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Abstract

It is challenging for models to understand com-
plex, multimodal content such as television
clips, and this is in part because video-language
models often rely on single-modality reason-
ing and lack interpretability. To combat these
issues we propose TV-TREES, the first multi-
modal entailment tree generator. TV-TREES
serves as an approach to video understanding
that promotes interpretable joint-modality rea-
soning by searching for trees of entailment
relationships between simple text-video evi-
dence and higher-level conclusions that prove
question-answer pairs. We also introduce the
task of multimodal entailment tree generation
to evaluate reasoning quality. Our method’s
performance on the challenging TVQA bench-
mark demonstrates interpretable, state-of-the-
art zero-shot performance on full clips, illus-
trating that multimodal entailment tree genera-
tion can be a best-of-both-worlds alternative to
black-box systems.

1 Introduction

Videos account for a large portion of content avail-
able and consumed online, but automated reason-
ing over semantically complex video-language data
remains a challenging and under-explored prob-
lem. A popular task for assessing models’ video
understanding is narrative-centric video-language
question-answering: Given a natural language ques-
tion, a video clip of a movie or TV show, and a cor-
responding dialogue transcript, the goal is to return
a correct natural language answer to the question
using the video-language data.

Methods tackling the video-language QA
task (Yang et al., 2022; Li et al., 2020; Ko et al.,
2023) frequently take the form of large, joint-
modality transformer models. Analyses suggest
their ability to perform joint visual-language rea-
soning is limited, as they often rely on either text
or visual content but not both (Rawal et al., 2023).

Figure 1: A QA pair and corresponding video clip and
dialogue from the TVQA dataset (Lei et al., 2018), and
a multimodal entailment tree, recursively produced by
our approach (top-down). Trees are created by recur-
sively retrieving atomic evidence from the transcript
and video frames and decomposing the QA pair into
compositionally equivalent hypotheses until each can
be directly entailed by the retrieved evidence.

Assessing modality reliance and reasoning qual-
ity overall is difficult given their lack of inter-
pretability: While LLMs now facilitate increas-
ingly transparent explanation generation alongside
outputs (Zhao et al., 2023), video-language models
generally lack this ability.

Entailment trees (Dalvi et al., 2021), or trees of
entailment relationships between atomic premises
and higher-level conclusions, have been shown to
serve well as the structural basis for text-only QA
tasks by systematically and transparently model-
ing logical reasoning chains (Weir et al., 2024a).
We embrace this approach: We develop (1) the
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first multimodal entailment tree generator, TV-
TREES (the Transparent Video-Text REasoning
with Entailment System), and (2) the task of mul-
timodal entailment tree generation to assess the
reasoning ability of such systems.

In contrast to existing black-box QA systems,
TV-TREES focuses on the search and manipula-
tion of atomic “facts” retrieved from video clips
to search for proofs for video-language question-
answer pairs. The approach jointly reasons over
both modalities and, crucially, the resulting entail-
ment trees provide human-interpretable evidence
and natural language explanations for each logical
operation, enabling direct analysis of the model’s
underlying reasoning. Our entailment tree eval-
uation method builds on work in informal logic,
adapting these ideas to the multimodal domain with
an emphasis on reliable evaluation.

We show that our multimodal reasoning sys-
tem performs competitively on zero-shot video-
language QA for the difficult TVQA dataset (Lei
et al., 2018) while simultaneously providing com-
prehensive and interpretable reasoning traces. Fur-
ther, TV-TREES achieves state-of-the-art perfor-
mance using full-length clips as input.

In summary, our contributions are:

1. The first multimodal entailment tree generator,
an explainable video-language understanding
system that emphasizes logical reasoning across
modalities by searching for proofs for question-
answer pairs.

2. The task of multimodal entailment tree genera-
tion for evaluating step-by-step video-language
reasoning quality.

3. Results demonstrating state-of-the-art zero-shot
video-language QA performance on TVQA, ab-
lation experiments demonstrating the benefit of
joint-modality reasoning, and quantitative and
qualitative analyses of entailment tree quality.

2 Related Work

2.1 VideoQA
QA over images makes up a large portion of mul-
timodal question-answering work (Zou and Xie,
2020). VideoQA benchmarks constitute a smaller
portion of this area (Zhong et al., 2022) and often
focus on simple content and questions (Jang et al.,
2017), but some recent VideoQA datasets have
targeted models’ commonsense knowledge and in-
ference ability, namely TVQA and MovieQA (Lei

et al., 2018; Tapaswi et al., 2016). We focus our
experiments on TVQA as evidence suggests about
half of MovieQA’s questions can be answered with
the question and answer options alone. (Jasani
et al., 2019)

Recently, vision-and-language transformers
have substantially improved performance on these
VideoQA tasks (Zhou et al., 2020), and can often
reason over complex content without an external
knowledge base (Kim et al., 2021; Wang et al.,
2021; Salin et al., 2022). In contrast to these video-
language models, Khurana and Deshpande (2021)
highlight alternative strategies for VideoQA such
as attention-free methods, attention-based methods,
memory network methods, and hierarchical rein-
forced methods. Notably, Zhao et al. (2018, 2020)
propose a hierarchical encoder-decoder model that
uses adaptive video segmentation based on the
question contents.

2.2 Explainable Multimodal Understanding
Traditional techniques like kernel visualization and
perturbation have been considered for video ex-
plainability (Hiley et al., 2019; Li et al., 2021b)
alongside other approaches that consider low-level
reasoning steps for simple tasks (Zhuo et al., 2019;
Roy et al., 2019; Nourani et al., 2020). Addition-
ally, Lu et al. (2022) introduce a transparent reason-
ing benchmark for vision-text QA. The approaches
most similar to our work are (Chen and Kong,
2021) and (Mao et al., 2022). Chen and Kong
(2021) ground relevant textual entities in video and
dialogue through a heatmap over the input as an
explanation for the produced output. Our work
differs in that we show exactly what data pieces
contribute to the final output, explicitly model each
step of the reasoning process, and don’t require
fine-tuning on the target dataset or domain. Mao
et al. (2022) uses a chain-of-thought explanation
system based on a video scene graph to answer
questions about actions and objects in short video
clips and GIFs. This method does not consider
dialogue and focuses on simple visual questions,
instead of complex inferential reasoning that TV-
TREES tackles. Furthermore, the input for their
proposed system only spans a few seconds.

2.3 Entailment Tree Generation
This paper draws inspiration from recent work on
constructing natural language entailment trees to
explain reasoning. The notion starts with Dalvi
et al. (2021), who introduce an expert-annotated
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dataset of compositional trees showing how a hy-
pothesis follows as a logical consequence of a se-
ries of multi-premise entailment steps starting from
verified support facts. More recent work has in-
troduced methods to tackle Dalvi et al.’s recon-
struction task (Bostrom et al., 2022; Neves Ribeiro
et al., 2022) and to use entailment trees as a basis
for neuro-symbolic reasoning (Tafjord et al., 2022;
Weir et al., 2024a). Our work is most similar to
Weir et al. (2024a), who introduce a QA system that
reasons by searching for entailment trees grounded
in a knowledge source. We extend this notion to
the multimodal setting and address the resulting
challenges.

2.4 Multimodal Entailment
There is a selection of work that considers entail-
ment in images and video: (Xie et al., 2019) in-
troduce a dataset of image-entailment pairs similar
to the SNLI (Bowman et al., 2015a) corpus, and
(Do et al., 2020) add natural language explana-
tions to the pairs. More specific visual entailment
tasks in this domain have been proposed as well
(Thomas et al., 2022; Li et al., 2023b)., and (Suzuki
et al., 2019) introduce a logic system for identify-
ing entailment between images and captions. Liu
et al. (2020) introduce VIOLIN, a dataset of videos
paired with natural language inferences that are
entailed or contradicted by the video content, and
traditional models (Li et al., 2020; Sun et al., 2022)
as well as tailored approaches (Li et al., 2021a;
Chen and Kong, 2021) are trained for the task.

3 Multimodal Entailment Trees

We now introduce the task of multimodal entail-
ment tree generation for video-language QA.

3.1 Task formulation
Input Following Dalvi et al. (2021), as input
we consider hypothesis h(q,a) (the declarative form
of a question-answer pair) and an evidence bank.
Traditionally, the evidence bank takes the form
of a set of natural language sentences, but in the
multimodal domain it is a video clip V and corre-
sponding dialogue transcript D, treated as sets of
video frames and dialogue lines, respectively.

Output We define entailment trees as recursive
structures which take the form T := (h, e). h is a
hypothesis and e is evidence. e’s form is either a

1. Leaf : A (possibly empty) subset of items from
evidence bank {V ∪D}.

2. Branch: A pair of two distinct entailment sub-
trees T1 := (h1, e1) and T2 := (h2, e2).

Leaves with empty evidence sets are labeled null.
The purpose of an entailment tree is to illustrate

the compositional reasoning necessary to reach a
conclusion from an initial evidence bank using en-
tailment relationships. In a well-formed tree, the
evidence e in any tree node (h, e) must explicitly
entail the hypothesis h. For a leaf node, e entails
h if a human would reasonably infer that h is true
given evidence e ⊆ {V ∪ D}. For a branching
node, e entails h if a human would reasonably infer
that h is true given hypotheses h1 and h2.

Objective Given inputs h(q,a), V, and D, our ob-
jective is to return a well-formed entailment tree
T that includes null leaves if and only if a is not a
correct answer to question q.

3.2 Evaluation

To serve as a second, distinct objective from raw
QA performance, we propose an evaluation method
for assessing the reasoning quality of multimodal
entailment trees inspired by work in compositional
entailment evaluation (Weir et al., 2024b). Informal
logic theory posits that natural language arguments
may be evaluated in terms of their acceptability, rel-
evance, and sufficiency (Johnson and Blair, 1977),
and we consider each node in an entailment tree
as an “argument" to be scored using these qualia.
Below, we formulate them through an information-
theoretic lens to establish a set of evaluation met-
rics. We use the Shannon definition of information
gain, I(x | y) = − logP (x | y), where P (x) is the
probability that natural language statement x is true
conditioned on natural language statement(s) y.

Acceptability Hypotheses at every node should
be complete and verifiable natural language state-
ments that are understandable to a human, and hy-
potheses at leaf nodes should be factually accurate
statements conditioned on the world state {V ∪D}.
These items may be formalized as

I(h) ∈ [0, 1] ∀h ∈ T (1)

I(h | V ∪D) = 0 ∀h ∈ Tleaves. (2)

Relevance For each branching node T0 :=
(h0, (T1, T2)), hypotheses h1 and h2 should both
be conditionally relevant to h0, meaning that they
each introduce distinct information that contributes
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Figure 2: The TV-TREES pipeline. The system searches for evidence in the video clip and transcript that it can use
to prove higher-level conclusions, with the goal of recursively constructing a tree of entailment relationships between
these conclusions and low-level evidence. The figure highlights the system’s three primary modules: Retrieval,
filtering, and decomposition. Retrieval involves identifying the best time interval of the video to sample from and
then extracting natural language inferences and video frames from the input data. Filtering involves filtering the
extracted data samples with NLI classifiers and VQA systems to identify evidence that proves the answer to the
question. Decomposition addresses when no evidence is found— an LLM is used to decompose the question and
hypothesis into two smaller sub-claims, to be each recursively proven through the same process.

to the compositional entailment of h0. Formally,
this metric is met if

I(h | h1, h2) < I(h | h2) ∀(h, e) ∈ Tbranches (3)

I(h | h1, h2) < I(h | h1) ∀(h, e) ∈ Tbranches (4)

Sufficiency For each branching node T0 :=
(h0, (T1, T2)), hypotheses h1 and h2 should com-
positionally entail h0, or

I(h0 | h1, h2) = 0 ∀(h0, (T1, T2)) ∈ T. (5)

Given these metric formulations, we explore prac-
tical implementations of them in Section 5.

4 TV-TREES

We now introduce our multimodal entailment tree
generator, pictured in Figure 2.

4.1 System overview
TV-TREES is a recursive search algorithm that
involves three primary procedures:

1. Retrieval Given a hypothesis and evidence
bank, the system samples evidence candidates
from the bank that may sufficiently entail the
current hypothesis.

2. Filtering The system tests whether any re-
trieved evidence entails the hypothesis. If such
evidence was retrieved, it is returned and the
current tree node becomes a leaf.

3. Decomposition If the previous steps result in
insufficient evidence, the system decomposes
the hypothesis into two sub-hypotheses such
that proving both independently is equivalent to
proving the original hypothesis. The process is
recursively called using these sub-hypotheses.

The interaction of these three parts is illustrated
in Algorithm 1. Given a hypothesis h, transcript
sample D′ ⊆ D, and video sample V ′ ⊆ V , the
system first returns evidence from the transcript
relevant to h (line 1) and identifies whether any of

19012



Algorithm 1 Tree generation, GENERATE

Input: Hypothesis h, transcript sample D′ ⊆ D,
video sample V ′ ⊆ V , current depth k

Output: Tree candidate T̂ := (h, p′)
1: FD ← RETRIEVE(D′ | h)
2: F ′

D ← FILTER D(F, h)
3: if F ′

D ̸= ∅ then
4: e← BEST D(F

′
D | h)

5: else if k ≥ k′ then
6: e← ∅
7: else
8: h0, h1 ← DECOMPOSE(h | T ′)
9: T0 ← PROVE(h0, D

′, V ′, k + 1)
10: T1 ← PROVE(h1, D

′, V ′, k + 1)
11: e← (T0, T1)
12: end if
13: F ′

V ← FILTER V (V
′ | h)

14: if NULL(e) and F ′
V ̸= ∅ then

15: e← BEST V (F
′
V | h)

16: end if
17: return (h, e)

it entails h (2). If such evidence was retrieved, e
is set to the best evidence (3-4), and the leaf node
is returned (17). Otherwise, h is decomposed into
sub-hypotheses h0 and h1 (8) and the algorithm is
recursively called on these newly constructed sub-
problems (9-10), treating the generated sub-proofs
as explanation e (11). If the maximum depth is
reached during recursion, the evidence at that node
is set to the empty set (5-6). If textual evidence
cannot be found for the current node nor any of the
downstream nodes (14), then the visual evidence in
sample V ′ is sampled, filtered, (13) and assigned to
e where applicable (15) in the same manner as the
text content. Below, we detail the implementation
of the subroutines called by Algorithm 1.

4.2 Preprocessing

Hypothesis Generation We first prompt GPT-
3.5 (Ouyang et al., 2022) to generate a single
declarative statement that contains the full semantic
meaning of an initial QA pair.1

Evidence Localization Given the hypothesis,
TV-TREES attempts to identify a relevant window
of the video clip and transcript to sample evidence
from. We use a cross-encoder model trained on
the MS MARCO passage ranking task (Bajaj et al.,

1All LLM and VLM prompts are included in Appendix A.

Figure 3: An example question from TVQA, corre-
sponding dialogue excerpt sampled by TV-TREES, and
set of inferences generated from these inputs.

2016)2 to rank six-line transcript passages on their
computed similarity with the generated hypothesis.
We use a sliding window to calculate scores for ev-
ery potential sample and return the highest-scoring
excerpt. If a sufficient window is identified, the
vision pipeline inherits this same window. If no
dialogue sample is found, the system uses all video
frames as evidence and omits text entirely.

4.3 Evidence Retrieval (RETRIEVE)

Existing natural language inference (NLI) mod-
els are not well-suited for classifying entailments
within highly contextual and social dialogue,
which often requires sophisticated inferential abil-
ity. Therefore, we use GPT-3.5 to generate a set of
five natural language inferences about the dialogue,
conditioned on a question form of the hypothesis,
q, written in the style of a dataset like SNLI (Bow-
man et al., 2015b). Presenting the question under
discussion in the interrogative form significantly
reduces the hallucination rate compared to passing
in the original hypothesis. q is also generated via
GPT-3.5 taking the hypothesis h as input. Example
generated inferences are shown in Figure 3.

4.4 Evidence Filtering (FILTER)

We use a cross-encoder trained on SNLI and
MNLI (Williams et al., 2017)3 to determine

2huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-
v2

3huggingface.co/cross-encoder/nli-distilroberta-base
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whether any of the retrieved inferences entail the
hypothesis. We accept any sample that achieves a
logit score above a given threshold.

We apply a secondary entailment filter using
GPT-3.5 that ensures the inferences are accurate
descriptions of the content presented in the dia-
logue. This is important because, while condition-
ing the inference generator on an interrogative form
of the hypothesis mitigates hallucinations, it does
not eliminate them entirely.

Finally, as the cross-encoder tends to ig-
nore negation, we additionally pass the filtered
inference-hypothesis pairs to a GPT-3.5 prompt
to verify the entailment a final time. The system
retains the inferences that pass all three filters.

4.5 Decomposition (DECOMPOSE)

If no retrieved evidence entails the current hypoth-
esis, TV-TREES breaks down the hypothesis into
two sub-hypotheses that are (1) complete sentences
without ambiguous pronouns or decontextualized
references and (2) compositionally equivalent to
the original hypothesis, i.e., proving the two sub-
hypotheses as true is approximately logically equiv-
alent to proving the original hypothesis. We prompt
GPT-3.5 to break the current hypothesis into two
compositionally equivalent pieces of information.

4.6 Visual Reasoning (FILTER)

We pass in the questions generated in Section 4.5
alongside video frames from the localized evidence
window (if applicable) into a vision-language
model. In our experiments, we use LLaVA-7B (Liu
et al., 2023).4 To encourage conservative classifi-
cations, in addition to asking for “yes" and “no"
answers we encourage the model to respond with
“not enough information" if it is unsure. If more
than 10% of the frames in the window result in
an affirmative answer from the VLM model, the
visual content is considered to contain sufficient
entailing evidence, and the frame with the highest
logits score is returned.

5 Evaluation Methodology

Traditionally, qualitative natural text evaluations
have been conducted using humans (Celikyilmaz
et al., 2021). Recently, researchers have considered
whether these human evaluations could be replaced
by high-performing LLMs like GPT-4 (Naismith

4The LLaVA-7B prompt is included in Appendix A.

et al., 2023). We detail how we implement the eval-
uation metrics described in Section 3.2 with both
human annotators and GPT-4. We report evaluation
results for both methods in Section 6.

5.1 Human Evaluations
We evaluate trees using the metrics introduced
in Section 3.2 (acceptability, relevance, and suf-
ficiency) through three annotation tasks. The first
task provides annotators with a tree’s leaf node evi-
dence (images or text) and asks them to assess the
correctness of the leaf node hypotheses on a scale
of 1-5 (acceptability) based on that evidence. The
second task provides annotators with parent-child
hypothesis (h0, h′) pairs from branching nodes and
asks if the child hypothesis h′ is relevant to the
parent h0 (relevance). The third task provides an-
notators with a full hypothesis triplet (h0, h1, h2)
from a branching node with parent h0 and child
hypotheses h1 and h2 and asks (1) whether h1 and
h2 each introduce distinct information (the other
facet of relevance, we also call this distinctness for
disambiguation purposes), and (2) if h0 introduces
information not provided by h1 and h2 together, to
check for entailment (sufficiency). Through these
tasks, annotators are also asked to indicate if any
of the hypotheses or premises are malformed or
otherwise uninterpretable (also acceptability).

Every node in a multimodal entailment tree is
assigned a binary score for each assessment de-
scribed above (except for the correctness checks,
which are collected on a scale of 1-5). We include
all task instructions and layouts in Appendix D.

5.2 GPT Evaluations
We take the qualia outlined in Section 3.2 and write
three GPT-4 prompts testing (1) acceptability of
evidence in the text domain, (2) acceptability of
evidence in the vision domain, and (3) relevancy
and sufficiency.5 We use the same scoring values
used in the human evaluations.

5.3 Tree Scoring Paradigm
We consider the mean normalized score of the three
main evaluation qualia across all nodes as the over-
all “composition score" for each individual tree,

S =
1

3
(a+ s+ 0.5(d+ r))

where a is the tree’s mean normalized acceptability
score, d is the mean distinctness score, r is the

5These prompts are included in full in Appendix E.

19014



mean relevance score, and s is the mean sufficiency
score.

6 Experiments

We evaluate TV-TREES using the TVQA dataset
as input data. We compare its zero-shot QA per-
formance against competing video-language QA
approaches to illustrate its practical usage, evalu-
ate its overall tree quality through our evaluation
method described in Section 5, and organize its
reasoning error modes through a qualitative study.

Setup We instantiate TV-TREES as it is de-
scribed in Section 4, allowing for trees with up
to 3 levels (k = 2). Our experiments focus on the
multiple-choice QA domain, and so we consider a
question’s correct answer to be the answer that re-
sults in a complete tree. In the case that the system
does not successfully complete any tree for the five
answer candidates, we consider the answer candi-
date with the "most complete" tree to be the correct
answer, breaking ties by average entailment score.
When complete trees are generated for multiple
answers, we break ties in the same way.

6.1 QA Evaluation
We focus on video-language QA to take the first
step adapting a text-only method to other do-
mains, but complex video-language benchmarks
are sparse: TVQA and MovieQA (Tapaswi et al.,
2016) are the two commonly used video-language
datasets, but past research suggests that about half
of MovieQA questions can be answered without
reasoning over the video content (Jasani et al.,
2019). Therefore, we focus our study on TVQA.

Data We evaluate our system on 3,000 multiple
choice questions from the validation set of TVQA
(Lei et al., 2018). TVQA is a video-language QA
benchmark that includes multiple choice questions
about the dialogue and visual content of video clips
taken from TV shows. The clips are about 60-
90 seconds long and contain around 30 lines of
dialogue. A sample question is shown in Figure 1.

Models In the zero-shot setting, we consider
zero-shot systems FrozenBiLM (Yang et al., 2022),
SeVILA (Yu et al., 2023), and VideoChat2 (Li
et al., 2023a). We also include performance re-
ported by other systems (not zero-shot) for context:
STAGE (Lei et al., 2019), HERO (Li et al., 2020),
FrozenBiLM (fine-tuned) (Yang et al., 2022), and
LLaMA-VQA (Ko et al., 2023).

Method Transparent Full Clips TVQA

Fine-Tuned Methods

STAGE No Yes 70.5
HERO No No 74.2
FrozenBiLM No No 82.0
LLaMA-VQA No No 82.2

Zero-Shot Methods

FrozenBiLM∗ No Yes 26.3
SeVILA No Yes 38.2
VideoChat2 No Yes 40.6
TV-TREES‡ Yes Yes 44.9
TV-TREES Yes Yes 49.4

Table 1: Table comparing vision-text understanding
models on qualitative criteria and the TVQA bench-
mark. Experiment results suggest that TV-TREES and
TV-TREES with text input only (TV-TREES‡) outper-
form existing zero-shot methods on full clips. Compet-
ing method results are taken from their respective papers
except for FrozenBiLM*, which we re-run on our vali-
dation subset with full clips as input. (On ground truth
clip fragments, FrozenBiLM reports 59.7% accuracy).

Ablations Existing work notes that multimodal
models are often biased toward the text modality,
relying on text data for reasoning even for video-
centric questions. To assess TV-TREES, we report
TVQA performance conditioned on input modality.
We compare system output when it is only provided
with dialogue transcripts and then when it is only
provided with video frames.

Results We report overall accuracy alongside
qualitative comparisons between the approaches
in Table 1. As shown in the table, TV-TREES out-
performs existing zero-shot methods when using
full clips. The influence of the individual modal-
ities on TV-TREES is further illustrated through
the ablation experiment results in Figure 6, which
reports the % of questions which are correctly an-
swered with complete trees and the % that are cor-
rectly answered with incomplete proofs given text,
visual, and multimodal evidence. The results show
that joint modality evidence improves both accu-
racy and correct tree completion in TV-TREES.

6.2 Tree Quality Evaluation

Setup We randomly sample 600 completed en-
tailment trees generated by TV-TREES from the
TVQA validation split, split evenly between ev-
idence modality (text vs. multimodal) and tree
complexity (ranging from one to seven tree nodes).
We evaluate these sampled trees using the auto-
matic GPT-4 approach as described in Section 5.2.
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Figure 4: Ablation experiment results comparing TV-
TREES performance on TVQA using only dialogue
evidence, only visual evidence, and both modalities.
We report the % of questions answered correctly with
completed trees and the % answered correctly overall.

Figure 5: An example of a correct completed entail-
ment tree produced with TV-TREES using text evidence
(shown below the leaf nodes). Using our tree quality
evaluation system detailed in Section 6.2, the tree earns
perfect scores for acceptability (the dialogue entails the
sub-hypotheses), relevance and distinctness (all child
hypotheses help prove the parent and are distinct), and
sufficiency (there is no information lost).

We then sample 200 proofs from this set (evenly
distributed across modalities and complexity) and
evaluate this set with human annotators from Ama-
zon Mechanical Turk as described in Section 5.1.
For human annotations, we identify careful anno-
tators through a preliminary pilot task where each
annotator’s work is scored by hand, and only high-
scoring annotators are invited to annotate the full
trees. More information regarding crowdsourcing
is included in Appendix C.

Trees Accept Relev Distinct Suffic Score

GPT-4 Evaluations

Text Only 58.4 99.6 87.7 88.6 74.3
Multimodal 61.0 99.6 90.6 93.9 77.8
All 59.7 99.6 89.1 91.2 76.0

Human Evaluations

Text Only 65.6 93.9 88.8 93.6 78.9
Multimodal 51.8 98.1 91.2 92.8 72.9
All 58.7 96.0 91.7 93.2 75.9

Table 2: Entailment tree quality evaluations using hu-
man and LLM critics, reporting mean qualia scores
alongside total score. We partition results by modality:
Trees using text evidence only, trees that use both modal-
ities, and both groups combined (all). As shown, tree
scores largely suffer due to acceptability, highlighting
the difficulty of extracting high-level inferences from
dialogue and ambiguous video.

Results We report results in Table 2. For compar-
ison, we include a high-quality tree produced by
TV-TREES in Figure 5. Generally, there is a close
alignment between the machine scores and human
scores, but GPT-4 tends to score the text-only trees
more harshly than humans, and the multimodal
trees more leniently. This is shown primarily in the
resulting acceptability scores, and more moderately
in the sufficiency scores. GPT-4 rated relevance
scores more leniently for both modalities, which
may stem from differences in human interpreta-
tions of the task instructions. Distinctness scores
are almost identical between the two methods.

We find that the majority of error stems from
acceptability issues. According to human evalu-
ations, the vision module produces lower-quality
inferences than the textual modules do. This is
not surprising, as we are able to include additional
entailment filters for the textual reasoning steps to
remove lower-quality predictions before construct-
ing the final entailment trees, whereas we do not
have similar methods in place for visual inference.

6.3 Qualitative Analysis
Setup Finally, we sample a set of 120 complete
but incorrect entailment trees produced by TV-
TREES on the TVQA dataset and analyze them to
diagnose common error patterns. We find 8 main
error classes, described below and in Table 3.

Failure Modes Visual reasoning errors are com-
mon among erroneous proofs, especially ones in-
volving colors and character identification (we do
not implement a character identification module in
TV-TREES, so this error class is not surprising).
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Error Type % Modality

Visual reasoning errors 20% V
Hallucinated text inferences 19% T+V
Entailment misclassification 18% T+V
Ignoring negation in text 8% T+V
Character identification 7% V
Ambiguous QA pairs 7% T+V
Color identification 6% V
Other 15% _

Table 3: Distribution of error modes across a sample of
120 complete but incorrect entailment trees generated
by TV-TREES, analyzed by hand. Some of the error
modes are particularly prevalent subclasses of other er-
ror modes, for example, “color identification" could fall
under “general visual reasoning errors". (V = Occurs
in vision/multimodal proofs only, T = occurs in both
multimodal and text-only proofs).

Hallucinated text inferences is another common
error class, occurring in the “evidence retrieval”
module (Section 4.3). Another common issue is
the system ignoring negation in NL text: As doc-
umented in existing work (Hosseini et al., 2021),
language models and classifiers often have diffi-
culty recognizing negation in sentences. This can
lead to specific entailment misclassifications. Fi-
nally, we notice that in some cases, the dataset
question wording is difficult to interpret either due
to coreference ambiguity or grammatical issues.

Results The distribution of error types among the
sample set, reported in Table 3, reflects and helps
to explain the tree quality evaluation results re-
ported in Table 2: The most errors occur due to the
acceptability of the produced evidence, as visual
reasoning errors, hallucinated text inferences, and
character and color identification account for 52%
of the tree errors in the qualitative study. Entail-
ment misclassification and ignoring textual nega-
tion accounts for 26% of the errors, explaining the
lower sufficiency scores in Table 2.

7 Conclusion

We introduce the first neuro-symbolic entailment
tree generator for multimodal content to improve
the robustness, reliability, and interpretability of
video-language understanding systems. We pro-
pose the task of multimodal entailment tree gener-
ation for the assessment of generated tree reason-
ing quality, establishing an information-theoretic
evaluation method grounded in informal logic the-
ory. We show that our approach achieves state-of-
the-art results on the zero-shot TVQA benchmark

Figure 6: Examples of possible inference generation,
entailment classification, and VQA filtering errors that
illustrate the different failure mode categories identified
in the qualitative analysis detailed in Section 6.3 and
Table 3. Blue cells indicate vision-specific error types,
and orange cells may occur in both text-only and mul-
timodal proofs. Notably, "unclear question or answer"
is not a failure of the system itself, but an artifact of the
dataset used.

with full video clips, illustrating the potential for
generated reasoning traces to improve downstream
video-language understanding task performance.
We show that interpretable, neuro-symbolic ap-
proaches to video understanding like TV-TREES
are a strong alternative to existing methods, provide
substantial new benefits, and highlight exciting di-
rections for future research.

This paper is presented as an initial exploration
into multimodal neuro-symbolic systems, and so
there are many exciting avenues for future devel-
opment and research. Individual components of
this system could be improved for better perfor-
mance on TVQA and related tasks - for instance,
the vision querying system is fairly end-to-end, and
semantically deconstructing the frames using a vi-
sual semantic role labeling model and using its
outputs as evidence could result in a more sophis-
ticated and transparent logical system. In future
work, we also hope to explore the possibility of
producing a collection of entailment trees pertain-
ing to the same video clip and aggregating them
to produce a comprehensive knowledge graph of
the full video. We also hope to explore ways to
improve computational efficiency and cost of us-
ing the system. Finally, there is significant room
for future work in decomposing natural language
text for entailment tree generation, and for estab-
lishing entailment between premises and grounded
multimodal evidence.
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8 Limitations

We introduce an initial exploration into the task of
multimodal entailment tree generation for video un-
derstanding, and so, there are inherent limitations
that we hope to correct in future work. Most no-
tably, our vision module underperforms compared
to some systems - in future work, we hope to im-
prove upon the existing end-to-end architecture as
well as explore more compositional approaches.
Furthermore, while we consider six lines of di-
alogue at a time to ensure sufficient context for
textual inference, we do not do the same for visual
analysis (instead working with only one frame at a
time). Extending the immediate context for visual
inference would likely improve performance as
well. Finally, it is important to consider the domain
that our system is used in, as model performance
may vary in domains with limited dialogue, etc. We
hope that this work inspires future research in this
domain to improve upon our proposed pipeline.
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A TV-TREES LLM Prompts

We provide the LLM and VLM prompts used in
the TV-TREES pipeline in Figures 9-16.

B Visual Prompt Anonymization
Experiments

We consider an additional component to the
TV-TREES system outlined in Section 4 that
anonymizes any references to characters passed
in to the visual entailment module. We pass any
questions that will be used for visual QA prompts
through a GPT filter that replaces any character
names with common nouns and pronouns like “the
man", “they", and “the doctor". We report results
below, comparing this alternate system to the
competing methods and the standard TV-TREES
method. We find that the anonymization paradigm
results in a TVQA accuracy score of 48.1%
compared to the standard system’s 49.4%. We
provide the anonymization GPT prompt in Figure
13 and a results table for comparison (Table 4).

C Amazon Mechanical Turk Details

We evaluate generated tree quality through crowd-
sourced workers on Amazon Mechanical Turk with
three main annotation tasks. We identify a sepa-
rate group of quality annotators for each task by
(1) setting the qualifications for the task to workers
located within the United States with a HIT accep-
tance rate of 98% and over 1000 completed HITS,
and (2) running a pilot task with carefully selected
questions to identify annotators who answer the
preselected questions with high accuracy.

We estimate time completion for each version
of the task uploaded to Mechanical Turk and set
the payment values to an estimated $15 per hour.
No identifiable information of any annotators is
present in this paper or in any artifacts we will
release.

D Human Tree Evaluation Tasks

Below, we include screenshots depicting the
instructions and format of each task provided to
annotators. We also include a table detailing the
descriptions provided to annotators for each of the
five acceptability scores (Table 5).

E GPT-4 Evaluation Prompts

Prompts for GPT-4 evaluations are shown in
Figures 17 - 19. Figure 17 shows the primary
decomposition evaluation prompt, which accounts
for relevancy, distinctness, and sufficiency. Figure
18 shows the textual acceptability for dialogue
prompt, and Figure 19 shows the visual acceptabil-
ity for screenshots prompt, which was passed to
GPT-4V.
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Figure 7: AMT acceptability task instructions and example for premises with textual evidence.

Figure 8: AMT acceptability task instructions and example for premises with visual evidence.

Acceptability: See Figures 4 and 5.

Relevance: See Figure 6.

Sufficiency: See Figures 7 and 8.
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Figure 9: AMT relevance task instructions and example.

Figure 10: AMT sufficiency task instructions.

Figure 11: AMT sufficiency task example.
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Method FrozenBiLM SeVILA VideoChat2 TV-TREES‡ TV-TREES TV-TREES*
TVQA Acc. 26.3 38.2 40.6 44.9 49.4 48.1

Table 4: Table contextualizing the anonymized VQA inputs ablation experiment (TV-TREES*) by comparing it to
the other zero-shot TVQA results.

Score Description
1 Sentence is contradicted by the screenshot or dialogue.
2 Sentence is unlikely to be true based on the screenshot or dialogue.
3 Sentence is purely ambiguous given the screenshot or dialogue.
4 Sentence is likely to be true based on the screenshot or dialogue.
5 Sentence is directly suggested or shown by the screenshot or dialogue.

Table 5: Descriptions for each acceptability score provided to annotators as part of the sliding bar functionality in
the task.

Hypothesis Generation Prompt

Convert each of the answer options for the following questions into GRAMMATICAL
ANSWER SENTENCES. Make sure that they are FULL and COMPLETE sentences, not just
words. They should be sentences that you can "prove" by reasoning about the
situation. Proving the sentence should amount to choosing choosing that answer
option over the other one(s).

## Input
QUESTION:
{ICL Q Examples}

## Output
{ICL A Examples}

## Input
QUESTION:
{Questions}

## Output

Figure 12: Example prompt for generating hypotheses from QA pairs as described in Section 4.2.

Hypothesis-To-Question Generation Prompt

Rewrite the following statement into a "yes" or "no" question, and nothing else.

STATEMENT: "{Statement}"
QUESTION:

Figure 13: Example prompt for generating interrogative forms of hypotheses for conditioning inference generation
and VQA as described in Section 4.3.
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Hypothesis Decomposition Prompt

You are a writing system that values clarity above all else. You NEVER uses
pronouns like "he", "they", or "it" to ensure that readers can understand your
sentences in isolation without additional context.

Your task is to break down the following statement into two, simpler sentences.

STATEMENT: "Lauren closed the door after discussing the party with Kelly."

DECOMPOSITION (USING NO PRONOUNS, INCLUDING "THEY" OR "HE" OR "SHE"):
(1) "Lauren closed the door."
(2) "Lauren discussed the party with Kelly."

STATEMENT: "Jason asked about the brown briefcase because he was concerned that it
had been misplaced or stolen."

DECOMPOSITION (USING NO PRONOUNS, INCLUDING "THEY" OR "HE" OR "SHE"):
(1) "Jason asked about the brown briefcase."
(2) "Jason was concerned that the brown briefcase had been misplaced or stolen."

STATEMENT: "{Statement}"

DECOMPOSITION (USING NO PRONOUNS, INCLUDING "THEY" OR "HE" OR "SHE"):

Figure 14: Example prompt for decomposing a hypothesis into two distinct premises as described in Section 4.5.

Inference Generation Prompt

You are a fact-checking expert that uses evidence to answer questions about a TV
show.

For the following question and scene dialogue, write a set of five independent
inferences entailed by some part of the scene. The inferences should resemble
short, factual statements about the scene and should help to answer the question
using component reasoning steps.

Write your facts in JSON format, i.e. {"1": "<answer here>", "2": "<answer
here>", ...} and nothing else.

QUESTION: "Why does Howard say theyŕe late after walking in?"

SCENE:
{Dialogue}

INFERENCES (5 total):

Figure 15: Example prompt for generating inferences from dialogue samples given an underlying question as
described in Section 4.3.
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Premise-Dialogue Entailment Verification Filtering Prompt

You are an expert social reasoning system that understands the implied meanings
of complex conversations between TV show characters. Given social inferences made
by other AI systems about transcripts, you score them on whether they are CORRECT or
NOT SUPPORTED by the transcript.

Given the following TV show transcript, write whether each of the following
statements about the TV show are CORRECT or NOT SUPPORTED. A statement is CORRECT
if an average human would agree that it is most likely true based on the transcript,
and is NOT SUPPORTED otherwise.

Write your facts in JSON format, i.e. {"1": <"answer here">, "2": <"answer
here">, ...} and nothing else.

TRANSCRIPT:
{Dialogue}

STATEMENTS:
{Inferences}

OUTPUT:

Figure 16: Example prompt for filtering premises based on dialogue entailment as described in Section 4.3.

Question Anonymization Prompt

Anonymize the following questions by replacing all the characters’ names replaced
with ẗhe man,̈ ẗhe woman,̈ ẗhe person,̈ or ẗhe people.̈ Your output should be formatted
as a serialized JSON list, i.e. {q̈1:̈ <̈answer here>,̈ q̈2:̈ <̈answer here>}̈, ..., and
nothing else.

SENTENCES:
{Questions}

QUESTIONS:

Figure 17: Example prompt for generating anonymized versions of interrogative versions of hypotheses as described
in Appendix B.

Premise-Hypothesis Entailment Verification Filtering Prompt

You are a logical reasoning system that determines whether individual facts are
enough to prove a hypothesis statement.

For each of the following independent facts, answer "YES" if the fact cannot be
true without the hypothesis also being true, and "NO" if the hypothesis can be false
even if the fact is true. Always answer "NO" if the hypothesis is not a complete
sentence (for example "is sitting.". Write your answers in JSON format, i.e. {"1":
"<fact 1 answer here>", "2": "<fact 2 answer here>", ...} and nothing else.

HYPOTHESIS: {Hypothesis}

FACTS:
{Inferences}

OUTPUT:

Figure 18: Example prompt for filtering premises based on hypothesis entailment as described in Section 4.4.

Visual QA Prompt

From this image, can you answer the question {Question}? If so, answer the
question, otherwise, answer N̈OT ENOUGH INFO.̈

Figure 19: Prompt template for soliciting VQA outputs from the LLaVA-7B model as described in Section 4.6.
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GPT-4 Relevance, Distinctness, and Sufficiency Evaluation

You are a reasoning system that searches for proofs of a hypothesis about a video
clip by recursively decomposing it into simpler premises.

Given a hypothesis, you identify entries in a list of possible two-premise
decompositions of the hypothesis that are “well-formed”: Proving the premises
of a well-formed decomposition would amount to proving the hypothesis through
compositional entailment.

You assess decompositions using three metrics: Premise relevancy, premise
distinctness, and decomposition sufficiency. Each decomposition should receive
two relevancy and distinctness scores, one for each premise, but only one single
sufficiency score.

RELEVANCY: Relevancy measures whether a premise contributes information pertaining
to the hypothesis. This is measured on a binary scale. Simply, if the premise
mentions an entity or idea also mentioned by the hypothesis, the relevancy score is
1. Otherwise, it is 0.

DISTINCTNESS: Distinctness measures whether a premise introduces new information not
already entailed by the other premise in the decomposition. This is measured on a
binary scale. If the premise only introduces information already entailed by the
other premise in the decomposition, the distinctness score is 0. Otherwise, it is 1.
If both premises are the same, both receive a score of 0.

SUFFICIENCY: Sufficiency measures whether the two premises cover all the information
introduced by the hypothesis. This is also measured on a binary scale. If, when
considering both premises, the hypothesis introduces new information not covered by
the decompositional premises, the sufficiency score is 0. If the hypothesis does
not introduce new information, the sufficiency score is 1.

For the following decompositions, score each decomposition’s relevancy and
sufficiency. Decompositions will be presented in the form “(<decomposition number>)
H: <hypothesis> & P1: <decomp premise 1> & P2: <decomp premise 2>”. Your answer
should be a list of entries taking the form “(<decomposition number>) RELEVANCY:
(<premise 1 score>, <premise 2 score>), DISTINCTNESS: ((<premise 1 score>, <premise
2 score>), SUFFICIENCY: (<overall score>)”.

DECOMPOSITIONS:
{Decompositions}

JUDGEMENTS (one line per decomposition):

Figure 20: GPT-4 prompt for scoring the relevance, distinctness, and sufficiency of decompositions in an entailment
tree.

GPT-4 Textual Acceptability Evaluation

Based on the dialogue from the TV show, how likely is it that the statements below
are true? Score the likelihood of each statement on a 1-5 scale, where 1 indicates
the dialogue contradicts the statement, 2 indicates the statement is unlikely to be
true given the dialogue, 3 indicates the statement is ambiguous given the dialogue,
4 indicates the statement is likely to be true given the dialogue, and 5 indicates
that the statement must be true given the dialogue. Write your numerical scores in
the same order as the listed statements, separated by commas, and nothing else.

Dialogue:
{Dialogue}

Statements:
{Statements}

Figure 21: GPT-4 prompt for scoring the acceptability of entailment tree leaf nodes that cite textual evidence.
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GPT-4V Visual Acceptability Evaluation

Based on the screenshot from the TV show, how likely is it that the statement below
is true? Score the likelihood on a 1-5 scale, where 1 indicates the screenshot
contradicts the statement, 2 indicates the statement is unlikely to be true given
the screenshot, 3 indicates the statement is ambiguous given the screenshot, 4
indicates the statement is likely to be true given the screenshot, and 5 indicates
that the statement must be true given the screenshot. Write your numerical score
and nothing else.

Statement: {Statement}

Figure 22: GPT-4V prompt for scoring the acceptability of entailment tree leaf nodes that cite visual evidence. The
top-scoring video frame is passed in alongside the prompt.
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