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Abstract
Zero-shot temporal action localization (TAL)
aims to temporally localize actions in videos
without prior training examples. To address
the challenges of TAL, we offer GRIZAL, a
model that uses multimodal embeddings and
dynamic motion cues to localize actions ef-
fectively. GRIZAL achieves sample diversity
by using large-scale generative models such
as GPT-4 for generating textual augmentations
and DALL-E for generating image augmenta-
tions. Our model integrates vision-language
embeddings with optical flow insights, op-
timized through a blend of supervised and
self-supervised loss functions. On Activi-
tyNet, Thumos14 and Charades-STA datasets,
GRIZAL vastly outperforms state-of-the-art
zero-shot TAL models, demonstrating its ro-
bustness and adaptability across a wide range of
video content. The code and models are avail-
able on https://github.com/CandleLabAI/
GRIZAL-EMNLP2024.

1 Introduction

Temporal action localization (TAL) seeks to accu-
rately identify specific actions occurring within
extensive, unedited videos. Its applications in-
clude real-time surveillance for security, improving
sports training with in-depth reviews of player ac-
tions, and optimizing video content organization
by enabling effective search and indexing capabili-
ties. The deep-learning techniques have achieved
a significant milestone for TAL, however, these
techniques necessitate training on comprehensive
datasets for optimal performance. Given the chal-
lenges of gathering exhaustive, annotated videos,
some TAL models tend to misidentify actions not
encountered during training. To address this chal-
lenge, zero-shot learning seeks to identify actions
without prior exposure to labeled instances of those
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actions during training. These techniques lever-
age semantic linkages and incorporate pre-trained
Visual-Language (ViL) models to recognize actions
by comparing the semantic similarity between ac-
tion descriptions and video content.

Recent methods like STALE (Nag et al., 2022)
propose a parallel localization and classification
architecture. UnLoc (Yan et al., 2023) introduces
an end-to-end trainable one-stage approach, start-
ing directly from a CLIP two-tower model. Exist-
ing self-supervised learning (Purushwalkam and
Gupta, 2020; Huang et al., 2021; Rebuffi et al.,
2021; Wang and Qi, 2022) literature emphasizes
the significance of augmentations for achieving
generalized representation through diversity. Both
STALE and UnLoc use learned text encoders only
to get the representation whereas GRIZAL uses
multi-modal models like GAFNet. STALE and Un-
Loc do not use any generative models to generate
new data to use as external augmentations. Hence,
their performance is inferior to the methods that
utilize external augmentations (Ju et al., 2023).

Prevailing TAL methods predominantly rely on
either retrieval-augmented techniques (Yasunaga
et al., 2022) or stochastic-augmented training ap-
proaches (Wang et al., 2021b; Jing et al., 2018;
Lin et al., 2020). For example, (Xu et al., 2021)
incorporates traditional training augmentation with
a non-parametric retrieval component, while (Lin
et al., 2020) applies transformations without ex-
plicit dependence on pre-existing samples. This
limited sample diversity leads to 1) Overcomplete
representation stemming from semantic inconsis-
tency. This occurs when varied visual represen-
tations of the same action impede the model’s
generalization. 2) Undercomplete representation
results from a lack of contextual understanding.
Here, the meaning of an action varies based on
the context, leading to different interpretations. As
shown in Fig. 1, both GRIZAL (without GPT-4
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Figure 1: Row 1: Video frames and corresponding ground-truth action intervals. Row 2: STALE. Row 3 and Row
: GRIZAL variants. Row5: GRIZAL. In rows 2 to 5, the y-axis shows action probability of each frame. While
GRIZAL variants and STALE suffer from over/under-completeness, the full GRIZAL avoids these issues

text) and GRIZAL (without DALL-E image) suf-
fer from these issues. Similarly, STALE suffers
from over-complete representation. Some meth-
ods (Kalakonda et al., 2023; Ju et al., 2023) utilize
generative models to generate text and images re-
lated to action, which act as external augmentations.
These methods pass generated content through a
pre-trained model to get rich feature representa-
tions and utilize them for specific tasks. How-
ever, since these extracted features are not passed
through any additional learnable layers, the model
does not get fine-tuned to the specific task at hand.

To address these challenges, we propose GRIZAL.
We demonstrate that incorporating diverse and
contextually rich augmentations in TAL results
in more discriminative and controlled represen-
tations. As shown in Fig. 1, the full GRIZAL
model precisely localizes temporal action bound-
aries. Clearly, diversity mitigates over-complete
and under-complete representation issues. To
achieve sample diversity, we leverage large-scale
generative models such as GPT-4 for generating
textual augmentations and DALL-E for generating
image augmentations. These generated images and
texts are passed through a pre-trained multimodal
model to get a rich feature map. This feature map is
passed through additional learnable layers to blend
these features effectively. Our contributions are:

• We incorporate diverse and contextually rich aug-
mentations in TAL to achieve more discriminative

and controlled representations. We showcase this
by using large vision-language models such as GPT-
4 and DALL-E to generate textual and image aug-
mentations, respectively.

• We introduce GRIZAL, a novel Generative Aug-
mentation Guided Transformer-based architecture
designed for zero-shot Temporal Action localiza-
tion. This innovative approach incorporates gener-
ative augmentations to enhance the model’s ability
to handle diverse scenarios. By utilizing both tex-
tual and visual representations, GRIZAL leads to
more controlled representations, avoiding under- or
over-completeness.

• The experiments on ActivityNet-V1.3, THU-
MOS14, and Charades-STA datasets confirm that
GRIZAL effectively localizes actions from both
known and unknown classes and outperforms ex-
isting CLIP-based methods. For instance, com-
pared to the SOTA method STALE, under open-set
scenario (75-25%), GRIZAL improves mIOU by
5.2pp on the ActivityNet and 3.2pp on the THU-
MOS14 dataset (pp =percentage point).

2 Related Work

There have been numerous efforts at the intersec-
tion of computer vision and natural language pro-
cessing. Radford et al. (Radford et al., 2021)
introduced CLIP, a large-scale pretrained Vision-
Language (ViL) model, trained using a contrastive

19047



Frame Encoder

Frame Encoder

RAFT

MLP

MLP Transformer

F-Transformer

O
pt

ic
al

 V
id

eo
   

   
Fr

am
es

La
be

l

    Skiing
<<action>> SENTENCE 1

SENTENCE 2
SENTENCE 3
SENTENCE 4

IMAGE 1
IMAGE 2
IMAGE 3
IMAGE 4

IMAGE 1 &
SENTENCE 1

IMAGE 4 &
SENTENCE 4

        Joint Multimodal
           Ex: GAFNet

MLP Transformer

MLP and
Sigmoid

<<CLS>> token

Lcosine

LInfoNCE

LBCE
LTemporalIOUVi

de
o 

Fr
am

es

Concat

&

&

positional
encodings

positional
encodings

positional
encodings

Zrgb

Zoptical

( ZCLS )

I

T

PIG

PTG

IG( . )

Zft

M( . )

M( . )

Image
Generator

Text Generator

TG( . )

Vision Language Embedding (VLE) Block Main-stream Block Optical Flow Embedding(OFE) Block

Zm

Weights are frozen

VLE Block

Main-stream Block

OFE Block Action probability of 
   different frames

Figure 2: GRIZAL architecture

learning strategy on 400 million image-text pairs.
CLIP demonstrated remarkable zero-shot transfer-
ability across 30 classification datasets. This moti-
vated subsequent works to propose enhancements
in training strategies, such as CoOp (Zhou et al.,
2022) and CLIPAdapter (Gao et al., 2023). A simi-
lar approach has been explored for videos (Miech
et al., 2020). ActionCLIP (Wang et al., 2021a)
applies CLIP for action localization.

The existing supervised learning TAL networks
are either two-stage (Lin et al., 2019; Shou et al.,
2016) or single-stage networks (Zhang et al., 2022).
EffPrompt (Ju et al., 2022) introduces a two-stage
sequential architecture for zero-shot action local-
ization. It involves generating an action proposal
using a pre-trained detector like BMN (Lin et al.,
2019), followed by the proposal classification using
CLIP features. We aim to pioneer a proposal-free
framework that leverages contextual augmentations
and eliminates the reliance on a proposal genera-
tion stage.

Using generative models to augment training data
has significantly enhanced model generalization.
For example, (Bowles et al., 2018; Antoniou et al.,
2017) have incorporated GAN-derived synthetic
data into training sets. DALL-E (Ramesh et al.,
2021) can create diverse images from textual
prompts, while GPT-4 (OpenAI, 2023) excels in
language understanding. Traditional CLIP-based

models for action recognition often rely on man-
ual augmentation or retrieval-based hard negatives,
which can constrain representation quality. Our ap-
proach leverages generative models to create con-
textually relevant augmentations tailored to specific
modalities.

3 GRIZAL: Our Proposed Method

Problem Formulation: Consider a dataset D,
composed of two disjoint subsets: the training set
Dtrain and the validation set Dval. Each subset has
a collection of (V ,AL,F ), where: V is a video se-
quence, AL denotes the action label corresponding
to V , and F = {f1, f2, . . . , fn} represents binary
annotations for each frame within V . The annota-
tion for frame fi is defined as fi = 1 if the action
specified by AL is present, and fi = 0 otherwise.

3.1 GRIZAL Network Architecture

GRIZAL is a novel zero-shot TAL technique for
understanding complex visual-textual relationships
across diverse and novel contexts. GRIZAL of-
fers a solution to bridge video content with textual
and visual descriptions without the biases found
in fully or weakly supervised methods. Figure 2
shows the architecture of GRIZAL. It consists of
three blocks: VLE (Vision Language Embedding),
OFE (Optical Flow Embedding), and mainstream.
Given video frames (V ) and action labels (AL)
as input, GRIZAL pinpoints the frames where the
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specified action (AL) occurs. The VLE block en-
riches the mainstream block with contextual in-
formation, enhancing the model’s understanding
of the actions described in AL. The OFE block
provides cross-attention to the mainstream, help-
ing recognize action transitions within the video.
GRIZAL also leverages a proposed F-Transformer
block, which merges frequency and spatial domain
features through Fourier Transform to enrich fea-
ture representation. The F-Transformer has been
explained in the Appendix section.

VLE block: Given an action label AL (e.g., “ski-
ing”), the VLE block uses it in prompts designed
for image-generator IG (DALL-E in our case) and
text-generator TG (GPT-4 in our case), denoted as
PIG and PTG, respectively. The IG and TG mod-
els take these prompts as inputs and produce sets of
images and sentences where I = IG(PIG) yields
a set of images I = {Img1, . . . , Imgk}, where
Imgi ∈ Rc×h×w and k = 4 in our case. Simi-
larly, T = TG(PTG) produces a set of sentences
T = {Sent1, . . . , Sentk}, where each Senti is a
string of text of variable length. Here, AL acts as
a clue that helps to create images and sentences
about the action to be localized. Each image and
sentence shows a different view of the action to
give a complete understanding.

Next, the VLE block uses a Joint Multimodal unit
M , for feature extraction and semantic coherence.
The parameters of M are kept frozen. For each
image-sentence pair (Ii, Ti), where i ranges from
1 to k, M extracts semantically coherent embed-
dings. It enhances action understanding by combin-
ing the vivid, instant representation of actions in
images with the detailed, context-rich explanations
provided by sentences.

Formally, let Ei = M(Ii, Ti), the resulting embed-
ding for pair i has a dimensionality of RB×S×E ,
with B representing the batch size, S the sequence
length, and E the embedding dimension. The em-
beddings Ei for all pairs are concatenated along
the sequence dimension to form a single tensor T ,
such that T = Concat(E1, E2, E3, E4). The re-
sulting tensor T has dimensions RB×4S×E . Before
the concatenation of embeddings, each embedding
is padded to match the maximum sequence length.
Positional encodings are then added to T followed
by an MLP (multilayer perceptron) that aligns mul-
timodal features and reduces the dimensionality of
a tensor T to shape RB×4S×512. The tensor T is

then fed into a transformer comprising N blocks
where N = 7, to yield the final tensor Zm of di-
mension RB×4S×512.

The vector resulting from feature concatenation has
a higher dimensionality that preserves both modal-
ities’ dimensionality, context, and unique charac-
teristics. Addition may lead to feature cancellation,
especially if the vectors contain both positive and
negative values. This can result in the loss of cru-
cial information necessary for tasks such as action
localization or multimodal understanding.

Through this process, the VLE analyzes the con-
text of actions depicted in both images and sen-
tences, generating a set of context-aware embed-
dings (Zm) that encapsulate the AL. At last, the
embedding corresponding to the «CLS» token is ex-
tracted, yielding a RB×512 shaped tensor (denoted
as ZCLS). This token embedding is forwarded to
the F-transformer in the mainstream block.

OFE block: Given a set of RGB video frames,
RAFT algorithm (Teed and Deng, 2020) is ap-
plied to compute optical flow frames. Let Vrgb =
{vrgb1, . . . , vrgbm} denote the set of RGB frames,
where vrgbi ∈ R3×H×W and H , W are the height
and width of the frames, respectively. RAFT
transforms V into a set of optical flow frames
O = {o1, o2, ..., om}, with oi ∈ R3×H×W . This
produces a detailed pixel-by-pixel motion depic-
tion across frames. O is then passed through a
frame encoder (FE), which extracts feature vec-
tors Fo. While we employ a CLIP image encoder
(Radford et al., 2021) to obtain video features, any
other frame encoder can also be used. These fea-
tures Fo are then passed through an MLP. RAFT
and the frame encoders are pre-trained, and their
weights are frozen during training. After an MLP,
the features Fo pass through a transformer with N
blocks, capturing dynamic motion in optical flow
to generate feature representations Zoptical, used in
F-Transformer’s cross attention (refer Section S.1).

Mainstream Block: It performs action localiza-
tion by integrating the feature maps Zoptical from
the OFE block and ZCLS from the VLE block. As
outlined in the OFE block, RGB video frames Vrgb

undergo a similar initial process, where Vrgb is fed
into a frame encoder that produces features. These
features are then aligned dimensionally through
an MLP, yielding a transformed feature set Zrgb.
The F-Transformer block fuses Zrgb, Zoptical, and
ZCLS to generate the feature map Zft, which con-
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tains enriched information for action localization.
At last, Zft goes through an MLP and then a sig-
moid function to obtain a probability distribution
across video frames, indicating the likelihood of
each frame containing the target action.

3.2 Learning Objective

Biases can form when models learn only from
specific examples (i.e., fully supervised learning)
or when they lack detailed temporal annotations
(i.e., weakly supervised learning). To address this,
GRIZAL employs a combination of supervised and
self-supervised loss functions during training. Su-
pervised loss functions: We use LBCE (i.e., Bi-
nary Cross Entropy) and LTemporalIOU (Temporal
Intersection Over Union) losses to train the model
in a supervised fashion. LBCE focuses on frame-
level classification. It helps the model to discrimi-
nate between frames with and without the given ac-
tion (AL), maintaining frame-wise accuracy. How-
ever, it treats each frame independently and does
not enforce the continuity or duration of the action
within the video sequence. LTemporalIOU comple-
ments BCE by considering the temporal structure
of the action segments. LTemporalIOU evaluates
the overlap between the predicted action segment
and the ground-truth segment. It encourages the
model to predict action segments that are tempo-
rally contiguous and have accurate start and end
boundaries.

Self-supervised loss functions: For self-
supervised training of the model, we use cosine
similarity and InfoNCE losses. These losses
operate on the embeddings produced by the V LE
block (ZCLS) and the main-stream block (Zft).
While BCE and Temporal IOU optimize for
accuracy with respect to known ground truths,
Cosine Similarity and InfoNCE encourage the
model to explore and exploit the inherent structure
within the data. This addresses the challenge of
over-reliance on labeled data and empowers the
model to learn a more generalized and robust
action representation. Cosine Similarity Loss
ensures that the semantic information captured
by the V LE block (which processes textual
descriptions and related images) is aligned with
the semantic content of the video frames processed
by the main-stream block. The InfoNCE loss acts
as a contrastive learning mechanism within the
same embeddings. It pushes the model to increase
the mutual information between corresponding

video frames and action labels.

4 Experimental Setup

We perform experiments on ActivityNet-v1.3,
THUMOS14 and Charades-STA datasets and use
the dataset splits proposed by (Nag et al., 2022).
We evaluate two scenarios. In open-set scenario,
we have Dtrain∩Dval = ∅, i.e., action categories for
training and validation are disjoint. Here, we evalu-
ate two splits, viz., 75%:25% and 50%:50%, of ac-
tion categories in training and testing. In closed-set
scenario, Dtrain = Dval. More details are provided
in the Appendix.

4.1 Quantitative Results:

Open-set Scenario. As shown in Table 1, GRIZAL
performs best on all metrics, including stringent
criteria such as IOU@0.95. This underscores
GRIZAL’s ability to localize actions precisely. The
higher performance across various IoU thresholds
underscores GRIZAL’s robustness in handling dif-
ferent levels of object overlap.

GRIZAL shows a notable improvement over other
methods, such as EffPrompt. In contrast to
GRIZAL, which extensively uses both text and
generative images, EffPrompt only uses efficient
prompting strategies with text, which restricts its
ability to grasp the context. Furthermore, STALE
fails, especially on the ActivityNet and THUMOS
datasets, where descriptions are minimal, such as
“girl in pink dress doing archery”. STALE relies
exclusively on these brief sentences, lacking the en-
riched contextual backdrop that GRIZAL employs.
Moreover, GRIZAL’s sophisticated technique han-
dles complicated scenes more skillfully than the
ICCV19 method (Nam et al., 2021), which sim-
plifies phrases before feeding them to the encoder.
This makes the ICCV19 method unsuitable for pro-
cessing long-context videos.

While VideoCLIP and VAC are retrieval-based
methods, other methods focus more on architec-
tural aspects. GRIZAL provides substantially supe-
rior performance over retrieval-based methods such
as VideoCLIP by incorporating diverse and contex-
tually rich augmentations. Substantiating this hy-
pothesis, training GRIZAL without DALL-E gener-
ated images and GPT-4 generated text separately re-
sults in performance deterioration. For example, in
the first setting (75-25%), not using DALL-E gener-
ated images degrades mIoU by 8pp on ActivityNet
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Table 1: Comparison with state-of-art under open-set scenario on ActivityNet and THUMOS14 dataset.

Method ActivityNet Thumos14

IOU@0.50 IOU@0.75 IOU@0.95 mIOU IOU@0.30 IOU@0.50 IOU@0.70 mIOU

Open-set Scenario(75-25%)

LGI(Mun et al., 2020) 32.4 17.0 3.1 17.9 37.9 20.0 3.2 19.1

VideoCLIP(Xu et al., 2021) 33.4 18.0 4.4 18.9 38.1 19.9 2.9 21.0
VAC(Wang et al., 2021c) 35.7 20.1 5.0 20.0 41.1 21.3 7.7 24.7

iCCV 19(Nam et al., 2021) 29.0 20.0 2.0 16.2 40.2 21.1 4.5 23.0
EffPrompt(Ju et al., 2022) 37.6 22.9 3.8 23.1 39.7 23.0 7.5 23.3
STALE(Nag et al., 2022) 38.2 25.2 6.0 24.9 40.5 23.5 7.6 23.8

GRIZAL(w/o DALL-E Images) 40.0 25.6 2.0 22.1 36.5 20.0 6.0 23.7
GRIZAL(w/o GPT-4 Text) 44.2 30.2 4.1 28.9 41.3 24.0 8.2 22.1
GRIZAL(w OpenWorld images) 46.3 31.8 5.9 29.9 42.3 25.0 9.5 26.6

GRIZAL 46.4 32.5 6.8 30.1 43.2 25.7 9.8 27.0

Open-set Scenario(50-50%)

LGI(Mun et al., 2020) 28.9 15.2 2.1 19.8 35.0 18.7 4.2 19.1

VideoCLIP(Xu et al., 2021) 29.9 15.9 1.9 18.9 33.1 19.0 5.2 19.9
VAC(Wang et al., 2021c) 30.0 18.2 3.1 20.2 38.9 22.2 7.2 21.0

iCCV 19(Nam et al., 2021) 26.7 14.5 2.0 20.0 35.8 20.0 6.7 20.0
EffPrompt(Ju et al., 2022) 32.0 19.3 2.9 19.6 37.2 21.6 7.2 21.9
STALE(Nag et al., 2022) 32.1 20.7 5.9 20.5 38.3 21.2 7.0 22.2

GRIZAL(w/o DALL-E Images) 33.0 18.9 3.0 20.4 34.6 22.0 6.7 21.5
GRIZAL(w/o GPT-4 Text) 37.8 22.4 5.9 23.5 38.7 23.3 8.1 23.6
GRIZAL(w OpenWorld images) 39.3 24.8 6.3 24.9 38.9 23.9 8.8 24.6

GRIZAL 39.9 25.7 6.6 25.7 40.0 25.0 9.1 25.2

and 3.3pp on THUMOS14. Not using GPT-4 gen-
erated text degrades mIoU by 1.2pp on ActivityNet
and 4.9pp on THUMOS14. These results quanti-
tatively affirm that GRIZAL effectively simulates
real-world scenarios by handling instances from
both known and unknown classes more adeptly
than existing CLIP-based methods. We further
introduced a variant for our proposed method,
viz., “GRIZAL (with OpenWorld images)”, which
uses open-world images from Wikipedia instead of
DALL-E generated images. This variant achieves
comparable performance on the ActivityNet and
THUMOS14 datasets in both open and closed set-
tings. This variant can save the cost of using the
DALL-E model.

GRIZAL’s improvement over STALE is more pro-
nounced on the ActivityNet dataset than on THU-
MOS, likely due to the characteristics of each
dataset. THUMOS, with its shorter actions in
longer videos, demands higher localization preci-
sion. Additionally, untrimmed videos in THUMOS
add background clutter and irrelevant scenes, affect-
ing the sensitivity of IOU@0.5. Despite these chal-
lenges, GRIZAL consistently outperforms previous
methods. The introduction of diverse augmenta-
tions reduces sensitivity to background clutter and

enhances the model’s ability to learn from shorter
actions in longer videos.

Results Under Closed-set Scenario. Table 2
showcases GRIZAL’s performance, compared with
seven TAL methods featuring I3D encoder back-
bones and five CLIP-based methods. On both
datasets, GRIZAL consistently surpasses existing
TAL methods by a wide margin as the volume of
labeled data grows.

Architecture-based methods like Context-Loc and
VSGN robustly compete with CLIP-based state-of-
the-art techniques like STALE. Conversely, Video-
CLIP underperforms in closed-set settings, under-
scoring the importance of diverse samples for learn-
ing discriminative representations. This is further
evidenced by our GRIZAL models (without DALL-
E images and GPT-4 text), which show significant
performance drops without generative augmenta-
tion.

Furthermore, the results on Charades-STA, as pre-
sented in Table 3, showcase GRIZAL’s ability to
learn much more complex scenes involving mul-
tiple actors, overlapping objects, and various in-
teracting objects. GRIZAL outperforms the more
recent state-of-the-art (SOTA) architectural-based
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Table 2: Comparison with state-of-art under closed-set scenario on ActivityNet and Thumos14 datasets.

Method Encoder ActivityNet Thumos14

IoU@0.5 IoU@0.75 IoU@0.95 mIoU IoU@0.30 IoU@0.50 IoU@0.70 mIoU

TALNet(Chao et al., 2018) I3D 38.2 18.3 1.3 20.2 53.2 42.8 20.8 39.8
GTAN(Long et al., 2019) P3D 52.6 34.1 8.9 34.3 57.8 38.8 - -
MUSES(Liu et al., 2021) I3D 50.0 34.9 6.5 34.0 68.9 56.9 31.0 53.4
VSGN(Zhao et al., 2021) I3D 52.3 36.0 8.3 35.0 66.7 52.4 30.4 50.1
Context-Loc(Zhu et al., 2021) I3D 56.0 35.2 3.5 34.2 68.3 54.3 26.2 -
BU-TAL(Lin et al., 2021) I3D 43.5 33.9 9.2 30.1 53.9 45.4 28.5 43.3
LGI(Mun et al., 2020) I3D 43.2 29.1 6.0 31.0 66.3 54.3 30.0 49.8

VideoCLIP(Xu et al., 2021) CLIP 42.1 23.4 4.1 29.8 65.5 52.4 26.8 47.6
iCCV 19(Nam et al., 2021) CLIP 43.0 30.0 5.1 33.4 65.0 50.1 25.6 44.9
VAC(Wang et al., 2021c) CLIP 44.0 31.1 6.1 34.0 67.9 56.7 32.0 51.1
EffPrompt(Ju et al., 2022) CLIP 44.0 27.0 5.1 27.3 50.8 35.8 15.7 34.5
STALE(Nag et al., 2022) CLIP 56.5 36.7 9.5 36.4 68.9 57.1 31.2 52.9

GRIZAL(w/o DALL-E Images) CLIP 58.0 40.9 13.1 41.3 65.1 53.2 27.1 49.0
GRIZAL(w/o GPT4 text) CLIP 62.2 48.0 16.0 43.4 68.9 57.9 31.8 53.3
GRIZAL(w OpenWorld Images) CLIP 63.2 45.0 17.5 45.4 71.4 60.9 34.8 56.6

GRIZAL CLIP 64.0 53.1 18.7 46.3 72.4 62.7 36.7 57.8
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Figure 3: Gradient-activation maps for the ActivityNet dataset

Table 3: Closed-set scenario results on Charades-STA

Method Encoder R@1 R@5

IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

CTRL (Gao et al., 2017) C3D 23.6 8.9 58.9 29.5
2D TAN (Zhang et al., 2020b) VGG 39.7 23.3 80.3 51.3
VSLNet (Zhang et al., 2020a) I3D 47.3 30.2 - -

UMT (Liu et al., 2022) VGG 49.4 26.2 89.4 55.0
IVG-DCL (Nan et al., 2021) C3D 50.2 32.9 - -
M-DETR (Lei et al., 2021) CLIP 55.7 34.2 - -

LGI (Mun et al., 2020) I3D 59.5 35.5 - -

UnLoc-B (Yan et al., 2023) CLIP 58.1 35.4 87.4 59.1
UnLoc-L (Yan et al., 2023) CLIP 60.8 38.4 88.2 61.1

GRIZAL CLIP 62.1 41.0 91.2 64.0

method UnLoC, which utilizes pre-trained image
and text towers and feeds tokens to a video-text
fusion model. This substantiates the importance of
leveraging diverse and contextually rich augmen-
tations, positioning GRIZAL as a superior alter-
native to CLIP-based approaches. The generative
prior captures patterns of interactions involving ob-
ject classes such as football, microwave, and TV
or LCD. These interactions are more predictable,
which benefits our approach more than previous
baselines. For an object like TV, the spatial prior
pattern of the interaction (e.g.watch TV) is more
diverse and thus harder to model, resulting in only
a tiny boost in the R@1 metric.

The Grad-CAM maps in Fig. 3 reveal GRIZAL’s
remarkable ability to model relationships between
regions within images and the words present in
the textual prompt. When prompted with dog is
bathing, STALE primarily focuses on the term ‘per-
son’ rather than dog. In contrast, GRIZAL accu-
rately directs its attention to the ‘dog’ across the
frames. Notably, in the third frame correspond-
ing to the prompt “Getting a hair cut”, GRIZAL
focuses not only on the person getting a haircut
but also on the person performing the haircut, ef-
fectively filtering out irrelevant information, e.g.,
background.

The t-SNE plots (Fig. 4) reveal that methods with
limited diversity tend to produce less discriminative
representations. The retrieval-based methods like
VideoCLIP and VAC are prime examples of this
trend. They lead to less discriminative representa-
tions. The embedding space of GRIZAL can sepa-
rate the boundaries between the classes. GRIZAL
exhibits higher discriminative capabilities, whereas
the GRIZAL variants without GPT-4 and DALL-E
generated augmentations have inferior capabilities.
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Figure 4: t-SNE plots on the ActivityNet dataset.

Clearly, diversity is essential to generalize to un-
seen data. This confirms our hypothesis that diver-
sity serves as a pivotal contributor to the model’s
capacity to learn more discriminative representa-
tions, enhancing its generalization to unseen data.
The diverse and contextually rich augmentations
employed by GRIZAL help it generalize to the un-
seen data. This also explains GRIZAL’s slightly
higher performance in the open-set TAL setting.

4.2 Ablation Studies

Architectural Components. From Table 4(a), the
performance metrics degrade on excluding either
one or both of Fourier transform and optical flow.
Optical flow captures the motion information to
ensure temporal consistency in videos by align-
ing frames over time. Fourier transform captures
frequency-based features. Combining their comple-
mentary strengths helps achieve temporal stability.

Effect of Multimodal Architectures in GRIZAL.
As depicted in Table 4(b), GAFNet (Suslad-
kar et al., 2023a) outperformed others with an
IOU@0.5 of 64.0 and mIoU of 46.3, demon-
strating superior fusion of visual and language
cues. ViLBert and TCL, though competitive, had
slightly lower scores, indicating potential limita-
tions in capturing nuances for zero-shot scenarios.
BART-Encoder closely followed GAFNet, showing
promise in preserving critical information.

Effect of Augmentation Pairs (k) Increasing
the number of augmentation pairs improves the
model’s robustness and generalization (Table. 4(c))
since the augmented data provides a more diverse
set of examples for the model to learn from. The
average inference latency (in ms) for a batch size of
16 for various k values is as follows: 400 (k = 1),
578 (k = 2), 654 (k = 3), 702 (k = 4), and 1200
(k = 8). Thus, the performance saturates for k ≥ 5,
whereas the computational overhead and inference
latency rise rapidly. To balance these factors, we
chose k = 4.

Effect of Loss Function. As per Table 4(d), the
supervised loss contributes more to the model’s
detection capability than the self-supervised loss.
Nonetheless, a model trained with only self-
supervised loss may still capture important fea-
tures, especially in scenarios where labeled data is
limited or unavailable. This finding aligns with the
favorable results observed for GRIZAL under open-
set settings. Thus, GRIZAL can adapt to varying
degrees of labeled data availability.

Effect of different frame encoder As shown in
Table. 4(e), R(2+1)D encoder has the best tempo-
ral feature extraction performance. I3D and C3D,
while effective, demonstrate marginally lower per-
formance. ViT-B16/L does not quite reach the
temporal performance levels achieved by R(2+1)D.
Notably, the original GRIZAL model incorporates
CLIP as a frame encoder, which works better than
the abovementioned encoders. This underscores
the importance of advanced temporal encoding for
accurate action localization.

Effect of Token Size The best results were
achieved with a token size of 30 (Table. 4(f)). A to-
ken size that is too long for augmented summarized
text may lead to the loss of contextual information.

Results with open-source models: Table 5 illus-
trates GRIZAL’s ability to integrate seamlessly
with various open-source text and image gener-
ation models. Demonstrating its flexibility and
modularity, GRIZAL works effectively with dif-
ferent combinations like LLaMa2 (Touvron et al.,
2023) paired with Stable Diffusion (Rombach et al.,
2022), as well as Mixtral (Jiang et al., 2024) with
Pixart- α (Chen et al., 2023). This compatibility
highlights GRIZAL’s potential for broad applica-
bility across diverse pre-trained generators.

Effect of the number of VLE layers: Table 6
presents an ablation study analyzing the effect of
varying VLE layer counts (N) on model perfor-
mance within the GRIZAL architecture (depicted
in Figure 2). The study explores how different

19053



Table 4: Ablation studies on ActivityNet dataset

IoU@0.5 IoU@0.75 IoU@0.95 mIoU IoU@0.5 IoU@0.75 IoU@0.95 mIoU

Full network 64.0 53.1 18.7 46.3

(a) Architectural components(OF=optical flow) (b) Multimodal architecture (Full (i.e. proposed) network uses GAFNet)

w/o optical flow 61.3 49.0 16.8 45.0 VilBert 62.2 51.2 17.1 44.1
w/o Fourier 62.3 51.2 17.0 45.1 TCL 61.8 50.0 17.2 45.8
w/o Fourier and OF 59.9 49.9 15.0 44.9 BART-Encoder 64.1 53.1 18.0 46.6

(c) Augmentation pairs (full network uses k=4) (d) Loss function (full network uses both loss functions)

k=1 56.0 42.2 14.1 41.1 Only supervised loss 62.1 50.9 17.1 44.4
k=2 58.8 46.0 15.7 42.8 Only self-supervised loss 60.0 49.0 15.4 43.1
k=3 61.0 50.0 17.0 44.6
k=8 64.17 53.2 18.8 46.5

(e) Frame encoder used (Full Network uses CLIP) (f) Number of generated text tokens (full network uses 30 tokens)

I3D 61.0 52.1 17.0 45.9 10 63.0 51.0 16.0 43.0
C3D 62.1 52.0 16.0 45.4 20 62.0 52.8 17.0 45.9
ViT-B16/L 62.6 52.8 17.0 46.0 40 63.9 51.0 16.0 45.1
R(2+1)D 63.3 53.9 19.0 47.0 50 62.1 52.2 16.0 43.4

Table 5: Open-source model results on ActivityNet

TG/IG IoU@0.5 IoU@0.75 IoU@0.95 mIoU

LLaMa2-7b / SD 0.6102 0.5101 0.16 0.4512
LLaMa2-34b / SD XL 0.6256 0.5205 0.17 0.4566

Mixtral - 8B / Pixart- α 0.6298 0.5279 0.17 0.4601

configurations of the Vision Language Embedding
(VLE) block impact the IoU scores across various
thresholds and the mIoU. As shown in Figure 2,
the VLE block is responsible for generating mul-
timodal representations by fusing image and text
embeddings produced by pre-trained generators.
As the number of layers (N) in the VLE block
increases, the model’s hidden size and the num-
ber of parameters are adjusted accordingly. These
changes directly influence the joint multimodal em-
beddings, affecting the model’s ability to handle
complex interactions between visual and textual
data. The ablation results suggest how adding
more layers in the VLE block impacts the depth
of the joint embedding, with improvements seen
in the IoU metrics. This indicates that a deeper
VLE block provides more capacity to encode mul-
timodal information.

Table 6: Ablation of VLE layer-count (N)

N Params Hidden Size IoU@0.5 IoU@0.75 IoU@0.95 mIoU

3 44M 512 0.5881 0.4602 0.1571 0.4278
7 79M 512 0.6411 0.5312 0.1808 0.4633

13 127M 768 0.6519 0.5392 0.1874 0.4678
17 189M 1024 0.6588 0.5418 0.1893 0.4702
23 227M 1024 0.6592 0.5447 0.1901 0.4709

5 Conclusion

We introduce GRIZAL, a novel framework de-
signed for zero-shot action localization. GRIZAL
can synthesize information from vision-language

embeddings and optical flow. This novel approach
is designed to recognize and interpret actions in
videos by using multimodal clues without being
exposed to the action labels during training. The
strategic integration of multimodal embeddings and
the tailored use of loss functions contribute to the
model’s exceptional performance.

6 Limitation and Future Work

Augmentation Bias and Mitigation. Due to
GRIZAL’s dependency on pre-trained generative
models, its performance and fairness may be chal-
lenging to quantify. This issue can be addressed
by creating more task-specific prompts to allow
highly controlled generation of augmentations. An-
other approach is to fine-tune pre-trained models
using low-rank adaptors to generate task-specific
augmentations. In the future, we will explore these
approaches to create a bias-free GRIZAL.

Additional Modalities. Currently, GRIZAL is lim-
ited to the vision-language modality. In future ver-
sions, we will adapt our model to other modalities,
such as audio, for sound localization.
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Appendix Section
S.1 F-Transformer

Recent research on learnable Fourier transform has
been applied in domains such as speech-language
modeling (Susladkar et al., 2023b), natural lan-
guage processing (NLP) (Lee-Thorp et al., 2021),
and scene-text understanding (Deshmukh et al.,
2024). Inspired by these advancements, we pro-
pose the F-Transformer block.

F-Transformer: The F-Transformer plays a cru-
cial role in fusing modalities. It synthesizes in-
formation from distinct modalities—RGB video
frames from the mainstream block, optical flow
from the OFE block, and the visual-textual em-
beddings from the VLE block to construct an inte-
grated and meaningful representation. It manipu-
lates the input feature vectors Zrgb, ZCLS , Zoptical

to enhance action localization performance. This
architecture facilitates cross-modality learning and
underscores the relevance of the action label within
the learned representations.

As shown in Fig. S.5, the feature vector Zrgb from
the mainstream block is first subjected to a Multi-
headed Self-Attention (MSA) mechanism. This
self-attention mechanism allows the model to cap-
ture relationships between different positions in
the sequence, enhancing its ability to understand
the temporal dynamics of the video. After resid-
ual connection and layer normalization, the output
is combined with the ZCLS vector from the VLE
Block through pointwise addition. This helps the

model by providing more context relevant to the
action label.

Following the integration of these vectors, the Fast
Fourier Transform (FFT) is applied to transform
the features into the frequency domain. This elu-
cidates the distribution of features across various
frequencies. Following FFT, an MLP layer cap-
tures distribution patterns within the frequency do-
main. This allows the model to emphasize impor-
tant properties while downplaying less important
ones. Subsequently, an inverse FFT (iFFT) opera-
tion is performed to map the features back to the
spatial domain.

The concluding MSA module in our novel F-
Transformer utilizes the optical flow feature
(Zoptical) as both key and value vectors, with the
preceding feature map serving as the query vec-
tor. This configuration enables the MSA to synthe-
size attention-pooled characteristics conditioned
reciprocally across modalities. In particular, the
optical flow features outline the action dynamics
in the video frames, highlighting areas of motion
and stillness. At the same time, the visual-textual
embeddings provide a visual and contextual com-
prehension of the action label, assisting in accu-
rately identifying frames where the action of in-
terest takes place. The features are then passed
through additional MSA and MLP layers, with
layer normalization (LNorm) applied after each
operation to stabilize the learning process. The fi-
nal output of the F-Transformer block is denoted
as Zft, which incorporates both the detailed spatial
features and the refined frequency domain features.
Doing so captures a comprehensive understanding
of the video’s content, both in terms of the global
context provided by the self-attention and the local,
detailed motion patterns highlighted by the opti-
cal flow. This multifaceted approach allows for a
more accurate and robust action localization within
videos.

S.2 Details of Experimental Platform

S.2.1 Datasets

1) The ActivityNet-v1.3 dataset (Caba Heilbron
et al., 2015), comprises 19,994 videos spanning
200 action classes. To adhere to the standard evalu-
ation protocol, we partitioned the videos into train-
ing, validation, and testing subsets, maintaining a
ratio of 2:1:1. 2) The THUMOS14 dataset (Idrees
et al., 2017) includes 200 validation videos and
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Figure S.5: F-Transformer

213 testing videos distributed across 20 action cat-
egories. Notably, THUMOS14 provides labeled
temporal boundaries and action classes for each
video. 3) The Charades-STA dataset (Gao et al.,
2017), consists of 6,672 videos and 16,128 seg-
ment/caption pairs. We utilized 12,408 pairs for
training purposes and 3,720 pairs for testing. Each
video in Charades-STA is annotated with an av-
erage of 2.4 segments, with an average segment
duration of 8.2 seconds.

S.2.2 Implementation Details

We leverage a multi-GPU distributed training setup
with Nvidia A100-40GB GPUs, employing a to-
tal of 16 devices. The chosen hyper-parameters
are tuned for optimal performance. The learning
rate is set to 5e-07. The training is conducted in
batches of 24 samples, while the evaluation utilizes
larger batches of 56 samples. The total batch size
for training is 2400, and for evaluation, it is 900.
The Adam optimizer, configured with betas=(0.9,
0.999) and epsilon=1e-08 is used. The learning
rate scheduler is linear, with a warm-up ratio of 0.1,
providing a gradual increase in learning rates dur-
ing the initial training epochs. The entire training
process spans three epochs, ensuring sufficient ex-
posure to the dataset while avoiding overfitting. For
the CLIP encoders, video frames underwent prepro-
cessing to achieve a spatial resolution of 224×224.
The maximum number of textual tokens was con-
strained to 77, aligning with the original CLIP de-
sign. Each video’s feature sequence, denoted as F ,
was rescaled to T = 100/256 snippets for Activ-
ityNet/THUMOS/Charades, leveraging linear in-
terpolation techniques to ensure consistency and
accuracy in the temporal domain.

Evaluation Metrics: Following (Nag et al., 2022),
we compare the results in two types of metrics: (1)
Recall at various intersection over union thresh-
olds (R@tIoU). It measures the percentage of pre-

dictions that have larger IoU than the thresholds
(we use threshold values of {0.5, 0.75, 0.95} for
Activitynet dataset, {0.3, 0.5, 0.7} for Thumos14
dataset and {0.5,0.7} for Charades-STA dataset.).
(2) Mean intersection over union (mIoU) is an av-
eraged temporal IoU between the predicted and the
ground-truth region.

Consistent hyperparameters were maintained
across all the evaluated networks for a fair com-
parison.

S.2.3 Visual Example of Generative Priors
As illustrated in Figure S.6, when a prompt is pro-
cessed through the GPT-4 and DALL-E APIs, it
generates multiple augmented, summarized tex-
tual descriptions and corresponding images. By
creating cross-modal representations that integrate
these summarized descriptions with generated im-
ages, we ensure stronger semantic consistency and
a deeper contextual understanding of the original
textual prompt. For instance, in Figure 2, without
a nuanced understanding of both the generated de-
scriptions and images, a system might struggle to
differentiate between deliberate speed control in
skiing and unintentional sliding in unrelated sce-
narios. However, with this contextual integration,
the system can accurately interpret detailed skiing
techniques, such as snow ploughing and parallel
turns, enabling it to recognize intentional speed
adjustments specific to skiing. This cross-modal
approach significantly enhances the model’s grasp
of complex, domain-specific concepts.

S.3 Additional Qualitative Results

Qualitative analysis, as shown in Fig. S.7, fur-
ther demonstrates the critical role of diversity in
mitigating over-complete and under-complete rep-
resentation issues in TAL. The results emphasize
the significance of leveraging diverse samples, as
demonstrated by GRIZAL, to enhance the model’s
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ChaptGPT Prmopt

Explain in simple way how any person can do this "<<action>>"
Explain this in  very neat manner. make four semantically similar sentences, each
sentence should have at most 30 words.

SENTENCE 1:
To perform this skiing action, start by positioning your skis parallel and leaning slightly
forward, using your poles for balance.

SENTENCE 2:
Keep your skis side by side, lean a bit ahead, and use your ski poles to maintain stability
while doing this ski move.

SENTENCE 3:
For this ski technique, ensure your skis are aligned, lean forward gently, and rely on your
poles for steady balance.

SENTENCE 4:
Execute this skiing maneuver by keeping your skis parallel, leaning forward modestly, and
using your ski poles for equilibrium.

action.

Sentences Generated By ChatGPT

DALL-E 2 Prmopt

Generate the images for the "<<action>>"

Images Generated By ChatGPT

IMAGE 1 IMAGE 2 IMAGE 3 IMAGE 4

action. Generate four images which are  
semantically similar , outoff four two images sholud be of high quality and two images 
of low quality, images should be photorealistic.

Figure S.6: Vision-Language Generative Priors

a person wearing a blue sweater
opens a coat  closet

A person in their bedroom is running
towards their cabinet.

The person opens the bag.
a person is throwing a pillow
towards the window.

G.T

STALE

Ours

Figure S.7: Qualitative Maps on ActivityNet Dataset showing Boundary Localization ability of GRIZAL and
STALE with respect to Ground Truth.

precision in localizing temporal action boundaries.
GRIZAL consistently exhibits more controlled lo-
calization of boundaries, effectively addressing
over-complete and under-complete representation
issues. In contrast, STALE suffers from over-
complete representation in all cases.
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