@inproceedings{lukito-etal-2024-comparing,
title = "Comparing a {BERT} Classifier and a {GPT} classifier for Detecting Connective Language Across Multiple Social Media",
author = "Lukito, Josephine and
Chen, Bin and
Masullo, Gina and
Stroud, Natalie",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1067",
pages = "19140--19153",
abstract = "This study presents an approach for detecting connective language{---}defined as language that facilitates engagement, understanding, and conversation{---}from social media discussions. We developed and evaluated two types of classifiers: BERT and GPT-3.5 turbo. Our results demonstrate that the BERT classifier significantly outperforms GPT-3.5 turbo in detecting connective language. Furthermore, our analysis confirms that connective language is distinct from related concepts measuring discourse qualities, such as politeness and toxicity. We also explore the potential of BERT-based classifiers for platform-agnostic tools. This research advances our understanding of the linguistic dimensions of online communication and proposes practical tools for detecting connective language across diverse digital environments.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lukito-etal-2024-comparing">
<titleInfo>
<title>Comparing a BERT Classifier and a GPT classifier for Detecting Connective Language Across Multiple Social Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Josephine</namePart>
<namePart type="family">Lukito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gina</namePart>
<namePart type="family">Masullo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Stroud</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study presents an approach for detecting connective language—defined as language that facilitates engagement, understanding, and conversation—from social media discussions. We developed and evaluated two types of classifiers: BERT and GPT-3.5 turbo. Our results demonstrate that the BERT classifier significantly outperforms GPT-3.5 turbo in detecting connective language. Furthermore, our analysis confirms that connective language is distinct from related concepts measuring discourse qualities, such as politeness and toxicity. We also explore the potential of BERT-based classifiers for platform-agnostic tools. This research advances our understanding of the linguistic dimensions of online communication and proposes practical tools for detecting connective language across diverse digital environments.</abstract>
<identifier type="citekey">lukito-etal-2024-comparing</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1067</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>19140</start>
<end>19153</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comparing a BERT Classifier and a GPT classifier for Detecting Connective Language Across Multiple Social Media
%A Lukito, Josephine
%A Chen, Bin
%A Masullo, Gina
%A Stroud, Natalie
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F lukito-etal-2024-comparing
%X This study presents an approach for detecting connective language—defined as language that facilitates engagement, understanding, and conversation—from social media discussions. We developed and evaluated two types of classifiers: BERT and GPT-3.5 turbo. Our results demonstrate that the BERT classifier significantly outperforms GPT-3.5 turbo in detecting connective language. Furthermore, our analysis confirms that connective language is distinct from related concepts measuring discourse qualities, such as politeness and toxicity. We also explore the potential of BERT-based classifiers for platform-agnostic tools. This research advances our understanding of the linguistic dimensions of online communication and proposes practical tools for detecting connective language across diverse digital environments.
%U https://aclanthology.org/2024.emnlp-main.1067
%P 19140-19153
Markdown (Informal)
[Comparing a BERT Classifier and a GPT classifier for Detecting Connective Language Across Multiple Social Media](https://aclanthology.org/2024.emnlp-main.1067) (Lukito et al., EMNLP 2024)
ACL