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Abstract

In this paper, we propose a new method to
enhance compositional understanding in pre-
trained vision and language models (VLMs)
without sacrificing performance in zero-shot
multi-modal tasks. Traditional fine-tuning ap-
proaches often improve compositional reason-
ing at the cost of degrading multi-modal capa-
bilities, primarily due to the use of global hard
negative (HN) loss, which contrasts global rep-
resentations of images and texts. This global
HN loss pushes HN texts that are highly simi-
lar to the original ones, damaging the model’s
multi-modal representations. To overcome
this limitation, we propose Fine-grained Se-
lective Calibrated CLIP (FSC-CLIP), which
integrates local hard negative loss and selec-
tive calibrated regularization. These innova-
tions provide fine-grained negative supervision
while preserving the model’s representational
integrity. Our extensive evaluations across di-
verse benchmarks for both compositionality
and multi-modal tasks show that FSC-CLIP not
only achieves compositionality on par with
state-of-the-art models but also retains strong
multi-modal capabilities. Code is available at:
https://github.com/ytaek-oh/fsc-clip.

1 Introduction

Humans naturally excel at multi-modal understand-
ing, effortlessly perceiving and interpreting dif-
ferent modalities, such as images and text, and
forming associations between them. This capabil-
ity is evident in recognizing novel concepts (Fu
et al., 2018), cross-modal retrieval (Kaur et al.,
2021), and compositional reasoning (Levesque
et al., 2012). To achieve this ability in artificial
intelligence, foundational vision and language mod-
els (VLMs) have been trained on large-scale image-
text datasets (Schuhmann et al., 2022b), signifi-
cantly bridging the gap between human and ma-
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Figure 1: A holistic comparison of fine-tuning meth-
ods for vision-language compositionality. Enhancing
compositionality often compromises multi-modal task
performance in previous approaches. Our FSC-CLIP
bridges this gap, minimizing these trade-offs. Full ex-
perimental results are provided in Tab. 1.

chine capabilities in tasks like zero-shot recogni-
tion and image-text retrieval (Radford et al., 2021).

Despite these advances, VLMs still face chal-
lenges in compositional reasoning (Yuksekgonul
et al., 2023). Humans intuitively understand com-
plex compositional language in combination with
images, engaging in spatial reasoning (Kamath
et al., 2023b), recognizing attributes and relation-
ships in objects (Hsieh et al., 2023), and perceiving
equivariance between image and text (Wang et al.,
2023). In contrast, VLMs often fail to understand
these nuanced relationships (Liu et al., 2023a; Ray
et al., 2023). This shortfall is attributed to their re-
liance on global, single vector representations (Ka-
math et al., 2023a) and limited ability to match
compositional knowledge (Wang et al., 2024).

To improve compositionality in VLMs, both pre-
training (Singh et al., 2023; Zheng et al., 2024) and
fine-tuning (Zhang et al., 2024; Singh et al., 2024)
methods have been proposed. In particular, fine-
tuning, which leverages pre-trained knowledge and
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is cost-effective, is widely adopted in academia.
Typically, this involves incorporating hard negative
texts (Doveh et al., 2022, 2023; Herzig et al., 2023)
into training. However, as shown in Fig. 1, this ap-
proach can result in a trade-off, where gains in com-
positionality come at the expense of performance in
the multi-modal tasks: zero-shot classification (ZS)
and image to text retrieval (I2T Ret). Previously,
hard negative (HN) losses are applied to global im-
age and text representations. Since HN texts are
encoded too similarly to the original ones (Kamath
et al., 2023a), pushing them away with the HN loss
can disrupt the multi-modal representations.

To address this, we propose a new fine-tuning
framework for VLMs that enhances composi-
tional reasoning while preserving performance in
multi-modal tasks. Our approach mitigates the
degradation caused by global hard negative loss on
single vector representations, which struggles to
capture subtle informational differences between
hard negative texts and the original text.

Our framework introduces two key innovations:
(1) Local Hard Negative (LHN) Loss. We utilize
dense alignments between image patches and text
tokens to calculate the hard negative loss. This ap-
proach, inspired by the dense alignment for vision-
language representation (Huang et al., 2021; Bica
et al., 2024), aggregates local similarity scores to
enhance compositional understanding without un-
dermining multi-modal representations.
(2) Selective Calibrated Regularization (SCR).
To address the adverse effects of hard negative
(HN) losses caused by similarly encoded HN and
original texts, SCR is designed to better regulate
HN supervision. It selectively focuses on challeng-
ing HN texts and applies a slight positive margin,
reducing confusion and improving calibration.

The whole framework, dubbed Fine-grained
Selective Calibrated CLIP, offers fine-grained su-
pervision of hard negatives while preserving the
integrity of multi-modal representations. As shown
in Fig. 1, FSC-CLIP not only improves composi-
tionality but also maintains high performance in
multi-modal tasks. It outperforms DAC-LLM in ZS
and I2T Ret scores, while achieving similar com-
positionality (Comp) across a wide range of tasks.
We summarize our contributions as follows:

• We propose a novel fine-tuning methodology,
FSC-CLIP, that aims to enhance vision-language
compositionality in pre-trained VLMs while main-
taining their multi-modal task capabilities.

• We design a local hard negative (LHN) loss and
a selective calibrated regularization (SCR) mech-
anism, effectively capturing subtle differences in
hard negative texts and preserving the integrity of
multi-modal representations.

• We validate FSC-CLIP through an extensive
range of experiments, covering 11 composition-
ality, 21 zero-shot recognition, and 3 image-text
retrieval tasks, establishing a comprehensive eval-
uation of VLMs’ multifaceted capabilities.

2 Related Work

Contrastive Vision-Language Models. CLIP
(Radford et al., 2021) has revolutionized multi-
modal domains through large-scale image-text pre-
training, demonstrating remarkable zero-shot ca-
pabilities. Its dual encoder architecture has intro-
duced versatility and driven advancements across a
wide range of existing vision (Zhou et al., 2022; Oh
et al., 2022; Cho et al., 2022) and vision-language
downstream tasks (Jang et al., 2022, 2023; Cho
et al., 2023a,c,b; Kim et al., 2019, 2021a,b). CLIP
also serves as the foundation for recognition (Liang
et al., 2023), image captioning (Mokady et al.,
2021; Lee et al., 2024; Kim et al., 2024a,b), large
multi-modal models (Li et al., 2023; Liu et al.,
2023b), and generative models (Podell et al., 2024).
In addition, CLIP extends its utility to connecting
3D (Sun et al., 2024) or audio (Elizalde et al., 2023;
Senocak et al., 2023) to language, highlighting its
essential role in multi-modal and compositional
tasks in practical applications. We aim to enhance
CLIP’s compositional understanding while preserv-
ing its multi-modal capabilities.
Vision-Language Compositionality. Although
vision and language models exhibit promising ca-
pabilities such as zero-shot classification and re-
trieval (Radford et al., 2021; Zeng et al., 2022), they
still struggle with compositional reasoning, which
requires fine-grained understanding between image
and text (Peng et al., 2024). Numerous benchmarks
have been proposed, testing various aspects like
attributes, relationships and objects (Zhao et al.,
2022; Yuksekgonul et al., 2023), spatial reason-
ing (Kamath et al., 2023b; Liu et al., 2023a) and
linguistic phenomena (Parcalabescu et al., 2022).
To enhance compositionality, incorporating hard
negative captions during fine-tuning has become
a common approach (Zhang et al., 2024), with
these captions being generated through rule-based
methods (Doveh et al., 2022; Yuksekgonul et al.,
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Figure 2: A complete FSC-CLIP framework that incorporates Local Hard Negative (LHN) Loss with Selective
Calibrated Regularization (SCR), alongside a global HN loss. The LHN loss measures similarity between an image
and a text at the patch and token levels to more accurately identify subtle differences between original and HN texts.
SCR combines focal loss with label smoothing to mitigate the adverse effects of using hard negative losses.

2023), large language model prompting (Doveh
et al., 2023), or scene graphs (Singh et al., 2023;
Herzig et al., 2023). We comprehensively evaluate
the capabilities of VLMs across a broad range of
compositionality and multi-modal tasks.

3 Methodology

We first outline the fine-tuning setup for CLIP
in Sec. 3.1. Next, we introduce FSC-CLIP, which
incorporates Local Hard Negative (LHN) Loss
and Selective Calibrated Regularization (SCR)
in Secs. 3.2 and 3.3. The training objective for
FSC-CLIP is described in Sec. 3.4. The complete
FSC-CLIP framework, integrating both global and
local HN losses with SCR, is illustrated in Fig. 2.

3.1 CLIP with Global Contrastive Loss

CLIP objective. Consider a mini-batch B =
{(Ii, Ti)}Bi=1 of size B, consisting of image and
text pairs (Ii, Ti). Using CLIP’s visual and lan-
guage encoders, fv(·) (e.g., ViT (Dosovitskiy et al.,
2021)) and ft(·) (e.g., Transformers (Vaswani et al.,
2017)), each image Ii is encoded into a sequence
of visual tokens Vi = fv(Ii), and each text Ti into
a sequence of textual tokens Ti = ft(Ti). These
sequences are represented in a shared multi-modal
space, with Vi = {vp,i}Pp=1 comprising P patch
embeddings and Ti = {tw,i}Ww=1 consisting of W
token embeddings. The global representations of
image and text vi and ti ∈ Rd can be obtained by
pooling the local representations: vi = Pool (Vi)
and ti = Pool (Ti), respectively. For example,
Pool(·) corresponds to avgpool and argmax for
images and texts in Radford et al. (2021).

CLIP aligns the corresponding images and texts
by measuring the global-level similarity:

Sg (Ii, Ti) = exp (cos (vi, ti) /τ) , (1)

where cos (v, t) = vT t
∥v∥·∥t∥ . The image to text loss

Li2t of CLIP maximizes Sg (Ii, Ti), while minimiz-
ing Sg (Ii, Tj) for all non-matching texts j ̸= i:

Li2t = − 1

B

B∑

i=1

log
Sg (Ii, Ti)∑B
j=1 Sg (Ii, Tj)

, (2)

and the text to image loss Lt2i is the reciprocal of
Li2t which aligns the matching image per text. The
final CLIP loss is Lclip = 1

2 (Li2t + Lt2i).
Incorporating hard negative texts. To enhance
the compositional reasoning of CLIP, hard nega-
tive (HN) texts are commonly incorporated into
training, whether they are rule-based (Yuksek-
gonul et al., 2023) or generated by language mod-
els (Doveh et al., 2023). Consider a set of K dif-
ferent HN texts T̃i = {T̃ k

i }Kk=1 originated from Ti.
We introduce a separate hard negative loss added to
Lclip, similar to Doveh et al. (2022). First, we com-
pute a similarity prediction probability pgi , assigned
to the original caption Ti as follows:

pgi =
Sg (Ii, Ti)

Sg (Ii, Ti) +
∑K

k=1 Sg

(
Ii, T̃ k

i

) . (3)

Here, g represents the global representation, and
the hard negative (HN) loss applied to this similar-
ity assignment is formulated as cross entropy:

Lg
neg = − 1

B

B∑

i=1

log pgi . (4)
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However, incorporating such global HN loss can
inadvertently harm the multi-modal representations
due to the similarly encoded global text representa-
tions between original and HN texts.

3.2 Local Hard Negative (LHN) Loss
To address this, we propose a novel Local Hard
Negative (LHN) loss that utilizes a local similarity
score Sl(I, T ). Replacing the global similarity Sg
with Sl, the LHN loss is formulated as follows:

Ll
neg =

−1

B

B∑

i=1

log
Sl (Ii, Ti)

Sl (Ii, Ti) +
K∑

k=1

Sl

(
Ii, T̃

k
i

)

︸ ︷︷ ︸
pli

,

(5)
where pli represents the local similarity prediction.

Unlike Bica et al. (2024), which uses token-level
contrast for image-text pairs, we introduce a new
HN loss based on local similarity Sl from token-
patch representations, enabling the capture of sub-
tle differences between the original and HN texts.
Textual-aligned Visual Patches. Sl(I, T ) is de-
signed to measure the similarity between token and
patch embeddings for each token in the given text
T . From the patch representations V = {vp}Pp=1,
we first derive the textual-aligned patch embed-
dings V̂ = {v̂w}Ww=1, corresponding to each textual
token feature tw in T ∈ RW×d. This is achieved
by performing a weighted average of patches V
using attention weights a ∈ RW×P derived from
normalizing the similarity map s between token
and patch embeddings. We denote the similarity
map as s = TTV ∈ RW×P , where sw,p = tTwvp.

To relate multiple similar patches for each token,
we min-max normalize s to obtain a:

aw,p =
sw,p −mink sw,k

maxk sw,k −mink sw,k
, (6)

and use the attention weights a to aggregate V, ob-
taining the textual-aligned patches V̂ = {v̂w}Ww=1:

v̂w =
1

∑P
p=1 aw,p

·
P∑

p=1

aw,p · vp. (7)

In Appendix B.1, we explore different normaliza-
tion choices for the attention weights in Eq. (6).
Token-level Similarity. After obtaining the textual-
aligned visual tokens V̂, we aggregate the per-token
similarities between V̂ and T as follows:

Sl (I, T ) =
W∑

w=1

exp (cos (v̂w, tw) /τ) , (8)
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Figure 3: A conceptual illustration of the confidence-
based weighting mechanism in HN loss. It reduces the
adverse impact of HN supervision by lowering the signal
from confident predictions while selectively focusing on
challenging ones, crucial for learning compositionality.

where v̂w ∈ V̂ and tw ∈ T. Unlike Sg(I, T ) which
is based on global representations, Sl(I, T ) focuses
on the local alignment between image and text,
better distinguishing features between correct and
HN texts, thereby reducing the negative impact by
the hard negative loss, as illustrated in Fig. 2.

We observe that Ll
neg maintains multi-modal

task performance close to the pre-trained represen-
tations while significantly enhancing composition-
ality. Notably, the order of aggregation, whether
pooling first and then computing similarity (e.g.,
Sg), or computing token-level similarity before ag-
gregation (e.g., Sl), proves to be important.

3.3 Selective Calibrated Regularization (SCR)

Since hard negative (HN) texts are often encoded
similarly to the original texts, HN losses can disrupt
multi-modal representations. To counter this, we
propose Selective Calibrated Regularization (SCR)
to better regulate HN supervision, seamlessly ap-
plicable to both global and local HN losses.

SCR has two components: one modulates the
supervision signal based on image-text similarity,
while the other adjusts label assignments to cal-
ibrate the positiveness of HN texts. As shown
in Tab. 2, we confirm that both components are
crucial for preserving the representation integrity.
Focal Loss to Target Challenging HN Texts. To
mitigate the negative impact of supervising HN
texts, we reduce the supervision signal for confi-
dent similarity predictions to the original text. In-
stead, we focus more on challenging HN texts that
exhibit higher similarity to the image and may be
confused with the original texts. This confidence-
based weighting aligns with the concept of focal
loss (Lin et al., 2017), as shown in Fig. 3.
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Formally, let the similarity prediction for the
i-th batch item, including K generated HN texts,
be represented as a vector pi ∈ R1+K , where the
first element corresponds to the original text. The
HN loss can be re-formulated in a vector represen-
tation with pi as CE(pi, yi) =

∑K
k=0 li,k, where

li,k = −yi,k log pi,k and yi = 1[k=0] ∈ R1+K in-
dicates the assignment label between an image and
all texts. To reduce the negative impact of the con-
fident image-text similarity predictions, we apply
confidence-based weighting to CE loss as follows:

Focal (pi, yi) =
K∑

k=0

(1− pi,k)
γ li,k, (9)

where γ is the modulation parameter. This strat-
egy prioritizes challenging image-text associations,
essential for learning compositionality, while effec-
tively preventing degradation from the HN loss.
Label Smoothing to Calibrate the Positiveness
of HN Texts. Although hard negative (HN) texts
share similar representations with the original text,
previous methods have overlooked their potential
positiveness in the HN loss design, assigning a
strict value of 0 to all HN texts in the label vector
yi. Similar to the motivation in Zhang et al. (2024),
but differing from their ranking loss approach, we
acknowledge the potential correctness of HN texts
by assigning a slight positive margin rather than
categorizing them as entirely negative.

To this end, we apply label smoothing (Guo et al.,
2017) to the label vector yi using a smoothing pa-
rameter β to ensure a positive margin for HN texts:

ỹi,k = (1− β) · yi,k +
β

1 +K
, (10)

where ỹi provides a non-binary label for the HN
losses. It helps preserve the model’s representa-
tions during training with HN losses.

3.4 Overall Training Objective
Our FSC-CLIP incorporates two hard negative (HN)
losses, Lg

neg and Ll
neg, representing global and lo-

cal HN losses respectively, into CLIP loss Lclip:

Ltotal = Lclip + λgLg
neg + λlLl

neg, (11)

where λg and λl are the weighting factors for the
respective losses. Selective Calibrated Regulariza-
tion (SCR) is applied to both losses, incorporating
label smoothing and focal loss. The global HN
loss, Lg

neg is computed as Focal (pg, ỹ), while the
LHN loss, Ll

neg is derived similarly, by replacing
pg with pl for the local representations.

4 Experiments

Training Datasets. We consider three image-text
datasets for fine-tuning: COCO captions (Chen
et al., 2015), CC-3M (Sharma et al., 2018), and
LAION-COCO (Schuhmann et al., 2022a). For
COCO captions, we utilize 100K examples pre-
processed by Yuksekgonul et al. (2023). As pointed
out by Singh et al. (2023), COCO shares data with
several evaluation benchmarks (e.g., SugarCrepe
and retrieval tasks), which may inadvertently af-
fect the results. To ensure a broader evaluation
and avoid such overlap, we additionally consider
CC-3M and LAION-COCO for fine-tuning. For
each dataset, we randomly sample 100K examples
and, instead of using raw captions, we utilize syn-
thetic captions paired with images. Specifically,
for CC-3M, we generate captions using CoCa (Yu
et al., 2022) with ViT-L/14, while for LAION-
COCO, we use captions generated by BLIP (Li
et al., 2022b) with ViT-L/14, applied to the LAION-
2B dataset (Schuhmann et al., 2022b).
Hard Negative (HN) Texts. We employ simple
rule-based methods for generating hard negative
(HN) texts, avoiding the need for external language
models like Le Scao et al. (2023) used in Doveh
et al. (2023). For each original caption, we apply
three distinct operations: negclip, replace, and
bi-gram shuffle. These operations are applied at
every training step, ensuring variation in HN texts
across iterations. As a result, each batch item is
paired with an image and four captions, as illus-
trated in Fig. 2. Further details and examples on
these operations are provided in Appendix A.1.
Training Setup. Consistent with previous meth-
ods (Yuksekgonul et al., 2023; Singh et al., 2023;
Zhang et al., 2024), we trained our models during 5
epochs with batch size 256, using OpenCLIP repos-
itory (Ilharco et al., 2021). The learning rate is set
to 5e-6 and decayed by a cosine schedule, with a
warmup of 50 steps. Models are optimized using
AdamW with a weight decay of 0.1. We use a sin-
gle Quadro RTX 8000 GPU with 48GB memory
for training. Images are re-scaled to 224, and the
context length is 77 for texts. We set the weighting
factors λg = 0.5 and λl = 0.2. For SCR, we set
γ = 2.0 and β = 0.02 for focal loss and label
smoothing, respectively. We also experiment with
LoRA (Hu et al., 2022), which preserves the origi-
nal model parameters. Consistent with Doveh et al.
(2022, 2023), we set the rank to 4. Training our
model takes less than one hour for 100K samples.
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CLIP (ViT-B/32) 57.5 23.8 26.5 21.7 73.1 84.1 67.5 70.8 41.5 8.8 31.9 46.1 57.1 60.0 45.8

Fine-tuned: MS-COCO, 100K Samples
NegCLIP1 80.9 30.3 30.3 26.4 83.7 90.8 73.7 74.9 42.9 8.0 34.6 52.4 55.9 66.8 58.4
CE-CLIP2 76.3 34.7 26.8 24.5 85.7 90.1 76.7 76.9 41.7 5.2 33.0 52.0 49.9 59.2 57.4
GNM-CLIP3 57.1 17.4 28.3 25.0 78.7 89.2 71.1 70.6 42.1 10.2 33.1 47.5 56.3 66.1 55.5
MosaiCLIP†,4 82.6 - - - - 90.7 - 76.8 - - - - - - -

NegCLIP‡ 85.0 34.7 29.8 26.2 84.5 90.6 74.7 75.4 41.2 8.2 34.2 53.1 55.1 66.1 57.9
FSC-CLIP (Ours) 85.1 42.2 29.8 26.3 85.1 90.9 75.3 76.7 40.6 9.5 34.2 54.2 55.7 66.3 58.3
FSC-CLIP (Ours) ✓ 85.2 42.9 29.7 26.5 82.1 90.4 75.0 77.2 41.7 6.0 33.2 53.6 55.6 65.3 57.2

Fine-tuned: Conceptual Captions - 3M (CC-3M), 3M Samples
TSVLC5 (RB) ✓ 83.5 36.1 27.4 24.0 76.9 89.8 69.3 77.5 40.9 6.8 31.6 51.2 54.9 54.9 52.1
TSVLC5 (RB+LLM) ✓ 82.7 33.1 27.6 24.6 73.2 89.7 72.2 79.2 39.9 5.8 31.4 50.9 55.4 55.1 52.3
DAC-LLM6 ✓ 86.4 60.6 25.6 22.8 85.3 88.9 70.5 83.5 42.6 4.8 30.8 54.7 51.1 36.9 52.4
DAC-SAM6 ✓ 83.3 63.7 25.3 24.3 83.8 88.5 70.2 84.7 42.4 8.5 29.9 55.0 51.9 41.1 49.0
MosaiCLIP†,4 80.4 - - - - - - 77.3 - - - - 53.5 - -

Fine-tuned: Conceptual Captions – 3M (CC-3M), 100K Samples
NegCLIP‡ 86.5 50.5 25.8 24.6 83.4 88.6 72.4 79.0 43.2 7.0 32.8 54.0 52.6 51.8 54.1
FSC-CLIP (Ours) 78.8 44.0 28.5 25.2 84.3 88.2 74.9 77.4 42.6 6.8 34.2 53.2 53.5 55.8 54.6
FSC-CLIP (Ours) ✓ 84.4 50.6 27.7 24.5 82.3 88.8 74.5 80.3 42.1 5.0 32.2 53.9 53.6 56.1 54.0

Fine-tuned: LAION-COCO, 600M Samples
CLoVe7 83.0 41.7 26.9 25.3 84.6 87.9 71.8 66.6 41.8 6.5 31.7 51.6 51.0 53.1 56.0

Fine-tuned: LAION-COCO, 100K Samples
NegCLIP‡ 86.4 48.7 27.2 25.3 80.9 89.6 70.9 76.0 43.0 7.8 32.3 53.5 54.1 52.3 54.1
FSC-CLIP (Ours) 82.8 46.8 29.1 24.7 82.6 90.1 73.6 75.7 42.4 6.8 33.4 53.5 55.3 58.2 55.5
FSC-CLIP (Ours) ✓ 85.5 54.4 29.1 24.9 80.6 89.7 72.6 78.4 42.8 5.8 32.5 54.2 55.9 57.3 54.3
†Numbers taken from the original paper. ‡Our implementation, without additional image batch.
References: 1(Yuksekgonul et al., 2023) 2(Zhang et al., 2024) 3(Sahin et al., 2024) 4(Singh et al., 2023) 5,6(Doveh et al., 2022, 2023) 7(Castro et al., 2024)

Table 1: A holistic comparison of fine-tuning methods applied to the pre-trained CLIP ViT-B/32 model across 11
compositionality, 21 zero-shot classification, and 3 retrieval tasks, including their meta averages: Comp, ZS, and
I2T/T2I Ret. FSC-CLIP achieves superior compositionality scores while maintaining strong multi-modal task
performances. For each fine-tuning dataset, the best numbers are bold, and the second-best numbers are underlined.

Evaluation Setup. We utilize an extensive range
of benchmarks for a comprehensive evaluation, ex-
ceeding the scope of previous works. Full details
including references are provided in Appendix A.2.

For compositionality, we employ 11 bench-
marks in total: ARO, CREPE-Productivity, EqBen,
ImageCoDe, SPEC, SugarCrepe, SVO Probes,
VALSE, VL-Checklist, WhatsUp, and Winoground,
testing different facets of compositional reasoning.
For multi-modal tasks, we evaluate 21 zero-shot
classification tasks using ELEVATER toolkit. In ad-
dition, we conduct image-text retrieval evaluations
on COCO, Flickr30k, and COCO-Counterfactuals.
All those evaluations are performed using the
vl-compo package (Oh et al., 2024).

We report a single aggregated number, which is
the average of sub-tasks for each compositional-
ity benchmark. We also provide the meta-average
across all compositionality benchmarks (Comp), the
average performance over 21 zero-shot classifica-
tion tasks (ZS), and the average Recall@1 for three

image to text (I2T Ret) and text to image (T2I
Ret) retrieval tasks, as shown in Tab. 1. For a fair
comparison, we consistently run evaluations for all
the previous models across all the benchmarks.

4.1 Main Results
We compare our FSC-CLIP to previous fine-tuning
methods for compositionality. We report both com-
positionality and multi-modal task performance as
shown in Tab. 1. In Fig. 4, we visualize the trade-
off trajectory between Comp and ZS through the
robust fine-tuning method (Wortsman et al., 2022).
Compositionality while Sacrificing Multi-Modal
Tasks. We introduce our baseline, NegCLIP‡, serv-
ing as a direct comparison to our FSC-CLIP. Unlike
the original implementation of NegCLIP (Yuksek-
gonul et al., 2023), we utilize an online version of
hard negatives generation (e.g., negclip) and omit
the use of additional similar image batches. This
baseline will be further used in our ablation study,
with the symbol ‡ omitted for convenience.
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Figure 4: Fine-tuning trajectories between composi-
tionality (Comp) and zero-shot classification (ZS) via ro-
bust fine-tuning method (Wortsman et al., 2022). Each
point represents the interpolated model between the pre-
trained and each fine-tuned version, at varying ratios.
FSC-CLIP offers better trade-offs between Comp and ZS,
maintaining ZS scores in the fully fine-tuned model.

As shown in Tab. 1, we first compare our
FSC-CLIP with previous models fine-tuned on
COCO, aligning our results with those in the lit-
erature. CE-CLIP2 shows a significant drop in ZS
score to 49.9. Meanwhile, GNM-CLIP3 maintains
a ZS score close to that of the pre-trained model, but
shows only a modest increase in Comp. In contrast,
our model achieves superior Comp scores while
maintaining competitive ZS and retrieval perfor-
mance. As note, we have grayed out the retrieval
scores of models fine-tuned on COCO to account
for the influence of overlapping data.

When fine-tuned on datasets other than COCO,
such as CC-3M and LAION-COCO, all baseline
models show improvements in the Comp score, but
this comes at the expense of their ZS and I2T Ret
scores compared to the pre-trained CLIP. For ex-
ample, NegCLIP‡ demonstrates promising Comp
scores compared to methods like TSVLC5 and
CLoVe7, but still shows weaker ZS and I2T Ret
scores relative to the pre-trained model. Similarly,
DAC-LLM6, despite having the strongest Comp
score supported by LLM-augmented captions, suf-
fers notable declines in both ZS and I2T Ret, de-
creasing by 6.0 and 23.1 points, respectively. Al-
though TSVLC5 preserves these scores better than
other models, its Comp score improvements are rel-
atively smaller. These methods apply hard negative
(HN) loss to global-level representations, poten-
tially causing the observed performance drops.

Preserving Multi-Modal Tasks. FSC-CLIP stands
out by achieving higher Comp scores than previous

id Lg
neg Ll

neg Focal LS Comp ZS I2T Ret T2I Ret

1 ✓ - - - 54.0 53.6 47.4 53.7
2 - ✓ - - 51.7 55.7 61.6 54.5
3 ✓ ✓ - - 54.4 52.6 46.9 53.8

4 ✓ ✓ ✓ - 54.2 54.2 53.1 54.8
5 ✓ ✓ - ✓ 53.9 53.8 51.7 54.9
6 ✓ ✓ ✓ ✓ 53.5 55.3 58.2 55.5

7 ✓ - ✓ ✓ 52.8 55.3 57.1 55.6
8 - ✓ ✓ ✓ 50.2 55.9 63.2 55.1

Table 2: Impact by individual component. The local
HN loss preserves multi-modal task performance. In
addition, focal loss and label smoothing (LS) in SCR
complement each other, improving the decreased multi-
modal task performance caused by the HN losses.

models, comparable to DAC-LLM, while main-
taining strong performance in multi-modal tasks.
As shown in Fig. 1, when fine-tuned on a 100K
subset of LAION-COCO, our model achieves a
Comp score of 53.5, significantly surpassing its pre-
trained counterpart, and a ZS score of 55.9, nearly
matching the pre-trained CLIP. Additionally, it at-
tains an I2T Ret score of 58.2, the highest among
models not fine-tuned on COCO. Further improve-
ments are observed with using LoRA (Hu et al.,
2022) for fine-tuning, which boosts the Comp score
to 54.2 while maintaining the ZS score. Similar
trends are evident when we fine-tune FSC-CLIP on
a 100K subset of CC3M. Remarkably, these results
are achieved by our innovative Local HN loss and
Selective Calibrated Regularization (SCR) design.
We further analyze these contributions in Sec. 4.2.
Robust Fine-tuning on Compositionality and
Zero-shot Tasks. As depicted in Fig. 4, we uti-
lize the weight-space ensembling technique, WiSE-
FT (Wortsman et al., 2022), to compare different
fine-tuning methods and their trajectories, specifi-
cally in terms of Comp and ZS scores using LAION-
COCO for fine-tuning our model. We create inter-
mediate models by interpolating between each fine-
tuned model and the pre-trained one. The blending
ratio increases from 0.0 (e.g., pre-trained) to 1.0
(e.g., fully fine-tuned), in increments of 0.1.

FSC-CLIP with LoRA attains a ZS score of 58
at the intermediate, surpassing the scores of other
models, while improving Comp to 50. When fully
fine-tuned, it attains superior Comp score and offers
better trade-offs than CLoVe and CE-CLIP, with-
out significant loss in ZS. In contrast, DAC-LLM
sees a significant drop in ZS, gaining only 0.5 point
in Comp, as highlighted by the red marker. Mean-
while, FSC-CLIP not only matches but exceeds the
ZS score by 4.9 in the fully fine-tuned model.
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id λl Comp ZS I2T Ret T2I Ret

1 - 52.9 55.8 57.5 55.5

2 0.1 53.0 55.7 57.4 55.4
3 0.2 53.5 55.3 58.2 55.5
4 0.5 53.5 55.7 57.3 55.4

(a) Sensitivity to the weighting factor λl

of the local HN loss.

id γ Comp ZS I2T Ret T2I Ret

1 - 53.9 53.8 51.7 54.9

2 1.0 53.4 54.9 54.7 55.1
3 2.0 53.5 55.3 58.2 55.5
4 5.0 52.3 55.6 60.2 55.5

(b) Sensitivity to the modulation factor γ
of focal loss.

id β Comp ZS I2T Ret T2I Ret

1 - 54.2 54.2 53.1 54.8

2 0.02 53.5 55.3 58.2 55.5
3 0.05 53.1 55.2 59.0 55.1
4 0.10 52.3 55.2 58.7 55.3

(c) Sensitivity to the label smoothing fac-
tor β.

Table 3: Sensitivity analysis of each component in our FSC-CLIP framework. (a): With the global HN loss applied,
applying the local HN loss benefits the compositionality while preserving the multi-modal task scores. (b) and
(c): Both focal loss and label smoothing, the two components of our Selective Calibrated Regularization (SCR),
mutually enhance multi-modal task performance but may compromise compositionality when applied too strongly.
We highlight the cells corresponding to our design choices in the final FSC-CLIP model.

CLIP1 LoRA Comp ZS I2T Ret T2I Ret

ViT-B/16 46.2 60.3 62.9 49.0

+ NegCLIP 54.1 55.9 53.8 58.1
+ FSC-CLIP 54.1 57.0 59.7 59.3
+ FSC-CLIP ✓ 54.6 57.4 59.9 58.8
1Pre-trained: 400M OpenAI, Fine-tuned: LAION-COCO 100K subset.

Table 4: Fine-tuning results of CLIP with a ViT-B/16
encoder, pre-trained on 400M samples of OpenAI data.

CLIP2 LoRA Comp ZS I2T Ret T2I Ret

ViT-B/32 44.3 63.0 63.8 51.2

+ NegCLIP 53.5 59.2 52.1 52.3
+ FSC-CLIP 52.9 61.1 56.8 53.8
+ FSC-CLIP ✓ 54.0 60.7 56.8 53.1
2Pre-trained: DataComp-XL, Fine-tuned: LAION-COCO 100K subset.

Table 5: Fine-tuning results of CLIP with a ViT-B/32
encoder, pre-trained on 12.8B DataComp-XL.

4.2 Analysis

We further present an in-depth analysis on our
FSC-CLIP, fine-tuned on LAION-COCO:
Impact of Individual Components. From Tab. 2,
we observe that applying the local HN loss alone
(row 2) surprisingly preserves the multi-modal
scores. However, when both global and local HN
losses are activated (row 3), Comp is further boosted
but at the cost of ZS and I2T Ret scores, likely due
to the complicated adverse effects of the losses.
The proposed SCR effectively addresses this degra-
dation. Both focal loss (row 4) and label smoothing
(row 5) are effective and, when combined, comple-
mentarily boost all the ZS, I2T Ret, and T2I Ret
scores. Notably, I2T Ret increases by 11.3 (rows
3 to 6) with only a relatively mild drop in Comp. We
also note that comparing rows 7 and 8 with rows 1
and 2, SCR significantly boosts multi-modal task
scores. Furthermore, as shown in row 6, applying
both global and local HN losses is essential for
achieving better Comp and I2T Ret scores.
Sensitivity Analysis. We explore the impact of in-
dividually varying each component’s parameters in
the final model, as detailed in Tab. 3. From Tab. 3a,
we find that increasing the local HN loss parameter
λl improves Comp score while preserving multi-
modal task scores. Tab. 3b shows that increasing
the modulation parameter γ boosts multi-modal
tasks; however, beyond a certain point, we find
that compositionality declines, as weakening the

learning signal from HN texts. Similarly, Tab. 3c
indicates that label smoothing benefits multi-modal
tasks, particularly I2T Ret. Yet, assigning too
much positive margin with β to negative samples
can impede the learning of compositionality.
Fine-tuning CLIP with ViT-B/16. We also fine-
tuned CLIP with a ViT-B/16 encoder from OpenAI
for comparison, as detailed in Tab. 4. This model
uses more image patches in training, showing better
multi-modal capabilities. However, no gains are
observed in Comp compared to the ViT-B/32 model
from Tab. 1. After fine-tuning, NegCLIP decreases
ZS and I2T Ret scores. In contrast, FSC-CLIP
maintains its Comp score and significantly enhances
multi-modal task performances. We also find that
fine-tuning with LoRA yields improved ZS and I2T
Ret scores, along with a higher Comp score.
Scaling Pre-training Data for Fine-tuning. We
explore the effect of large-scale pre-training data
when fine-tuned. From Tab. 5, we fine-tuned a
CLIP model with a ViT-B/32 encoder, pre-trained
on 12.8B DataComp-XL dataset (Gadre et al.,
2023), far exceeding the 400M samples from Ope-
nAI (Radford et al., 2021). Despite the larger scale
pre-training yielding a promising ZS score of 63.0,
we find no improvement in compositionality com-
pared to OpenAI’s CLIP. For fine-tuning, NegCLIP
results in a notable drop in multi-modal task per-
formance. In contrast, FSC-CLIP with LoRA not
only counters this degradation but also achieves a
higher Comp score than NegCLIP.
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Image-Text Pair Pre-trained CLIP DAC-LLM FSC-CLIP (Ours)

Top-1: Two bowls of oranges 
are sitting on a metal surface.

Top-2: A glass bowl filled with 
oranges on a table.

Top-3: ❎ A table with some 
oranges and some cups.

❎ A table with some oranges 
and some cups.

some oranges that are sitting 
on some wood

A glass bowl filled with 
oranges on a table.

✅ A table with some oranges 
and some apples.

❎ A table with some oranges 
and some cups.

A glass bowl filled with 
oranges on a table.

Top-1: ❎ A man bending over 
a cake with a lot of candles.

Top-2: ✅ A man bending over 
a table with a lot of candles.

Top-3: A man presents a cake 
with lit candles on it to a 
seated man.

a person holding a small cake 
with candles

A person that is putting 
candles on a cake.

A man blowing out candles 
on a cake

✅ A man bending over a 
table with a lot of candles.

❎ A man bending over a 
cake with a lot of candles.

A man is being handed a 
birthday cake with lit candles.

GT: ✅ A table with some 
oranges and some apples.

GT: ✅ A man bending over 
a table with a lot of candles.

Figure 5: Image to text retrieval examples on COCO-CF dataset. CLIP and DAC-LLM often rank negative captions
(marked with red crossmarks) as top-1, while FSC-CLIP consistently retrieves the correct caption (marked with green
checkmarks), demonstrating superior fine-grained understanding and retrieval accuracy in challenging conditions.

Qualitative Counterfactual Image to Text Re-
trieval Results. In Fig. 5, we compare image to
text retrieval results on the COCO-Counterfactuals
(COCO-CF) (Le et al., 2023) dataset for three
models: pre-trained CLIP (Radford et al., 2021),
DAC-LLM (Doveh et al., 2023), and our proposed
FSC-CLIP. The figure displays the top-3 retrieved
captions for each image, with correct captions indi-
cated by green checkmarks and incorrect ones by
red crossmarks. We observe that CLIP and DAC-
LLM often fail to retrieve the correct caption asso-
ciated with the image, ranking a negative caption
as top-1. In contrast, our FSC-CLIP consistently re-
trieves the correct caption as top-1, demonstrating
superior retrieval capabilities along with a stronger
fine-grained compositional understanding, even in
the presence of hard negative captions.

5 Conclusion

In this paper, we introduce Fine-grained Selective
Calibrated CLIP (FSC-CLIP), a new fine-tuning
framework for vision-language compositionality.
It aims to preserve multi-modal capabilities and ad-
dress the limitations of existing methods relying on
global representations. We achieve this by employ-
ing dense representations between images and texts
and regularizing the hard negative losses to prevent
degradation, thereby facilitating the introduction of
Local Hard Negative Loss and Selective Calibrated
Regularization. Our extensive validation shows
improved compositional reasoning and promising
performance in standard multi-modal tasks.

Limitations. Our methodology, including all the
prior approaches, relies on short captions for both
training and evaluation benchmarks. This prac-
tice constrains the models’ exposure to and under-
standing of longer contexts, which are essential
for achieving a genuine vision-language composi-
tional understanding. Longer and detailed captions
involve more complex associations and contextual
nuances (Onoe et al., 2024; Garg et al., 2024) that
are essential for advanced compositionality in vi-
sion and language models. Moving forward, there
is a compelling need within the community to de-
velop training and evaluation protocols that incor-
porate longer captions, better addressing the chal-
lenges of compositionality.
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A Additional Details

A.1 Rule-based Hard Negative Texts
We provide details in generating hard negative
texts in our model. We employ three types of
rule-based methods: negclip (Yuksekgonul et al.,
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Figure 6: Example results of rule-based hard negative texts used for training our model. Image-text pairs were
randomly sampled from LAION-COCO (Schuhmann et al., 2022a). For negclip (Yuksekgonul et al., 2023) and
replace (Hsieh et al., 2023), differences from the original captions are highlighted in red.

2023), replace (Hsieh et al., 2023), and bi-gram
shuffle. Each method is implemented in an on-
line version and applied to the original text at ev-
ery training step, resulting in total of four texts
including the original caption for every batch as
illustrated in Fig. 2. In the online augmentation
process, some captions do not yield a hard negative
counterpart; these are masked out and excluded
from the hard negative loss calculation.

The negclip method rearranges words within
captions by swapping similar phrase types such as
nouns, verbs, or adjectives within the text.

The replace method generates hard negative
texts by replacing specific elements in the caption:
entities, relations, or attributes, using antonyms or
co-hyponyms from WordNet (Fellbaum, 2010).

The bi-gram shuffle rearranges text by shuf-
fling bi-grams (e.g., pairs of adjacent words),
within a sentence. It varies the sentence structure,
ensuring the generated texts serve as challenging
negatives to the original.

All the augmentation methods above utilize the
SpaCy (Honnibal and Montani, 2017) package.
We implemented bi-gram shuffle, while for
negclip and replace, we adopted the implemen-
tations from CLoVe (Castro et al., 2024). For il-
lustrative purposes, we provide examples of each
method applied to image-caption pairs, in Fig. 6.

A.2 Details on Evaluation Benchmark

Compositionality. VLMs are presented with either
an image or text query and must identify the correct
match from a set of candidates, which includes
subtly altered incorrect options of texts and images.
If there are two candidates, including the original,
the random chance accuracy becomes 0.5.

Benchmarks are grouped into three categories
based on the query modality. Tab. 6 provides a list
of benchmarks for each category, along with the
corresponding dataset licenses.
(1) Image-to-Text, where the objective is to
choose the correct textual description for a pre-
sented image: ARO (Yuksekgonul et al., 2023),
CREPE-Productivity (Ma et al., 2023), Sugar-
Crepe (Hsieh et al., 2023), VALSE (Parcalabescu
et al., 2022), VL-Checklist (Zhao et al., 2022), and
WhatsUp (Kamath et al., 2023b).
(2) Text-to-Image, which requires the selection
of the correct image that matches a given text
query: ImageCoDE (Krojer et al., 2022) and SVO
Probes (Hendricks and Nematzadeh, 2021).
(3) Group, which involves two counterfactual
image-text pairs, the challenge is to match each im-
age with its corresponding text and the vice versa:
Winoground (Thrush et al., 2022), EqBen (Wang
et al., 2023), and SPEC (Peng et al., 2024).

For the Image-to-Text and Text-to-Image
tasks, top-1 accuracy is used. For the Group tasks,
group accuracy measures whether VLMs correctly
match all the associated image-text pairs.
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Benchmark License Image source Tasks and Subtasks

ARO MIT COCO, Visual Genome, Flickr30k VG_Relation, VG_Attribution, Flickr30k_Order,
COCO_Order

CREPE-Productivity unspecified Visual Genome Atomic Foils, Negate, Swap
SugarCrepe MIT COCO Add_{object, attribute}, Replace_{object, attribute,

relation}, Swap_{object, attribute}
VALSE MIT Visual7w, COCO, SWiG, Vis-

Dial_v1.0, FOIL-it
Actions_{swap, replacement}, Coreference_{hard,
standard}, Counting_{adversarial, hard, small}, Ex-
istence, Foil-it, Plurals, Relations

VL-Checklist unspecified Visual Genome, SWiG, COCO,
HAKE, HICO_Det, Pic, HCVRD,
OpenImages

Object_Location_{center, margin, mid}, Ob-
ject_Size_{large, medium, small}, Attribute_{action,
color, material, size, state}, Relation_{action,
spatial}

WhatsUp MIT Controlled_Images (self-captured),
COCO, GQA

Controlled_Images_{A, B}, COCO_QA_{One,
Two}, VG_QA_{One, Two}

ImageCoDe MIT OpenImages, MSRVTT, Video-
Storytelling, YouCook

Static (e.g., images), Video (e.g., videos)

SVO Probes Apache-2.0 Google Image Search API Subject, Verb, Object

Winoground META IM-
AGES RE-
SEARCH
LICENSE

Getty Images -

EqBen Apache-2.0 Action Genome (AG), GEBC,
YouCook2, Kubric, StableDiffusion
(SD)

EQ-AG, EQ-GEBC, EQ-YouCook2, EQ-
Kubric_{location, counting, attribute}, EQ-SD

SPEC unspecified Stable-Diffusion-XL 1.0 Absolute_size, Absolute_position, Count, Rela-
tive_size, Relative_position, Existence

Table 6: A comprehensive list of compositionality benchmarks used in our work, further subdivided based on the
query types for each individual test: Image-to-Text, Text-to-Image, and Group, respectively.

To elaborate on details in specific benchmarks,
for EqBen, we cap the evaluation sample size at
20,000. This is because the sub-tasks eqbenag
and eqbenyoucook2 contain 195,872 and 45,849
samples respectively, and evaluating all samples
would be excessively time-consuming. Limiting
the number of samples does not significantly alter
the evaluation results. We do not use the official
repository’s 10% evaluation split because it does
not support sub-task-specific evaluations.

For SVO-Probes, we have downloaded image-
text pairs using the img2dataset (Beaumont, 2021)
package from the URL list1, as they are not avail-
able as physical files. Out of the original 36.8k sam-
ples, 22,162 were successfully downloaded, with
3,728 for the subj_neg, 13,523 for the verb_neg,
and 4,911 for the obj_neg sub-tasks, respectively.

For SPEC, unlike the other datasets in the Group
category, we use the average of image to text and
text to image accuracy, rather than group accuracy.
Zero-shot Classification. We leverage ELE-
VATER toolkit (Li et al., 2022a) for 21 zero-shot
classification tasks, including ImageNet (Deng
et al., 2009), licensed under MIT License.

1https://huggingface.co/datasets/MichiganNLP/
svo_probes

Image-Text Retrieval. We utilize COCO cap-
tions (Chen et al., 2015), Flickr30k (Young et al.,
2014), and COCO-Counterfactuals (Le et al., 2023)
to evaluate the retrieval task. These datasets are
licensed under BSD-3-Clause, CC0: Public Do-
main, and CC-BY-4.0, respectively. For COCO-
Counterfactuals, we randomly selected 30% of the
total 17,410 samples for evaluation, resulting in
5,223 samples. Each example includes two coun-
terfactual image-text pairs, so the total number of
images and texts used for retrieval is 10,446; one
for the original and one for the hard negatives.

A.3 Train Dataset

We used the pre-processed version of COCO cap-
tions (Chen et al., 2015) by Yuksekgonul et al.
(2023), licensed under BSD 2-Clause. In ad-
dition, we utilized LAION-COCO (Schuhmann
et al., 2022a), licensed under CC-BY-4.0, and CC-
3M (Sharma et al., 2018)2, with 100K randomly
sampled examples from each dataset to match the
size of COCO for fine-tuning. We downloaded
both datasets using the img2dataset package.

2https://github.com/google-research-datasets/
conceptual-captions/blob/master/LICENSE
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id Attn. Norm. Comp ZS I2T Ret T2I Ret

2 minmax 51.7 55.7 61.6 54.5
2 minmax-sparse 51.6 55.5 61.1 54.8
2 softmax 52.0 55.4 60.9 54.6

6 minmax 53.5 55.3 58.2 55.5
6 minmax-sparse 53.4 55.1 57.8 55.4
6 softmax 53.3 55.5 57.1 55.7

Table 7: Ablation study on the normalization of atten-
tion weights in Eq. (6) for the LHN Loss. We found that
no specific normalization method significantly impacted
the results, highlighting the importance of the unique
LHN loss design.

A.4 Baseline Methods
In the comparisons with previous methods in Tab. 1,
we evaluated prior approaches using the same pro-
tocol as ours to ensure fair and consistent evalua-
tion. We obtained the corresponding checkpoints
from each official repository and loaded them using
the open_clip package (Ilharco et al., 2021).

When loading the checkpoints of previous mod-
els, we explicitly set quick_gelu to True in the
open_clip implementation. While this setting was
omitted in the implementations of NegCLIP (Yuk-
sekgonul et al., 2023), CE-CLIP (Zhang et al.,
2024), and GNM-CLIP (Sahin et al., 2024), the
adjustment aligns with the original CLIP models
from (Radford et al., 2021), which were pre-trained
and also fine-tuned with this option activated.

We list the previous methods with correspond-
ing licenses. NegCLIP (Yuksekgonul et al., 2023):
MIT License, CE-CLIP (Zhang et al., 2024): MIT
License, GNM-CLIP (Sahin et al., 2024): Apache-
2.0 License, TSVLC3 and DAC4 (Doveh et al.,
2022, 2023): unspecified, CLoVe (Castro et al.,
2024): MIT License.

B Additional Results

For thoroughness, we include additional results not
featured in the main paper. Note that all models
were fine-tuned using the CLIP ViT-B/32 encoder
from OpenAI (Radford et al., 2021).

B.1 Additional Analysis
Normalization of attention weights. We present
an ablation experiment on the normalization of at-
tention weights in Eq. (6), in alignment with the
ablation study in Tab. 2. We replace the current
minmax normalization with minmax-sparse (Bica

3https://github.com/SivanDoveh/TSVLC
4https://github.com/SivanDoveh/DAC

et al., 2024) and softmax, respectively. As in
Tab. 2, ‘id 2’ only applies the LHN Loss without
global HN loss and SCR, while ‘id 6’ represents
the full objective. Our findings show that the effec-
tiveness of LHN Loss is not significantly impacted
by any particular normalization technique. In other
words, general normalization of attention weights
can be applied to LHN Loss, reducing reliance on
techniques like those from Bica et al. (2024). This
suggests that the unique design of LHN Loss is key
to the improved performance.

B.2 Multiple Runs
In Tab. 8, we report the mean and standard devia-
tion for our models across all tasks listed in Tab. 1,
using three distinct seeds: 0, 1, and 2 for training
each model.

B.3 Zero-shot Classification
We report the results for each benchmark within
the 21 zero-shot classification tasks in Tab. 9.

B.4 Image-Text Retrieval
We present the results for each benchmark included
in the three image-text retrieval tasks in Tab. 10.
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Fine-tuned: LAION-COCO, 100K Samples
FSC-CLIP 82.70.10 46.60.35 29.30.17 24.60.94 82.60.14 90.10.03 73.50.15 75.70.33 42.10.25 6.20.63 33.50.17 53.40.09 55.60.32 57.80.52 55.30.20
FSC-CLIP ✓ 85.30.14 52.91.28 28.90.17 24.90.11 80.50.11 89.70.05 72.40.17 78.70.20 42.90.05 5.40.38 32.40.11 54.00.17 56.10.18 57.30.13 54.40.08

Table 8: Evaluation across three training runs of our model using different seeds. We report the mean and standard
deviation obtained from the evaluation results of the models across three trials.
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CLIP-ViT-B/32 88.3 89.8 65.1 17.2 44.4 45.5 42.3 19.7 66.7 84.0 32.6 55.9 63.3 27.4 48.3 87.1 60.6 58.6 60.0 59.7 82.6 57.1

Fine-tuned: MS-COCO, 100K Samples
NegCLIP 88.2 88.9 63.2 15.0 43.1 47.3 47.6 16.8 62.3 79.4 30.2 54.3 60.9 27.6 49.7 85.4 59.7 58.8 56.9 54.0 84.4 55.9
CE-CLIP 82.2 85.9 60.2 9.6 35.2 44.9 39.7 10.0 47.2 70.1 28.0 53.5 49.9 34.6 40.6 66.0 58.8 61.1 51.5 35.3 83.1 49.9
GNM-CLIP 86.8 88.4 65.7 15.2 42.0 50.1 46.6 17.3 62.4 81.8 30.2 54.9 61.4 25.2 54.4 86.3 59.0 58.5 58.7 53.1 84.0 56.3

Fine-tuned: Conceptual Captions – 3M (CC-3M), 100K Samples
TSVLC (RB) 83.7 92.3 66.0 16.2 39.5 52.1 43.6 14.7 58.2 81.2 24.2 57.8 58.5 30.4 46.9 85.5 50.0 59.8 58.6 49.2 84.7 54.9
TSVLC (RB+LLM) 84.6 92.0 66.8 16.2 40.3 56.5 46.8 13.8 58.5 81.6 27.1 56.9 59.7 27.8 43.9 84.7 50.5 60.1 59.5 50.5 84.7 55.4
DAC-LLM 82.6 90.4 64.1 14.3 38.4 52.5 50.7 10.5 49.7 74.1 24.2 56.3 51.0 16.3 42.1 74.4 50.0 54.5 52.2 39.4 85.1 51.1
DAC-SAM 81.3 89.9 64.1 14.8 40.4 49.8 48.0 8.9 48.9 72.3 24.9 55.7 52.3 18.7 45.2 76.7 58.9 60.0 54.7 39.8 84.1 51.9

Fine-tuned: LAION-COCO, 600M Samples
CLoVe 85.5 85.8 66.2 12.6 37.7 49.1 38.0 9.0 44.6 71.9 22.6 54.6 53.1 34.9 36.4 74.2 56.7 51.3 55.2 48.7 81.9 51.0

Fine-tuned: LAION-COCO, 100K Samples
FSC-CLIP (Ours) 86.5 87.5 65.7 15.3 42.4 43.9 48.9 14.9 55.5 80.5 31.6 55.9 58.1 29.1 52.4 84.2 61.0 56.0 56.9 52.0 83.6 55.3
FSC-CLIP (Ours, LoRA) 85.9 88.5 66.3 15.8 39.8 52.8 48.2 14.2 57.0 81.0 27.9 56.3 57.4 33.9 54.3 82.7 59.8 57.2 58.7 52.6 83.7 55.9

Table 9: Expanded results for the 21 zero-shot classification tasks from ELEVATER (Li et al., 2022a).

COCO Retrieval Flickr30k Retrieval COCO-Counterfactuals Retrieval Avg.
Image to text (I2T) Text to image (T2I) Image to text (I2T) Text to image (T2I) Image to text (I2T) Text to image (T2I) I2T T2I

Method R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@1

CLIP-ViT-B-32 50.1 74.9 83.5 30.4 56.0 66.8 78.8 94.9 98.3 58.7 83.5 90.0 51.0 79.3 86.7 48.1 77.4 85.9 60.0 45.8

Fine-tuned: MS-COCO, 100K Samples
NegCLIP 59.3 82.8 89.4 45.2 72.1 81.7 85.7 96.4 98.8 71.6 91.8 95.7 55.3 82.5 89.2 58.3 84.9 91.3 66.8 58.4
CE-CLIP 56.0 81.6 89.0 47.1 74.1 83.1 75.3 93.2 96.9 68.9 89.6 94.2 46.3 75.7 84.5 56.2 83.6 90.5 59.2 57.4
GNM-CLIP 58.1 81.4 88.8 41.1 67.5 77.8 82.9 96.2 98.6 68.8 89.9 94.1 57.2 84.5 90.5 56.7 84.5 91.1 66.1 55.5

Fine-tuned: Conceptual Captions – 3M (CC-3M), 100K Samples
TSVLC (RB) 46.1 71.7 80.4 36.3 62.0 72.4 74.0 93.2 96.4 64.9 87.2 92.7 44.6 72.0 80.2 55.0 83.3 90.0 54.9 52.1
TSVLC (RB+LLM) 46.4 71.8 80.8 36.6 62.2 72.7 74.8 92.6 96.8 65.1 87.6 92.7 44.1 71.5 80.1 55.1 83.3 90.4 55.1 52.3
DAC-LLM 29.9 54.5 65.6 37.3 63.5 73.8 52.9 79.8 87.9 64.6 88.0 93.0 28.1 53.6 64.4 55.2 83.0 90.0 36.9 52.4
DAC-SAM 33.1 57.9 68.8 34.0 59.7 70.0 59.8 82.7 89.0 61.7 85.7 91.2 30.4 55.2 64.8 51.5 79.9 87.3 41.1 49.0

Fine-tuned: LAION-COCO, 600M Samples
CLoVe 48.3 73.9 82.8 42.7 68.7 78.2 69.5 90.4 95.6 68.7 90.0 94.5 41.5 69.1 78.3 56.5 84.2 90.8 53.1 56.0

Fine-tuned: LAION-COCO, 100K Samples
FSC-CLIP (Ours) 49.7 73.6 82.4 40.4 66.4 76.4 75.6 93.3 97.4 68.2 90.0 94.3 49.2 77.5 85.8 57.9 85.4 91.4 58.2 55.5
FSC-CLIP (Ours, LoRA) 48.2 73.6 81.8 39.0 64.9 75.0 75.1 93.2 96.4 66.9 88.6 93.6 48.5 76.0 84.4 57.1 84.7 91.0 57.3 54.3

Table 10: Expanded results for the three zero-shot image-text retrieval tasks, including COCO (Chen et al., 2015),
Flickr30k (Young et al., 2014), and COCO-Counterfactuals (Le et al., 2023).
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