Finetune (PT) We first pretrain an
encoder-decoder model on an unsupervised sec-
ondary task and then train it on supervised data in
a finetuning stage. We train the encoder-decoder
fully in both the pretraining and finetuning stages.
The finetuning stage is nearly identical to the su-
pervised training setup, except we train from a pre-
trained checkpoint instead of training from scratch.
We train both stages for 800 epochs. Since this is a
two-stage setup, we apply model selection criteria
twice. In the pretraining stage, the best checkpoint
is chosen by minimizing evaluation loss on the sec-
ondary unsupervised task. This means that in the
pretraining stage the model is motivated to learn
representations over the character sequences from
the vocabulary. The finetuning stage model selec-
tion remains identical to the supervised setup.

Multi-task Learning (MTL) Similar to the
setup in Kann and Schütze (2017), models are
trained simultaneously for the target task and an un-
supervised secondary task. We assign a fixed task
weight factor α for the unsupervised secondary task
and β for the target inflection task. For all experi-
ments, we set α = 1 and β = 1, and compute loss
as the weighted sum of the two:

L(θ) = α
∑

l1(g(i), o) + β
∑

l2(f(s, t), y)
(4)

where f is the inflection task as in Section 2.1, g(I)
is the unsupervised secondary task function, i ∈ I
and o ∈ O are the unsupervised source and target,
and l1 and l2 are loss functions for the for the two
tasks, respectively. In initial experiments, we tried
varying the tasks weights and found little impact
on performance.

Although the training objective is to minimize
L(θ), the best model is selected as in the previous
setups with the best evaluation accuracy on the
target task after training for 800 epochs. We added
specific task identifiers (i.e., [TASK1], [TASK2])
to the input during training and inference. These
identifiers are part of the input, however separated
from the source (and features) with a start token.
This way the model can identify the relevant task
for the sample.

4 Data

4.1 Target-task Data
Morphological inflection training data is sam-
pled from the 2023 shared task on morphologi-
cal inflection (Goldman et al., 2023). This super-
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vised dataset consists of triples comprising ⟨lemma,
feature set, inflected form⟩.

It consists of 10k train samples and 1k each of
development and test samples for 26 languages and
an additional unvocalized variant (heb_unvoc) of
Hebrew (heb). We differentiate Hebrew variants
in our experiments and results, although we refer
to it collectively as a language. In order to simu-
late a data-scarce setting, we randomly subsample
the train split to 1k samples, as in the medium
setting of the SIGMORPHON 2017 shared task
(Cotterell et al., 2017). We also flatten the hierar-
chical features following most submissions to the
2023 shared task. This is performed by parsing the
features during pre-processing and combining the
multi-level features with special characters to make
combined features. Consequently, our task data
consists of the development and test splits and a
subsampled 1k train split, all with flattened features.
We inherit the fact that the shared task partitions
lemmas between the 3 splits, which means all ex-
periments require generalizing to unseen lemmas.

4.2 Extracted Data

We experiment with secondary-task data taken
exclusively from the training data. That
is, given a labeled triple from the super-
vised morphological inflection dataset like
⟨debut,V;PRS;NOM(3,SG), debuts⟩, we make
two unsupervised training samples: debut → debut
and debuts → debuts.

4.3 External Data

We perform an additional analysis with data sam-
pled from a source external to the supervised data,
which we refer to as external data. Here, we sam-
ple words from the universal dependencies (UD)
treebanks (Zeman et al., 2023). Since the availabil-
ity of languages in UD does not directly correspond
to the 2023 shared task data, we select 19 languages
for which treebanks are available. The specific tree-
bank used for dataset creation for each language
is mentioned in Table 1. From each language’s
treebank, we sample 2k words to use for secondary
tasks. For details on how words are sampled, see
appendix (Section A.3).

5 Experiments

5.1 Experimental Setup

We compare five model variants: baseline refers to
the supervised model following Wu et al. (2021).

We refer to PT-CMLM for models pretrained on the
extracted data with the CMLM objective and then
finetuned to the supervised data, whereas MTL-
CMLM models train both tasks in MTL setup. PT-
AE and MTL-AE reflect the same respective train-
ing setups, but use autoencoding as the secondary
task. With these variants, we can compare all mod-
els to the baseline to answer RQ1, and we can
compare across training setups and secondary tasks
to answer RQ2 and RQ3, respectively.

5.2 Results

In Table 2 we present the main results: the accu-
racy of all five model variants averaged over all 27
languages on each of the development and test set.
For a per-language results breakdown, see Table 2.
For all comparisons, we focus on average accuracy
on the test set.

The baseline is outperformed by almost all
model variants that have been trained on secondary
tasks. This means that secondary unsupervised
tasks are beneficial even when no new data is intro-
duced (RQ1). PT-CMLM outperforms the baseline
by 1.84 absolute accuracy, only performing worse
than the baseline on 6 languages: deu, ita, jpn,
rus, sme, sqi. PT-AE performs even better, outper-
forming the baseline by 3.16 absolute accuracy, but
performs worse than the baseline in 5 languages:
bel, dan, jpn, mkd, rus. We perform a paired permu-
tation test and find all comparisons to the baseline
to be statistically significant (p < 0.03).

A comparison across unsupervised objectives
shows that AE outperforms CMLM (RQ2). Al-
though on average the difference is small (1.32) in
the PT setup, AE outperforms CMLM substantially
by 10.9 absolute accuracy in the MTL setup on the
test set. Overall, MTL-AE is the best performing
model, which indicates that MTL is a better setup
for this task than PT (RQ3). However, this is not
true when using the denoising objective. Only on
6 languages (dan, fra, heb, heb_unvoc, klr, san)
does MTL-CMLM outperform the baseline, and on
average it performs worse than the baseline.

Unsupervised Training on the Target-task Data
Most of the models outperform the baseline using
strictly extracted finetuning data for unsupervised
training with no additional words.

This indicates that unsupervised tasks are effec-
tive for transfer learning in low-resource scenarios
separately from the effect of exposing the model to
new data. For PT, we hypothesize that the unsuper-
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Baseline PT-CMLM PT-AE MTL-CMLM MTL-AE
Language ISO 639-2 Dev Test Dev Test Dev Test Dev Test Dev Test

Arabic, Gulf afb 68.8 69.4 72.2 70.5 72.1 71.9 68.8 67.8 72.7 72.7
Amharic amh 44.6 42.9 48.0 50.8 56.5 66.0 34.9 36.7 56.5 61.4
Arabic, Egyptian arz 82.8 82.5 83.1 83.9 82.3 84.3 80.7 81.4 83.6 83.8
Belarusian bel 61.2 59.0 62.9 61.8 61.5 58.7 59.8 56.5 64.4 61.7
Danish dan 81.7 80.1 81.7 80.5 81.2 79.9 80.0 80.7 83.2 82.5
German deu 68.2 71.2 70.3 68.7 74.4 73.1 65.8 65.7 74.3 73.2
English eng 91.6 88.2 91.5 88.6 91.8 90.3 89.5 87.2 92.3 90.9
Finnish fin 74.6 56.7 75.7 61.6 78.2 61.8 58.9 44.0 81.4 68.6
French fra 75.2 65.2 76.9 68.0 80.6 68.9 69.9 67.0 81.1 73.6
Ancient Greek grc 54.1 33.1 60.4 41.3 52.8 34.5 43.3 28.6 56.6 40.7
Hebrew heb 74.2 72.1 76.6 76.03 77.6 76.13 72.2 72.61 80.3 77.95
Hebrew, Unvocalized heb_unvoc 81.5 68.1 84.6 74.3 82.2 71.9 77.3 68.3 83.7 77.0
Hungarian hun 75.7 65.7 79.5 73.0 76.1 68.8 65.4 61.3 80.4 71.7
Eastern Armenian hye 79.2 79.4 86.4 84.6 86.2 87.9 76.8 76.0 86.9 89.5
Italian ita 90.5 85.1 92.1 83.0 94.5 87.1 83.3 71.4 94.0 90.4
Japanese jpn 15.8 20.7 13.7 14.0 14.8 19.9 4.1 5.6 15.4 21.9
Georgian kat 70.2 72.5 76.0 75.8 76.0 75.3 66.9 65.5 79.3 77.8
Khaling klr 91.6 86.4 91.2 88.1 91.8 87.0 87.2 86.7 95.0 90.3
Macedonian mkd 83.1 81.6 85.6 84.7 82.0 80.3 77.0 79.2 86.6 85.8
Navajo nav 36.1 37.8 42.5 39.7 41.9 42.4 38.5 37.2 44.5 44.4
Russian rus 78.7 76.6 79.9 75.2 78.1 74.8 72.7 71.7 80.9 81.8
Sanskrit san 55.0 49.0 55.8 54.5 59.0 52.6 47.6 50.5 63.4 56.4
Sami sme 57.3 43.9 62.1 43.0 62.2 51.5 44.2 33.8 70.0 60.4
Spanish spa 88.2 85.0 89.4 86.6 86.0 86.2 79.3 78.9 91.6 90.9
Albanian sqi 78.6 71.3 75.4 62.3 80.0 71.7 66.7 61.0 84.2 78.5
Swahili swa 93.5 86.1 92.0 87.7 94.3 91.4 88.1 85.9 94.9 95.6
Turkish tur 85.3 85.1 88.1 86.0 87.8 85.7 76.4 73.4 89.7 89.5
Average 71.75 67.21 73.84 69.05 74.14 70.37 65.75 62.76 76.55 73.66

Table 2: The development and test accuracies of the 5 model variants, for all the 27 languages. For each language,
the highest development accuracy is underlined and highest test accuracy is bolded.

vised pretraining task imparts some inductive bias
to the model related to capabilities that are crucial
to the downstream task. For example, learning a
strong bias towards copying characters, which is a
common operation in morphological inflection, or
learning a strong language model over the character
sequences in the training data, before learning to
condition on features.

Although MTL-AE consistantly performs best,
the MTL setup performs very poorly with CMLM
unlike in the PT setup. This indicates that learning
from secondary tasks functions drastically differ-
ent between PT and MTL, where MTL is perhaps
more sensitive to the choice of secondary task. We
explore this in more depth in Section 6.

AE Is Unreasonably Effective Given the sim-
plicity of the autoencoding task and the fact that we
do not introduce any new data beyond the finetun-
ing dataset, this large increase in accuracy implies
a surprising capacity for learning that has not been
previously explored.

6 When Does Denoising Hurt MTL?

There is a remarkable gap in performance between
MTL-CMLM and PT-CMLM (6.29 absolute accu-
racy) as well as MTL-AE (10.9 absolute accuracy).
While denosing is a useful objective to pretrain on,
it actually hurts performance in an MTL setup in
our experiments. This also begs the question: why
is AE a valid secondary task when multitasking
(our best overall setup), but not denoising? We hy-
pothesize that denoising negatively impacts model
learning because it is a sufficiently different task
optimized on the same words as inflection. In the
PT setup, if denoising learns a representation that
conflicts with the finetuning task, this can be re-
solved by optimizing strictly on the finetuning task
in a second phase. However, perhaps when opti-
mizing jointly, the denoising objective skews the
model distribution for the training words. This
would imply that if denoising is done on external
data, it should not have such a negative impact.
Based on these initial highly negative results for
MTL-CMLM, we perform an additional analysis
to investigate the impact of data diversity on both
secondary tasks in an MTL setup.
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Here all data for unsupervised learning is sam-
pled from a source external to the finetuning data.
We use Universal dependencies (Zeman et al., 2023,
UD) as the source of external data, which we dis-
cuss in more detail in Subsection A.3.

Universal Dependencies Data All inflection task
data (Subsection 4.1) is derived from the SIG-
MORPGHON 2023 shared task, which samples
its splits from UniMorph (Batsuren et al., 2022)—a
type-level multilingual morphological resource for
NLP, with labeled morphological paradigms com-
prising 182 languages, 122M inflections, and 769K
derivations extracted semi-automatically. Univer-
sal Dependencies is another multilingual NLP re-
source consisting of treebanks in 148 languages
(as of the 2.13 release), though annotated data
comprises token-level corpora. We choose UD
as the source of external data in order to simulate
a more naturally occurring type distribution than
UniMorph. Whereas UniMorph types are likely to
(i) be of the same part of speech as the test set, and
(ii) represent interesting inflections that may be rare
in a realistic low-resource scenario, UD contains
types more representative of any arbitrary text. At
the same time, unlike raw text scraped from the
internet, UD data is relatively clean and has been
vetted by experts, which ensures we do not experi-
ment with e.g., data that has been misidentified as
the target language or is otherwise contaminated.

Since not all 27 languages have treebanks in UD,
we manually select a single treebank in only 19
of the 27 languages for these experiments. All
models that use external data for secondary tasks
are referred to with the suffix "-UD".

6.1 Results

In Table 3, we present results for all 19 languages
where MTL-CMLM-UD and MTL-AE-UD use ex-
ternal data sampled from UD for the respective
secondary task. Using external data results in a
13.24 increase in absolute accuracy over MTL-
CMLM, and outperforms the baseline substantially.
On the other hand, the external data also leads to
improved performance for MTL-AE-UD, but at
a much smaller scale of 3.38 absolute accuracy
over MTL-AE. On average, MTL-AE and MTL-
CMLM-UD perform similarly. In a pared permu-
tation test, all results have a statistically signifi-
cant increase in performance over the baseline, ex-
cept for MTL-CMLM which underperforms the
baseline (p < 0.006). We now focus on the sub-

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

gr
ad

ie
nt

s

Danish

MTL-AE MTL-CMLM MTL-CMLM-UD
0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

gr
ad

ie
nt

s

Sami

Figure 1: The distribution of secondary task gradients
between 20% and 30% training as in Bingel and Søgaard
(2017) for cases in which the target task gradients are
≥ 0. A negative number indicates the model is still
improving upon the secondary task.

stantial increase for MTL-CMLM-UD. This result
supports the hypothesis that jointly optimizing a
sufficiently different task from the target task, but
on the same data causes issues. Consider the MTL-
CMLM-UD model. The denoising task is learning
representations over character sequences that are
different from those in the target task, allowing the
two tasks to update model parameters for separate
distributions, and reducing conflicts in the joint-
optimization. Indeed substituting the extracted data
with external data when using the same denoising
task leads to a remarkable improvement in perfor-
mance.

6.2 Training Dynamics in MTL

We analyze the training dynamics between both
the target and secondary task to further explain the
MTL behavior. Bingel and Søgaard (2017) find
that features of the learning curves are strong pre-
dictors of which secondary tasks lead to the best
performance in an MTL setup. They hypothesize
that MTL helps most in cases where a target task
converges quickly, while the secondary task is still
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Baseline MTL-CMLM MTL-AE MTL-CMLM-UD MTL-AE-UD
Language ISO 639-2 Dev Test Dev Test Dev Test Dev Test Dev Test

Arabic, Gulf afb 68.8 69.4 68.8 67.8 72.7 72.7 72.2 72.6 72.8 74.9
Amharic amh 44.6 42.9 34.9 36.7 56.5 61.4 56.3 57.7 61.0 66.6
Belarusian bel 61.2 59.0 59.8 56.5 64.4 61.7 64.2 61.5 65.3 62.2
Danish dan 81.7 80.1 80.0 80.7 83.2 82.5 82.3 80.8 83.7 82.9
German deu 68.2 71.2 65.8 65.7 74.3 73.2 75.4 74.4 75.4 76.3
English eng 91.6 88.2 89.5 87.2 92.3 90.9 91.3 88.5 91.9 88.9
Finnish fin 74.6 56.7 58.9 44.0 81.4 68.6 81.5 70.8 82.7 73.6
French fra 75.2 65.2 69.9 67.0 81.1 73.6 82.8 75.2 85.8 74.1
Ancient Greek grc 54.1 33.1 43.3 28.6 56.6 40.7 64.2 46.5 63.5 47.1
Hungarian hun 75.7 65.7 65.4 61.3 80.4 71.7 81.1 75.2 83.6 78.1
Hebrew heb 74.2 72.1 72.2 72.61 80.3 77.95 78.6 78.55 79.3 75.73
Eastern Armenian hye 79.2 79.4 76.8 76.0 86.9 89.5 90.5 89.0 91.4 93.0
Italian ita 90.5 85.1 83.3 71.4 94.0 90.4 94.8 88.7 94.3 93.3
Japanese jap 15.8 20.7 4.1 5.6 15.4 21.9 34.3 32.2 44.1 42.8
Russian rus 78.7 76.6 72.7 71.7 80.9 81.8 81.7 80.1 81.8 82.9
Sanskrit san 55.0 49.0 47.6 50.5 63.4 56.4 65.4 57.9 65.7 58.3
Sami sme 57.3 43.9 44.2 33.8 70.0 60.4 70.2 66.7 74.8 66.3
Spanish spa 88.2 85.0 79.3 78.9 91.6 90.9 91.5 90.3 91.8 91.8
Turkish tur 85.3 85.1 76.4 73.4 89.7 89.5 87.5 85.9 89.6 89.9
Avg 69.51 64.39 62.45 58.98 74.58 71.28 76.31 72.22 78.09 74.66

Table 3: Results for our models by language from the experiments with external data, reporting development and test
accuracy. For each language, the highest development accuracy is underlined and highest test accuracy is bolded.
Note: results for non ’-UD’ models are identical to Table 2.

learning, which may help target tasks avoid getting
stuck in local minima. We explore this hypothe-
sis by, like them, looking at the gradients of each
task’s training loss with respect to epochs, where
the losses are recorded at the end of each epoch.

We then check the target task gradients that are
≥ 0 within the first 10%–30% of training epochs,
which we can consider to indicate that the task is
plateauing early in training. In Figure 1 we pro-
vide violin plots of the secondary task gradients
for those early target task plateaus in Sami—the
language with the highest MTL improvement when
UD data is added, and Danish—the language with
the lowest improvement. For both languages, AE
distributions have small variance around 0, whereas
the CMLM plots show wider distributions. This
reflects the fact that the CMLM loss is less stable,
oscillating much more than the AE loss. More di-
rectly addressing the hypothesis about helping the
target task recover from local minima, we see dis-
tributions that are either top-heavy, or normal for
Danish, where no secondary task leads to a very
large increase in performance over the baseline.
On the other hand, the CMLM-UD distribution is
more bottom-heavy for Sami, indicating that there
are more negative gradients, and thus more epochs
where the model is still learning this task when the
target task seems to plateau. The AE distribution,
while still low variance around 0, also have lower

negative gradients compared to Danish.
This small analysis suggests two things. First,

we have weak support for the hypothesis that MTL
helps when the secondary task continues to con-
verge when the target task plateaus early. We see
more negative values in the Sami distribution where
MTL is more helpful, especially in the CMLM-
UD secondary task when compared to the CMLM
without UD data. Second, AE, typically the best
secondary task in our experiments, appears to have
a lower variance in gradients, indicating that the
training loss is more stable. Indeed, the variance for
CMLM gradients is larger in Sami, where CMLM
hurts performance, and the variance is smaller in
Sami when we add the UD data, which has a large
positive impact.

7 Conclusion

In this work, we explored multiple methods for
transfer learning for morphological inflection,
many of which showed remarkable performance
for a large set of languages. We investigated two
different training methods: pretraining-finetuning
and multi-task learning, and two different sec-
ondary tasks: denoising and autoencoding. In a
low-resource setting, we found that secondary un-
supervised tasks are effective even without the ad-
dition of any new vocabulary items beyond the
finetuning dataset. While pretraining is an effective

18962



setup for improving morphological inflection with-
out any external data, multi-task learning with an
autoencoding objective is the best setup in all ex-
periments. On the other hand, multi-task learning
with the CMLM denoising objective is the worst
performing setup, performing below the baseline
on average. In further analysis, we found that per-
forming CMLM on external data that is separate
from the finetuning data solves this issue, resulting
in significantly better performance.

The success of denoising objectives such as
MLM cannot be denied for large-scale training
and semantically oriented tasks. Our experiments
and results show that similar tasks are effective in
data-scarce settings for character-level tasks like
morphological inflection. In practice, it seems that
low-resource character-level tasks should always
consider training in a multi-task setup with an au-
toencoding secondary task even if the supervised
training data is the only available data – and explor-
ing denoising objectives if unsupervised data from
an external source is available.

8 Future Work

The denoising tasks requires hyperparameters for
the instrumentation of the noise. Due to this, fur-
ther work is required in exploring these tasks un-
der different hyperparameter settings with multiple
methods to shed light on their sensitivity and ability
to improve models for character-level tasks such
as morphological inflection and G2P. Future work
should also consider exploring more secondary
tasks, especially based on particular morpholog-
ical phenomenon in diverse languages.

Limitations

• Our work is limited to the character-level task
of morphological inflection. Thus, findings
may not hold for other similar tasks such as
G2P and interlinear glossing.

• Considering the sensitivity of training meth-
ods to vocabulary and data sizes, it is unclear
whether these results can be extrapolated to
different scenarios.

• Our work does not explore the disparity of
performance of the methods across languages
and requires expert analysis over various of
linguistic features.
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Kabaeva, Sylvain Kahane, Hiroshi Kanayama, Jenna
Kanerva, Neslihan Kara, Ritván Karahóǧa, An-
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duc, David Mareček, Katrin Marheinecke, Stella
Markantonatou, Héctor Martínez Alonso, Lorena
Martín Rodríguez, André Martins, Cláudia Mar-
tins, Jan Mašek, Hiroshi Matsuda, Yuji Matsumoto,
Alessandro Mazzei, Ryan McDonald, Sarah McGuin-
ness, Gustavo Mendonça, Tatiana Merzhevich, Niko
Miekka, Aaron Miller, Karina Mischenkova, Anna
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Şaziye Betül Özateş, Merve Özçelik, Arzucan Özgür,
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Erika Rimkutė, Larissa Rinaldi, Laura Rituma, Pu-
tri Rizqiyah, Luisa Rocha, Eiríkur Rögnvaldsson,
Ivan Roksandic, Mykhailo Romanenko, Rudolf Rosa,
Valentin Ros, ca, Davide Rovati, Ben Rozonoyer, Olga
Rudina, Jack Rueter, Kristján Rúnarsson, Shoval
Sadde, Pegah Safari, Aleksi Sahala, Shadi Saleh,
Alessio Salomoni, Tanja Samardžić, Stephanie Sam-
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A Data details

A.1 Limitations of UniMorph and
SIGMORPHON

The unimorph project is the primary source for
the dataset. It draws heavily from Wiktionary2

in a semi-automated way based on Kirov et al.
(2016). Wiktionary is a collaboratively built re-
source which, despite processes to promote ac-
curacy, is not a linguistic resource that is consid-
ered as gold-standard data. The semi-automated
methodology, sources, and broad mandate limits
the utility and effectiveness of the dataset. A no-
table example is Ahmadi and Mahmudi (2023),
which discusses this in the context of Sorani (ckb)
also known as Central Kurdish (not one of the 27
languages in this work). The limitations of the
dataset used in this work, being only very recently
released, are not well-studied, and consequently
also apply to our work.

A.2 Selection and Sampling

Many features of morphological inflection data,
such as overlap and frequency, have been shown
to be important factors for model performance
(Kodner et al., 2023). (Muradoglu and Hulden,
2022) demonstrated how data could be sampled
using active learning methods to improve model
performance. Since we investigate training meth-
ods rather than data methods, we perform analy-
sis on data which has been selected specifically
for benchmarking purposes. We recommend the
readers check Section 4 "Data preparation" of the
shared task paper Goldman et al. (2023) for more
information on the data methods used for target-
task data selection and splits. We discuss details
relevant to our selection and sampling below.

Lemma Overlap The 2023 shared task dataset
was specifically designed to prevent lemma overlap
between any of dev, train, and test. Since we only
sub-sample from train, the lack of lemma overlap is
maintained in our datasets, and is thus not a relevant
point of analysis as in other work (e.g. Kodner et al.
(2023))

A.3 Preparing Additional Data from UD
Treebanks

With a fixed seed, we randomly sample words from
the selected UD Treebank to prepare an unlabeled

2https://www.wiktionary.org/

training set of size 2k for each language. We per-
form sampling only after filtering out NUM and
PUNCT tagged and tokenized words (Nivre et al.,
2020). We do not otherwise use the token-level an-
notations from UD, simulating a more realistic data
setting than the one UniMorph words represent.

Table 1 shows the 19 languages from the shared
task for which UD was used for additional train-
ing data in our investigation of the denoising task
in the MTL setup. We list the specific treebanks
used in order to encourage reproducibility. We
preserve both the data and corpus information for
the selected words. Specifically, we have also col-
lected the token frequency, UPOS frequency, and
character frequency for each of the additional data
sampled, to be made available with the code for
future analysis.

B Models and Experimental Details

B.1 Implementation

All models are implemented with a fork of
yoyodyne3, which is built over pytorch-lightning
(Falcon and The PyTorch Lightning team, 2019).
We utilize yoyodyne’s existing implementation of
the Wu et al., 2021 models. We additionally im-
plemented the CMLM objective, two stage training
for PT setup, and the MTL setup including data
and loss combination using the framework.

B.2 Compute and Infrastructure

For reproducibility, we utilize only Nvidia V100
GPUs for our experiments. The reported models
together required ∼180 hours of GPU time.

B.3 Reproducibility

In addition to using a consistent GPU architecture,
we use a fixed random seed of 1 for all our model
experiments. We also maintain copies of the spe-
cific data.

B.4 Morphological Inflection in Japanese

Organizers of the 2023 shared task note the chal-
lenges that Japanese presents in morphological in-
flection, namely due to its extremely large vocabu-
lary size. In our work this persists as most models
perform poorly on Japanese and do not meaning-
fully improve upon the baseline.

3https://github.com/CUNY-CL/yoyodyne
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C Significance Testing

In order to analyze the significance of our results,
we perform a paired permutation test between test
accuracies of all the models compared to the base-
line. For all these tests, we use the null-hypothesis
that the mean difference between the test accuracies
for these pairs is 0 and run the tests with 100k sam-
pled permutations of the differences using SciPy
(Virtanen et al., 2020).

18970


