
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 19319–19335
November 12-16, 2024 ©2024 Association for Computational Linguistics

VerifyMatch: A Semi-Supervised Learning Paradigm for Natural
Language Inference with Confidence-Aware MixUp

Seo Yeon Park
Computer Science & Engineering

Hanyang University (ERICA)
seoyeonpark@hanyang.ac.kr

Cornelia Caragea
Computer Science

University of Illinois Chicago
cornelia@uic.edu

Abstract

While natural language inference (NLI) has
emerged as a prominent task for evaluating a
model’s capability to perform natural language
understanding, creating large benchmarks for
training deep learning models imposes a sig-
nificant challenge since it requires extensive
human annotations. To overcome this, we pro-
pose to construct pseudo-generated samples
(premise-hypothesis pairs) using class-specific
fine-tuned large language models (LLMs)
thereby reducing the human effort and the costs
in annotating large amounts of data. However,
despite the impressive performance of LLMs, it
is necessary to verify that the pseudo-generated
labels are actually correct. Towards this goal,
in this paper, we propose VerifyMatch, a semi-
supervised learning (SSL) approach in which
the LLM pseudo-labels guide the training of
the SSL model and, at the same time, the SSL
model acts as a verifier of the LLM-generated
data. In our approach, we retain all pseudo-
labeled samples, but to ensure unlabeled data
quality, we further propose to use MixUp when-
ever the verifier does not agree with the LLM-
generated label or when they both agree on the
label but the verifier has a low confidence—
lower than an adaptive confidence threshold.
We achieve competitive accuracy compared
to strong baselines for NLI datasets in low-
resource settings.

1 Introduction

Natural Language Inference (NLI) (Bowman et al.,
2015) aims to determine the relation between two
sentences (referred as premise and hypothesis)—
whether it is entailment, neutral, or contradiction.
NLI plays a pivotal role in assessing a model’s
ability to perform Natural Language Understand-
ing (NLU) and Reasoning. The advancement of
NLI has been fueled, in part, by the creation of
large datasets such as SNLI (Bowman et al., 2015),
MNLI (Williams et al., 2018), and ANLI (Nie et al.,
2020) for training massive deep learning models.

However, creating a large-scale NLI benchmark
requires a considerable amount of human effort.
This is because human annotators have to generate
texts that demand logical inferences. For exam-
ple, in the creation of the SNLI and MNLI datasets
(Bowman et al., 2015; Williams et al., 2018), hu-
man workers receive unlabeled premises and are
prompted to generate hypotheses, one per class,
for each class label—entailment, neutral, contradic-
tion. Similarly, in the creation of the ANLI dataset
(Nie et al., 2020), human annotators receive an un-
labeled premise and a target label, and are asked
to generate a hypothesis that deceives a model
into producing a misclassified prediction of the
given target label. In this manner, creating new
large-scale NLI datasets becomes a burdensome
task. Hence, the high cost and difficulty of col-
lecting labeled data for NLI has driven interest in
semi-supervised learning (SSL), which effectively
utilizes both labeled and unlabeled data. However,
the nature of unlabeled data for SSL on NLI is
more complex compared to single-sentence classi-
fication tasks. This is because one of the sentences
in the pair (usually the hypothesis) along with the
class label, is missing from the data and requires
intensive human annotations as described above.
Therefore, in order to leverage unlabeled data for
SSL on NLI, the unavailability of both hypotheses
and class labels must be tackled.

To overcome this, we propose to leverage Large
Language Models (LLMs) to generate missing hy-
potheses and to assign initial pseudo-labels where
we create readily available unlabeled data for SSL
on NLI. However, LLMs may not always gener-
ate the most relevant or accurate output. Hence,
we further propose to leverage pseudo-labeling
(Lee, 2013) to ensure the quality of the gener-
ated hypotheses and their assigned labels. Pseudo-
labeling is a widely used semi-supervised learning
method that automatically assigns pseudo-labels to
unlabeled data and incorporates them into model

19319

training. Prior research on pseudo-labeling gener-
ally employs a pre-defined high threshold for all
classes, which assumes pseudo-labels with confi-
dence above the threshold are of high quality and
hence beneficial for training while others are of low
quality so are discarded (Chen et al., 2020; Sohn
et al., 2020; Sadat and Caragea, 2022). Thus, this
approach results in restricting access to a consid-
erable amount of samples. To address this issue,
Zhang et al. (2021) propose to use adaptive thresh-
olds for different classes to encourage a model
to learn from more diverse samples and achieve
better performance in low-resource settings com-
pared to approaches that use a fixed high confi-
dence threshold (Sohn et al., 2020). Despite their
promising results when using flexible thresholds,
many pseudo-labeled samples are still discarded.
Chen et al. (2023) propose to use all pseudo-labeled
samples by assigning lower weights to unconfident
pseudo-labeled samples during training. Although
the diversity of training data increases substantially
compared to previous works, there are still erro-
neous pseudo-labels that enter with high weights
in the training set as training progresses.

To this end, we propose VerifyMatch, a semi-
supervised learning approach, which uses all
pseudo-labeled samples in model training where
unconfident pseudo-labeled samples are incorpo-
rated into training instead of being discarded or
used with lower weights during training as in pre-
vious works. VerifyMatch consists of two com-
ponents: (1) pseudo-generated data construction
using large language models (LLMs), and (2) a ver-
ifier that leverages pseudo-labeling to ensure the
quality of LLM-generated pseudo-labels. In Verify-
Match, the LLM pseudo-labels guide the training
of the verifier and, at the same time, the verifier
determines the veracity of the LLM-generated la-
bels. Our pseudo-generated data construction pro-
duces readily available unlabeled data for semi-
supervised learning (SSL) on Natural Language
Inference (NLI). Specifically, given a small amount
of labeled data, we first fine-tune LLMs for every
class. We then use these class-specific fine-tuned
LLMs for generating hypotheses for a given un-
labeled premise along with assigning the initial
pseudo-label. By leveraging class-specific fine-
tuned LLMs, we prevent potential skew or im-
balance in the distribution of class labels within
pseudo-generated data, thereby ensuring compre-
hensive coverage of all class labels. For example,
given a premise ‘A man painting over graffiti’, we

produce three hypotheses, one for each class, ‘en-
tailment,’ ‘contradiction,’ and ‘neutral,’ by using
the corresponding class-specific fine-tuned LLM.

To ensure the quality of LLM-generated hypothe-
ses and their pseudo-labels, our verifier (a task clas-
sifier) produces pseudo-labels on sentence pairs
and checks them against LLM-assigned pseudo-
labels. If there is disagreement between the la-
bels, we call these “mismatched samples”. Even
when there is agreement, the verifier might be un-
sure of its prediction (i.e., unconfident on a pre-
dicted class), because the sample is ambiguous or
possibly mislabeled. We consider these samples
as “unconfident samples” Both types of samples
are then “denoised” by interpolating them with
human-annotated labels through MixUp (Zhang
et al., 2018). Hence, VerifyMatch improves the
diversity of training data while ensuring its qual-
ity. We show competitive performance on various
NLI datasets in low-resource settings compared to
strong baseline methods.

Our contributions are as follows:

• We propose a semi-supervised learning frame-
work called VerifyMatch which consists of
two components: (1) pseudo-generated data
construction using LLMs and (2) a verifier to
ensure the quality of pseudo-generated data.

• On the verifier, we propose to identify mis-
matched and unconfident pseudo-generated
samples that are potentially mislabeled hence
incorporating them into training after denois-
ing through MixUp between them and human-
labeled samples where we denoise a possibly
incorrect pseudo-label by mixing it with a cor-
rect one, thus exposing a model to a larger
diversity of samples during training.

• We conduct comprehensive experiments show-
ing that our method achieves competitive per-
formance compared with strong baselines on
SSL for NLI datasets in low-resource settings.

2 Related Work

Large Language Models (LMMs) The emer-
gence of large language models (LLMs) has revo-
lutionized the field of natural language processing
(NLP) which have achieved major milestones in
the advancement of various tasks including text
generation, question answering, and dialogue gen-
eration (Zhang et al., 2020; Touvron et al., 2023;
Jiang et al., 2023; Team et al., 2024; Achiam et al.,

19320

2024; Chen et al., 2024). To truly leverage LLMs,
customization is key which involves fine-tuning
LLMs on specialized datasets. Fine-tuning often
provides competitive performance mainly because
pre-training with language modeling objectives pro-
vides a useful starting point for model parameters
and allows task-specific objective customization
(Zhang et al., 2022; Liu et al., 2022a; Schmidt et al.,
2022; Garimella et al., 2022; Do et al., 2023; Wang
et al., 2023a). However, full fine-tuning is usu-
ally expensive in both computation and memory
due to a large number of parameters for recent ad-
vanced LLMs (e.g., Llama 2/31). Hence, parameter-
efficient fine-tuning methods such as P-tuning (Liu
et al., 2022b) and Low-Rank Adaptation (LoRA;
Hu et al. (2021a)) have gained attention. In this
work, we leverage Llama 3 with LoRA for semi-
supervised learning on natural language inference.
In addition, prompting, which is a method of a pre-
trained LLM to be adapted to different tasks via
priming on natural language prompts —pieces of
text that are combined with input and then fed to
the language model to produce an output for that
task (Brown et al., 2020)—has been successful for
few-/zero-shot learning at many general-domain
tasks (Gao et al., 2021; Agrawal et al., 2022; Li
et al., 2024). Hence, we compare our proposed
method with various LLMs using prompting to un-
derstand the effectiveness of our method.

Semi-supervised Learning (SSL) SSL has pro-
duced a diverse collection of approaches including
self-training (also called pseudo-labeling) (Chen
et al., 2020; Xie et al., 2020; Yu et al., 2021; Lee
et al., 2021; Hu et al., 2021b; Sadat and Caragea,
2022; Min et al., 2024). In general, self-training
relies on a fixed high threshold value on model con-
fidence in the pseudo-label class to filter out low-
confidence pseudo-labeled samples (Li and Yang,
2018; Chen et al., 2020; Lee et al., 2021; Hu et al.,
2021b; Yu et al., 2021; Sadat and Caragea, 2022;
Wang et al., 2023b) thereby limiting access to a
broader range of training samples. To overcome
this, Chen et al. (2023) proposed to integrate low-
confidence samples by assigning lower weights to
them during training. However, this method still
may introduce erroneous pseudo-labels with high
weights as training iteration progresses. Hence,
we propose to integrate low-confidence pseudo-
generated samples after denoising.

1https://ai.meta.com/blog/meta-llama-3/

(1) Pseudo-Generated (PG) data

(2)
Verifying

Labeled
Training Data

Mismatched PG data

Unconfident PG data

(2)
Supervised

Training

(2)
Unsupervised

Training

(2)
MixUp

Final
Task Model

Task Model
(Verifier)

LLMs

Figure 1: The overview of our proposed approach: (1) LLMs
construct Pseudo-Generated (PG) data, and (2) the verifier
identifies mismatched PG data and unconfident PG data, to
denoise them through MixUp while the rest PG data are used
via unsupervised training in addition to using labeled data in
supervised training to obtain the final classifier.

MixUp MixUp (Zhang et al., 2018) is a regular-
izer for neural models by training convexly combin-
ing random pairs and their associated labels. Many
works have empirically noticed regularization ef-
fects of MixUp that improve performance on deep
neural networks (Verma et al., 2019; Guo et al.,
2019; Yun et al., 2019; Kim et al., 2020; Yin et al.,
2021; Park and Caragea, 2022; Qiao et al., 2022).
MixUp also has shown effectiveness in SSL for
NLP tasks (Chen et al., 2020; Sawhney et al., 2021;
Yang et al., 2021). Building upon this, we propose
to use a MixUp approach for SSL to denoise low-
confidence pseudo-generated samples by mixing
them with labeled samples.

3 Proposed Approach: VerifyMatch

In this section, we introduce VerifyMatch, our
semi-supervised learning (SSL) approach for nat-
ural language inference. VerifyMatch seamlessly
combines two components: 1. pseudo-hypothesis
generation and pseudo-label assignment for the un-
labeled data using Large Language Models (LLM)
as one component, and 2. SSL model training with
pseudo-labeling as another component. In Veri-
fyMatch, the LLM pseudo-labels guide the train-
ing of the SSL model and to ensure the quality of
pseudo-labels it includes three key elements: a ver-
ification step that accounts for the agreement / dis-
agreement of LLM-generated and SSL-generated
pseudo-labels; adaptive confidence thresholding
that leverages the SSL model’s confidence and un-
certainty in the predictions; and the use of all train-
ing samples—no matter how noisy through a mixup

19321

data augmentation strategy that mixes in-between
labeled and unlabeled samples.

3.1 Pseudo-Hypothesis Generation and Label
Assignment with LLMs

Let Dl = {(xi, yi)}i=1,··· ,n be a labeled training
set of size n where xi = (pi, hi) refers to a premise
and hypothesis sentence-pair in NLI, and yi rep-
resents one of three NLI classes (i.e., ‘contradic-
tion’, ‘entailment’, ‘neutral’). Furthermore, let
Du = {pui }i=1,··· ,N be a set of unlabeled premises
of size N , with N >> n.

In our approach, we use large language models
(LLMs) to generate pseudo-hypotheses for unla-
beled premises. That is, we first fine-tune a class-
specific LLM ϕc for each NLI class c using la-
beled samples corresponding to that class. Subse-
quently, we provide an unlabeled premise to each
of these class-specific fine-tuned LLMs to gener-
ate three hypotheses (one per class with the corre-
sponding LLM). For each pair—premise, generated
hypothesis—we assign an LLM pseudo-label ac-
cording to the class of the LLM that generated the
hypothesis. Thus, we ensure comprehensive cover-
age of all classes within pseudo-generated samples.
We formulate pseudo-generated data as follows:

Dpseudo = {x̂i = (p̂i, ĥi = ϕc(p̂i)), ŷ
llm
i = c}

i = 1 . . . c ·N, c ∈ C

where p̂i is an unlabeled premise, ĥi is a generated
hypothesis by class-specific fine-tuned LLM ϕc on
class c, and ŷllmi is the pseudo-label assigned by ϕc.
We mainly adopt a parameter-efficient fine-tuning
named LoRA (Hu et al., 2021a) on Llama-3-8B-
Instruct2. We provide the details (e.g., prompts,
hyper-parameters) in Appendix A.1. To explore
the impact of leveraging various LLMs in pseudo-
generated data construction, we provide the results
of using LoRA Llama-2, fully fine-tuning GPT-2,
and zero-shot prompting Llama-2 in Appendix A.2.

3.2 Semi-Supervised Model Training with
Pseudo-Labeling

Our SSL model training leverages pseudo-labeling,
an approach that uses the model itself to obtain
artificial labels for unlabeled data. However, if the
artificial labels are incorrect, the model will suffer
from error accumulation (Arazo et al., 2020). In
contrast, in VerifyMatch, we consider agreement
/ disagreement between the LLM-generated and

2https://llama.meta.com/llama3/

the SSL-generated pseudo-labels through a verifi-
cation step. Moreover, pseudo-labeling (Sohn et al.,
2020) exploits a confidence thresholding mecha-
nism to discard samples that are predicted with a
low confidence by the model and retains only the
labels whose largest class probability fall above a
predefined fixed threshold. Thus, a large pool of
samples are completely ignored despite containing
potentially useful information for model training
(Zhang et al., 2021; Chen et al., 2023). In contrast,
we use all training samples with an adaptive confi-
dence thresholding to separate samples in high and
low confidence samples and with a mixup strategy
(Zhang et al., 2018) to handle potential noise in
low-confidence and disagreement pseudo-labels.

3.2.1 Label Verification
VerifyMatch verifies the agreement / disagreement
between the two labels for each pseudo-generated
(PG) sample x̂i, the LLM label ŷllmi and the label
derived from the SSL model θ, i.e., the verifier
(BERT in our case). Specifically, the verifier com-
putes a pseudo-label by itself ŷi for every sample
x̂i ∈ Dpseudo. If the verifier’s label does not match
the LLM label ŷi ̸= ŷLLMi , we consider the PG
sample as a “mismatched PG sample” which is
ambiguous for the model or potentially incorrectly
labeled due to failure in agreement on the pseudo-
label (either the LLM has generated a wrong hy-
pothesis or the SSL model returns an incorrect pre-
diction). Thus, it is necessary to handle noise in the
pseudo-labels. Inspired by Yang et al. (2021), we
interpolate these PG samples and labeled samples
using MixUp (Zhang et al., 2018) as follows:

x̃k = (1− λ)x̂i + λxj
ỹk = (1− λ)ŷllmi + λyj

(1)

where x̂i and xj are inputs’ feature representations
of pseudo-generated and labeled samples, respec-
tively, ŷllmi and yj are their associated one-hot en-
coded labels, and λ is a mixing ratio sampled from
a Beta(α, α) distribution with a hyper-parameter
α. In mixing labels, we interpolate pseudo-labels
of pseudo-generated samples and gold-standard la-
bels of labeled samples. Accordingly, we not only
denoise possibly incorrect pseudo-labels by mixing
them with correct ones but also smooth the level of
uncertainty of unconfident pseudo-generated sam-
ples. After mixing mismatched PG samples with
human labeled samples, we compute the unlabeled
mismatched data loss as the cross-entropy loss on

19322

Algorithm 1 : VerifyMatch
1: Inputs: Labeled data Dl; unlabeled data Du; SSL model (i.e., a task classifier, verifier) θ, class-specifically fine-tuned

LLMs ϕc for every c ∈ C

2: Construct Pseudo-Generated (PG) data Dpseudo = {(x̂i, ŷ
llm
i)}i=1,··· ,cṄ where x̂i = (p̂i, ĥi = ϕc(p̂i)), pi ∈ Du, and

ŷllm
i is a initial pseudo-label assigned by ϕc, ŷllm

i = c
3: for t = 1 to T do
4: while Dpseudo not exhausted do
5: Randomly sample labeled batch Bl from Dl, and pseudo-generated batch Bpseudo from Dpseudo

6: Initialize Bm, Bmm and Bunconf as empty sets, Bm, Bmm, Bunconf ← ∅, ∅
7: for each (x̂i, ŷ

llm
i) ∈ Bpseudo do

8: Obtain the pseudo-label ŷi from the task model θ, ŷi = argmaxPθ(y|x̂i)
9: if ŷi = ŷllm

i then
10: Bm ← Bm ∪ {(x̂i, ŷi)}
11: else # Identify “mismatched pseudo-generated (PG) data”
12: (x̃k, ỹk)= MixUp((x̂i, ŷ

llm
i), (xj , yj)) using Eq. (1) where (xj , yj) is randomly sampled from Bl

13: Bmm ← Bmm ∪ {(x̃k, ỹk)}
14: end if
15: end for
16: Compute the mean of confidence P̄ on Bm using Eq. (3)
17: for each (x̂i, ŷi) ∈ Bm do
18: if max(Pθ(y|x̂i)) < P̄ then # Identify “unconfident pseudo-generated (PG) data”
19: (x̃k, ỹk) = MixUp((x̂i, ŷi), (xj , yj)) using Eq (1) where (xj , yj) is randomly sampled from Bl

20: Bunconf ← Bunconf ∪ (x̃k, ỹk)
21: end if
22: end for
23: Lsup = 1

|Bl|
∑|Bl|

i=1 H(yi, Pθ(y|xi)),

24: Lunsup = 1

|B>P̄
m |

∑|B>P̄
m |

i=1 H(ŷi, Pθ(y|x̂i)))

25: Lmm = 1
|Bmm|

∑|Bmm|
k=1 H(ỹk, Pθ(y|x̃k))

26: Lunconf = 1
|Bunconf |

∑|Bunconf |
k=1 H(ỹk, Pθ(y|x̃k))

27: Update the verifier parameter θ using Lsup + Lunsup + Lmm + Lunconf

28: end while
29: end for

MixUp samples (x̃k, ỹk), as follows:

Lmm =
1

|Bmm|

|Bmm|∑

k=1

H(ỹk, Pθ(y|x̃k)) (2)

where Bmm is the set of the mismatched samples
with label disagreement between LLM and verifier.

3.3 Adaptive Confidence Thresholding
If the verifier’s label matches the LLM label ŷi =
ŷLLMi , we consider these samples as “matched sam-
ples” and denote their set as Bm. Even when the
verifier agrees with the LLMs assigned pseudo-
label, the verifier might be unsure of its prediction
(i.e., unconfident on a predicted class), because the
PG sample is ambiguous or possibly mislabeled.
We consider this PG sample as an “unconfident PG
sample”. To identify unconfident PG samples, in-
stead of using a fixed threshold as in vanilla pseudo-
labeling, we derive the mean of the verifier’s con-
fidence of the matched samples (as shown below),
since it empirically verified better generalization
(Chen et al., 2023; Wang et al., 2023b; Zhang et al.,
2021):

P̄ =
1

|Bm|

|Bm|∑

i=1

Pθ(ŷi|x̂i) (3)

The pseudo-labels predicted by the verifier with
confidence above P̄ are used to compute the unsu-
pervised (matched, high-confidence) loss as:

Lunsup =
1

|B>P̄
m |

|B>P̄
m |∑

i=1

H(ŷi, Pθ(y|x̂i)) (4)

For the unconfident PG samples that fall under
the P̄ threshold, i.e., B<P̄

m (or Bunconf), as these
are ambiguous or possibly mislabeled samples, we
again use mixup to mix an unconfident PG sample
with a human (clean) labeled sample, and compute
the unsupervised (matched but unconfident) loss:

Lunconf =
1

|Bunconf |

|Bunconf |∑

k=1

H(ỹk, Pθ(y|x̃k))

(5)
Here, (x̃k, ỹk) = MixUp((x̂i, ŷi), (xj , yj)),
where (x̂i, ŷi) is an unconfident PG sample (i.e.,
Pθ(ŷi|x̂i) < P̄) and (xj , yj) is a human labeled
sample, selected at random from Dl. Consequently,
unconfident (i.e., low-confidence under the P̄)

19323

Pseudo-Generated (PG) samples are incorporated
in training after denoising, hence, increasing the
diversity of training data while ensuring the quality.

In addition, we calculate the supervised loss on
labeled samples as follows:

Lsup =
1

|Bl|

|Bl|∑

i=1

H(yi, Pθ(y|xi)) (6)

We train the verifier by using the sum of all losses
(see Algorithm 1). The final loss is:

L = Lsup + Lunsup + Lmm + Lunconf (7)

Note that our implementation uses separate data
loaders for labeled and pseudo-generated data to
conduct a MixUp operation.

4 Experiments

4.1 Datasets
RTE (Wang et al., 2018) has ≈ 2, 500 sentence
pairs with two pre-defined classes, entailment and
not_entailment. We extract unlabeled premises
from WikiPedia and CNNDM (Nallapati et al.,
2016). Since the test set of RTE is not publicly
available, we use its development set as the test
set and randomly sample a small subset from the
training set to be used as the development set.

SICK (Marelli et al., 2014) has 4, 500 sentence
pairs with three pre-defined classes, which are en-
tailment, contradiction and neutral. We use the
8k ImageFlickr dataset and WikiPedia to extract
unlabeled premises.

SNLI-2.5k (Bowman et al., 2015) SNLI is a large
dataset of 570k human-written English sentence
pairs classified as entailment, contradiction, or neu-
tral (Bowman et al., 2015). To simulate a low-
resource setting, we randomly sampled 2,500 ex-
amples from the training set of SNLI to be used
as labeled data and considered the premises of the
remaining examples as unlabeled data.

MNLI-2.5k (Williams et al., 2018) We create the
labeled/unlabeled data in the same manner as SNLI.
Similar to RTE, we used the development set of
MNLI as the test set and sampled a small subset
of examples from the training set to be used as
development set.

4.2 Comparison Methods
BERT Fine-tuning We use the labeled data only
of each dataset to fine-tune a pre-trained language
model BERT (Devlin et al., 2019).

In-context Learning (Brown et al., 2020) is
a simple prompting3 on GPT-2 and Llama 3-8B-
Instruct with 10 labeled data.
Zero-shot Learning (Brown et al., 2020) is
a simple prompting3 on Mistral-7B-Instruct-v0.1
(Jiang et al., 2023), Llama 2-7B-chat-hf (Touvron
et al., 2023), and Llama 3-8B-Instruct, without la-
beled data.
LM-BFF (Gao et al., 2021) is a prompt-based
fine-tuning method using the manual prompt of
Gao et al. (2021) for BERT, using the labeled data
only of each downstream task.
Back Translation (Edunov et al., 2018) synthe-
sizes additional data by back-translating labeled
data using German-English translation models.
TMix (Chen et al., 2020) synthesizes additional
data by interpolating randomly selected labeled
data in the hidden space of BERT on transformer
layers of 7, 9, 12.
FixMatch (Sohn et al., 2020) generates pseudo-
labels using the model’s predictions on weakly aug-
mented data and only retains a pseudo-label if the
model produces a high-confidence prediction. The
model is trained to predict the pseudo-label when
fed strongly-augmented data of the same data4.

FlexMatch (Zhang et al., 2021) extends Fix-
Match by using flexible confidence thresholds to
adjust for the learning difficulty of each class in-
stead of using high fixed confidence thresholds.
FreeMatch (Wang et al., 2023b) extends Flex-
Match by leveraging both global/local thresholds
to reflect the model’s learning status with self-
adaptive class fairness regularization penalty.
SoftMatch (Chen et al., 2023) extends Fix-
Match by deriving a truncated Gaussian function
to weight unlabeled samples based on their confi-
dence to leverage all unlabeled data.
Unsupervised Data Augmentation (UDA) (Xie
et al., 2020) computes consistency loss to mini-
mize the distance between unlabeled samples’ orig-
inal predictions and predictions on data augmenta-
tion5 along with the supervised loss.

3The prompt is constructed by referring to Brown et al.
(2020) as shown in A.4. We follow the evaluation protocol
provided by Gao et al. (2021).

4Weak augmentation is a synonym replacement using
WordNet on both premise-hypothesis randomly chosen tokens.
Strong augmentation is back-translation pre-trained language
models (with German) both on premise-hypothesis pairs.

5We use back-translation and tf-idf word replacement data
augmentation methods. We use pre-trained back translation
models (with German) released by FairSeq and set the random
sampling temperature as 0.9.

19324

RTE SICK SNLI-2.5K MNLI-2.5km MNLI-2.5kmm

Fine-tuning (FT) BERT (Devlin et al., 2019) 60.901.6 84.630.7 79.030.1 69.260.9 70.260.7

GPT-2 ICL (Brown et al., 2020) 54.942.2 59.383.2 33.370.3 33.511.3 33.090.4
Llama 3-8B-Instruct ICL 68.220.0 55.310.0 59.670.0 59.740.0 58.720.0
Mistral-7B ZSL (Jiang et al., 2023) 60.410.0 48.820.0 45.340.0 47.270.0 49.690.0
Llama 2-7B ZSL (Touvron et al., 2023) 67.300.0 49.060.0 56.700.0 55.040.0 57.230.0
Llama 3-8B-Instruct ZSL 68.880.0 55.470.0 60.190.0 58.870.0 59.610.0
LM-BFF (Gao et al., 2021) 60.640.9 81.590.8 73.910.6 62.891.2 65.540.8
LM-BFF + Demo 61.261.8 82.220.5 74.560.9 62.551.2 64.090.5

Back Translation (Edunov et al., 2018) 61.221.3 84.381.1 79.151.2 72.011.0 73.380.9
TMix (Chen et al., 2020) 61.591.5 83.231.9 79.131.0 71.860.6 73.210.8

UDA (Xie et al., 2020) 65.530.9 85.460.8 80.060.4 72.970.5 73.820.5
MixText (Chen et al., 2020) 68.492.1 85.440.6 80.110.2 72.450.8 73.421.0
SSL for NLI (Sadat and Caragea, 2022) 68.322.3 85.770.7 80.261.1 72.560.3 73.480.1
FixMatch (Sohn et al., 2020) 67.692.8 85.010.6 80.650.9 71.760.5 72.310.6
FlexMatch (Zhang et al., 2021) 67.870.5 84.871.1 79.910.2 72.210.3 73.590.4
FreeMatch (Wang et al., 2023b) 67.751.8 84.650.6 80.521.2 72.590.8 73.211.1
SoftMatch (Chen et al., 2023) 68.111.3 84.360.7 80.831.2 72.350.5 73.110.6

VerifyMatch (Ours) 71.03†
2.1 86.96†

0.8 82.060.3 74.20†
0.5 74.10†

0.3

Table 1: The comparison of test accuracy (%) of our method and baselines. The underlined text shows the best performance
baseline methods. We report the mean and standard deviation across three training runs with random restarts. †: VerifyMatch
improves the the best baseline at p < 0.05 with paired t-test.

MixText (Chen et al., 2020) uses MixUp to in-
terpolate labeled and unlabeled data in the hidden
space of BERT on transformer layers 7, 9, and
12. The pseudo-label of unlabeled data is gener-
ated by multiple back-translations combined with
a weighted average of their predictions.
SSL for NLI (Sadat and Caragea, 2022) is a
self-debiasing method on unlabeled samples that
are generated by fine-tuning conditional pre-trained
language models, but only employs unlabeled sam-
ples whose model confidence in pseudo-label class
is above a pre-defined fixed high-threshold value.

4.3 Implementation Details

We use Llama-3-8B-Instruct as LLMs and use
BERT-base as a task classifier from HuggingFace
Transformers library. The hyper-parameters set-
tings are shown in Appendix A.1.

5 Results and Analysis

Main Results We observe our method improves
over all baseline methods as shown in Table 1. We
can also observe that in-context learning (ICL) and
zero-shot learning (ZSL) on LLMs generally per-
form significantly worse compared to fine-tuning
(FT) BERT. While LM-BFF and LM-BFF+Demo
achieve better performance compared to ICL/ZSL,
it still generally performs worse compared to FT
BERT, even though we use the same number of
labeled data on both settings. We conclude fine-
tuning is still a robust method. We observe SSL
baselines utilizing the same pseudo-generated data

as unlabeled data as our approach (i.e., UDA, Mix-
Text, SSL for NLI, FixMatch, FlexMatch, SoftMatch,
FreeMatch) outperform data augmentation base-
lines (i.e., Back Translation, TMix), and FT BERT.
We conclude leveraging pseudo-generated data
boosts performance more than when we only uti-
lize labeled data. Still, our method achieves better
performance than the best SSL baseline. In particu-
lar, our method outperforms SoftMatch, that also
leverages all samples from the unlabeled data, sup-
porting that our denoising strategy through MixUp
to incorporate unconfident samples is effective.

In addition to this, to understand the effect of uti-
lizing different LLMs in the pseudo-generated data
construction of VerifyMatch instead of using LoRA
Llama 3, we explore zero-shot prompting Llama
2, LoRA Llama 2, and fully fine-tune GPT-2, and
report results in Appendix A.2. We find that using
LoRA Llama 3 in VerifyMatch achieves the best
result compared to using other LLMs. To under-
stand this, we provide the comparison of pseudo-
generated samples on MNLI using various LLMs
in Appendix A.3. We conclude that using LoRA
Llama 3 in VerifyMatch is the reasonable design
choice to generate hypotheses for each class label
so that we achieve the best performance by lever-
aging Llama 3 LoRA.

Various low-resource settings We evaluate Ver-
ifyMatch by lowering the number of labeled sam-
ples per class to 500 and 1,000 and show results in
Table 3. The size of the pseudo-generated data re-

19325

RTE SICK SNLI-2.5k MNLI-2.5km MNLI-2.5kmm

VerifyMatch (Ours) 71.032.1 86.960.8 82.060.3 74.200.5 74.100.3

w/o mismatched PG data 68.551.5 85.370.8 80.850.6 71.870.4 72.120.8
w/o unconfident PG data 68.341.3 85.880.5 79.210.4 71.710.6 72.130.2
w/ Lower Weights 68.492.1 85.591.2 78.920.8 72.120.5 72.360.4

w/ Single Llama 3 69.541.0 86.110.6 81.450.5 72.030.8 72.310.5
w/ Fixed Threshold 65.922.0 86.000.4 80.360.8 72.460.7 73.060.4
w/ Median-Conf 68.881.5 86.240.5 80.910.2 72.910.4 73.570.4

Table 2: The results comparisons of ablation study.

RTE SICK SNLI MNLIm MNLImm

FT BERT, 500 labeled data 58.16 81.48 63.35 55.79 56.88
SoftMatch, 500 labeled data 65.38 82.22 73.72 62.21 62.81
VerifyMatch, 500 labeled data 66.43 83.99 76.62 68.73 69.26

FT BERT, 1,000 labeled data 60.90 84.63 71.89 64.85 65.37
SoftMatch, 1,000 labeled data 68.11 84.36 77.35 66.78 66.63
VerifyMatch, 1,000 labeled data 71.03 86.96 78.57 69.17 69.81

FT BERT, 2,500 labeled data - - 79.03 69.26 70.26
SoftMatch, 2,500 labeled data - - 80.83 72.35 73.11
VerifyMatch, 2,500 labeled data - - 82.06 74.20 74.10

Table 3: The comparison on various low-resource settings.
The maximum number of samples in each class for RTE and
SICK is 1,000 since these datasets are small in size.

RTE SICK SNLI-2.5k MNLI-2.5km MNLI-2.5kmm

7,500 PG samples 69.55 85.56 80.44 72.55 73.01
15,000 PG samples 71.03 86.96 82.06 74.20 74.10
30,000 PG samples 70.11 86.85 81.19 73.34 73.48
45,000 PG samples 68.47 85.76 81.01 72.15 72.71
60,000 PG samples 68.19 85.87 80.58 72.11 72.61

Table 4: The comparison of our method varying the number
of pseudo-generated (PG) samples.

Train Data SNLI-2.5k MNLI-2.5k
Test Data SNLI-hard HANS DNLI SNLI-hard HANS DNLI

Fine-tuning BERT 65.33 49.97 43.57 56.50 49.82 68.83
VerifyMatch 67.61† 50.16 43.99 59.05† 50.31† 76.15†

Table 5: The comparison between our method and the BERT
fine-tuning baseline method on challenging out-of-distribution
data. †: VerifyMatch improves the Fine-tuning BERT baseline
at p < 0.05 with paired t-test.

mained unchanged (i.e., 15,000 samples per class).
VerifyMatch achieves the best performance com-
pared to baselines on all settings.

Varying the number of pseudo-generated sam-
ples We use different amounts of pseudo-
generated (PG) samples (from 7,500 to 60,000 sam-
ples per class) in VerifyMatch while maintaining
the size of labeled samples (e.g., 2,500 samples per
class) and show results in Table 4. We observe the
performance becomes worse in general when using
more than 15,000 PG samples per class. Interest-
ingly, we observe that performance may degrade
when increasing the amount of pseudo-generated
data. This is because the larger number of pseudo-
generated samples possibly contains erroneously
labeled samples that can significantly hurt the per-
formance.

Out-of-domain results To test the robustness of
VerifyMatch, we use in-domain trained models to
predict out-of-distribution test samples. Specifi-
cally, we train the model on SNLI-2.5k and MNLI-
2.5k (using 2,500 labeled samples per class) re-
spectively, and test it on SNLI-hard (Gururangan
et al., 2018), HANS (McCoy et al., 2019), and
DNLI (Welleck et al., 2019). We report the results
in Table 5. We observe improvements in Verify-
Match compared to the baseline and conclude our
approach is also robust.

6 Ablation Study
Mismatched & unconfident Pseudo-Generated
(PG) data To explore the impact of identifying
mismatched and unconfident PG data and incor-
porating them after denoising through MixUp, we
show the results of VerifyMatch without leveraging
them. These results are obtained by removing Lmm

and Lunconf one at a time in the final training loss
Eq. (7). That is, we simply discard mismatched
PG data and unconfident PG data, and show results
in Table 2, under the line “w/o mismatched PG
data (w/o Lmm)” and “w/o unconfident PG data
(w/o Lunconf)”, respectively. We observe a drop
in performance which shows the effectiveness of
using both PG samples through MixUp.

MixUp as a Denoising Technique To under-
stand the use of MixUp as a denoising technique,
we compare it with VerifyMatch employing a dif-
ferent denoising method. Specifically, we lower
the weights of both mismatched and unconfident
pseudo-generated samples during training as in
Chen et al. (2023). We report the results in Table 2
under the line “w/ Lower Weights”. Note that this
result is different from SoftMatch reported in Table
1 since we specifically identify both mismatched
and unconfident PG data, whereas SoftMatch in Ta-
ble 1 only identifies unconfident data. We observe
that this results in performance degradation com-
pared to using MixUp as denoising, demonstrating
that MixUp offers a more effective approach.

19326

FEVER-2.5k QQP-2.5k
Dev Symm-v1 Symm-v2 Test TwitterPPDB

FT BERT (Devlin et al., 2019) 79.75 49.37 57.31 76.08 84.68
Back Translation (Edunov et al., 2018) 80.54 48.66 57.04 76.60 85.48
FixMatch (Sohn et al., 2020) 82.21 51.16 58.37 78.59 84.69
UDA (Xie et al., 2020) 82.89 52.38 60.57 79.28 84.09
FreeMatch (Wang et al., 2023b) 81.07 49.23 57.58 79.76 84.71
SoftMatch (Chen et al., 2023) 83.72 53.08 61.37 79.85 84.83
VerifyMatch (Ours) 85.68† 54.95 62.12† 80.89† 86.03†

Table 6: Evaluation on fact verification (FEVER) and paraphrase detection (QQP) on in- and out-of-domain test data. †:
VerifyMatch improves the best baseline at p < 0.05 with paired t-test.

Single Llama 3 We use class-specific fine-tuned
Llama 3 models to ensure the coverage of all
classes in pseudo-generated samples. To explore
the effect of this, we use a single fine-tuned Llama
3 model, and show results in Table 2 (i.e., w/ Single
Llama 3). We observe performance degradation in
all cases, which proves the effectiveness of using
class-specific fine-tuned Llama 3 models.

The average confidence Instead of calculating
the average confidence as in Eq. (3), we use (1)
a fixed threshold (i.e., 0.9), and (2) the median
of the model’s confidence on a predicted pseudo-
label class in a PG batch , and show the results in
Table 2 under the lines “w/ Fixed Threshold” and
“w/ Median-Conf”, respectively. We observe that
neither case outperforms our method, supporting
our design choice is reasonable.

Evaluation on other NLU tasks We evaluate
our method for other sentence pairs classifica-
tion tasks, which are fact verification, and para-
phrase detection, and show results in Table 6. We
follow the similar settings as SNLI-2.5k/MNLI-
2.5k for the evaluation (i.e., randomly sampled
2,500 labeled data per class and generate pseudo-
generated data).We evaluate both in-domain (ID)
and challenging out-of-domain (OOD) test data.
For fact verification, we evaluate FEVER-dev and
Symmetric-v1/v2 (Schuster et al., 2019) test data.
For paraphrase detection, we evaluate QQP and
TwitterPPDB (Lan et al., 2017) test data. Verify-
Match outperforms competitive baselines on both
ID and OOD test data, proving its effectiveness.

7 Conclusion

We proposed VerifyMatch, which constructs
pseudo-generated samples using large language
models (LLMs), and introduced semi-supervised
learning (SSL) that acts as a verifier to ensure the
quality of pseudo-generated samples for natural
language inference. For SSL, we further proposed

to identify and incorporate mismatched and uncon-
fident pseudo-generated samples after denoising
through MixUp, which allows a model to have ac-
cess to a broader range of training samples. We em-
pirically validate that VerifyMatch achieves com-
petitive performance compared to strong baselines.

8 Limitations

Our approach, like any other semi-supervised ap-
proach, is computational more expensive than stan-
dard supervised learning. Nonetheless, our em-
pirical results consistently demonstrate significant
performance improvements. We believe that our
method provides an important step forward for
semi-supervised learning on NLI datasets, provid-
ing valuable insights.

Acknowledgements

We thank the National Science Foundation for sup-
port from grants IIS-2107518 which supported the
research and the computation in this study. We also
thank our reviewers for their insightful feedback
and comments.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2024. Gpt-4 technical report.

Monica Agrawal, Stefan Hegselmann, Hunter Lang,
Yoon Kim, and David Sontag. 2022. Large language
models are few-shot clinical information extractors.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1998–2022, Abu Dhabi, United Arab Emirates. Asso-
ciation for Computational Linguistics.

Eric Arazo, Diego Ortego, Paul Albert, Noel E
O’Connor, and Kevin McGuinness. 2020. Pseudo-
labeling and confirmation bias in deep semi-
supervised learning. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1–8.
IEEE.

19327

https://doi.org/10.18653/v1/2022.emnlp-main.130
https://doi.org/10.18653/v1/2022.emnlp-main.130

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong
Wang, Bernt Schiele, Xing Xie, Bhiksha Raj, and
Marios Savvides. 2023. Softmatch: Addressing the
quantity-quality trade-off in semi-supervised learn-
ing. volume abs/2301.10921.

Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. Mixtext:
Linguistically-informed interpolation of hidden space
for semi-supervised text classification. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2147–2157.

Yuhan Chen, Shuqi Li, and Rui Yan. 2024. FlexiQA:
Leveraging LLM’s evaluation capabilities for flex-
ible knowledge selection in open-domain question
answering. In Findings of the Association for Com-
putational Linguistics: EACL 2024, pages 56–66,
St. Julian’s, Malta. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Truong Do, Phuong Nguyen, and Le-Minh Nguyen.
2023. Structsp: Efficient fine-tuning of task-oriented
dialog system by using structure-aware boosting and
grammar constraints. In Findings of the Association
for Computational Linguistics: ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 10206–10220. Asso-
ciation for Computational Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489–500.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Aparna Garimella, Rada Mihalcea, and Akhash Amar-
nath. 2022. Demographic-aware language model
fine-tuning as a bias mitigation technique. In Pro-
ceedings of the 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 12th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), pages 311–319, Online only. Association for
Computational Linguistics.

Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019.
Augmenting data with mixup for sentence clas-
sification: An empirical study. arXiv preprint
arXiv:1905.08941.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 107–112,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021a. Lora: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Xuming Hu, Chenwei Zhang, Fukun Ma, Chenyao Liu,
Lijie Wen, and S Yu Philip. 2021b. Semi-supervised
relation extraction via incremental meta self-training.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 487–496.

Shankar Iyer, Nikhil Dandekar, and Kornel Csernai.
2017. Quora question pairs. In First Quora Dataset
Release: Question Pairs.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song.
2020. Puzzle mix: Exploiting saliency and local
statistics for optimal mixup. In International Con-
ference on Machine Learning, pages 5275–5285.
PMLR.

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. 2017.
A continuously growing dataset of sentential para-
phrases. In Proceedings of the 2017 Conference on

19328

https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.48550/ARXIV.2301.10921
https://doi.org/10.48550/ARXIV.2301.10921
https://doi.org/10.48550/ARXIV.2301.10921
https://aclanthology.org/2024.findings-eacl.4
https://aclanthology.org/2024.findings-eacl.4
https://aclanthology.org/2024.findings-eacl.4
https://aclanthology.org/2024.findings-eacl.4
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.648
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.648
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.648
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://aclanthology.org/2022.aacl-short.38
https://aclanthology.org/2022.aacl-short.38
https://arxiv.org/abs/1905.08941
https://arxiv.org/abs/1905.08941
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/D17-1126
https://doi.org/10.18653/v1/D17-1126

Empirical Methods in Natural Language Processing,
pages 1224–1234, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Dong-Hyun Lee. 2013. Pseudo-label : The simple and
efficient semi-supervised learning method for deep
neural networks. ICML 2013 Workshop : Challenges
in Representation Learning (WREPL).

Ju Hyoung Lee, Sang-Ki Ko, and Yo-Sub Han. 2021.
Salnet: Semi-supervised few-shot text classification
with attention-based lexicon construction. In AAAI.

Ximing Li and Bo Yang. 2018. A pseudo label based
dataless naive Bayes algorithm for text classification
with seed words. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1908–1917, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Zhenyu Li, Sunqi Fan, Yu Gu, Xiuxing Li, Zhichao
Duan, Bowen Dong, Ning Liu, and Jianyong Wang.
2024. Flexkbqa: A flexible llm-powered framework
for few-shot knowledge base question answering. In
Thirty-Eighth AAAI Conference on Artificial Intelli-
gence, AAAI 2024, Thirty-Sixth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI
2024, Fourteenth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2014, Febru-
ary 20-27, 2024, Vancouver, Canada, pages 18608–
18616. AAAI Press.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022a. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. In
Advances in Neural Information Processing Systems,
volume 35, pages 1950–1965. Curran Associates,
Inc.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022b. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61–68,
Dublin, Ireland. Association for Computational Lin-
guistics.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A SICK cure for the evaluation of

compositional distributional semantic models. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 216–223, Reykjavik, Iceland. European Lan-
guage Resources Association (ELRA).

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3428–3448, Florence,
Italy. Association for Computational Linguistics.

Zeping Min, Jinfeng Bai, and Chengfei Li. 2024.
Leveraging local variance for pseudo-label selec-
tion in semi-supervised learning. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 14370–14378.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 2340–2353,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Çağlar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of the 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885–4901, Online. Association for Computa-
tional Linguistics.

Seo Yeon Park and Cornelia Caragea. 2022. A data
cartography based MixUp for pre-trained language
models. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4244–4250, Seattle, United States.
Association for Computational Linguistics.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. Ad-
vances in neural information processing systems,
34:11054–11070.

Dan Qiao, Chenchen Dai, Yuyang Ding, Juntao Li,
Qiang Chen, Wenliang Chen, and Min Zhang. 2022.
SelfMix: Robust learning against textual label noise
with self-mixup training. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 960–970, Gyeongju, Republic of Korea.
International Committee on Computational Linguis-
tics.

19329

https://aclanthology.org/C18-1162
https://aclanthology.org/C18-1162
https://aclanthology.org/C18-1162
https://doi.org/10.1609/AAAI.V38I17.29823
https://doi.org/10.1609/AAAI.V38I17.29823
https://proceedings.neurips.cc/paper_files/paper/2022/file/0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://aclanthology.org/C18-1198
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2022.naacl-main.314
https://doi.org/10.18653/v1/2022.naacl-main.314
https://doi.org/10.18653/v1/2022.naacl-main.314
https://aclanthology.org/2022.coling-1.80
https://aclanthology.org/2022.coling-1.80

Mobashir Sadat and Cornelia Caragea. 2022. Learn-
ing to infer from unlabeled data: A semi-supervised
learning approach for robust natural language infer-
ence. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 4763–4776,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Ramit Sawhney, Megh Thakkar, Shivam Agarwal,
Di Jin, Diyi Yang, and Lucie Flek. 2021. HypMix:
Hyperbolic interpolative data augmentation. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9858–
9868, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Fabian David Schmidt, Ivan Vulić, and Goran Glavaš.
2022. Don’t stop fine-tuning: On training regimes
for few-shot cross-lingual transfer with multilingual
language models. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 10725–10742, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Tal Schuster, Darsh Shah, Yun Jie Serene Yeo, Daniel
Roberto Filizzola Ortiz, Enrico Santus, and Regina
Barzilay. 2019. Towards debiasing fact verification
models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3419–3425, Hong Kong, China. Association for Com-
putational Linguistics.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus
Cubuk, Alexey Kurakin, and Chun-Liang Li. 2020.
Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. Advances in Neural
Information Processing Systems, 33:596–608.

Anirudh Som, Sujeong Kim, Bladimir Lopez-Prado,
Svati Dhamija, Nonye Alozie, and Amir Tamrakar.
2020. A machine learning approach to assess student
group collaboration using individual level behavioral
cues. In Computer Vision–ECCV 2020 Workshops:
Glasgow, UK, August 23–28, 2020, Proceedings, Part
VI 16, pages 79–94. Springer.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Sunil Thulasidasan, Gopinath Chennupati, Jeff A
Bilmes, Tanmoy Bhattacharya, and Sarah Michalak.
2019. On mixup training: Improved calibration and
predictive uncertainty for deep neural networks. Ad-
vances in neural information processing systems, 32.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay

Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir
Najafi, Ioannis Mitliagkas, David Lopez-Paz, and
Yoshua Bengio. 2019. Manifold mixup: Better rep-
resentations by interpolating hidden states. In In-
ternational Conference on Machine Learning, pages
6438–6447. PMLR.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Lijing Wang, Yingya Li, Timothy A. Miller, Steven
Bethard, and Guergana Savova. 2023a. Two-stage
fine-tuning for improved bias and variance for large
pretrained language models. In Proceedings of the
61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
15746–15761. Association for Computational Lin-
guistics.

Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou,
Yue Fan, Zhen Wu, Jindong Wang, Marios Savvides,
Takahiro Shinozaki, Bhiksha Raj, Bernt Schiele, and
Xing Xie. 2023b. Freematch: Self-adaptive thresh-
olding for semi-supervised learning. In The Eleventh
International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

Sean Welleck, Jason Weston, Arthur Szlam, and
Kyunghyun Cho. 2019. Dialogue natural language
inference. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3731–3741.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. Advances in Neural
Information Processing Systems, 33:6256–6268.

Luyu Yang, Yan Wang, Mingfei Gao, Abhinav Shri-
vastava, Kilian Q Weinberger, Wei-Lun Chao, and
Ser-Nam Lim. 2021. Deep co-training with task de-
composition for semi-supervised domain adaptation.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 8906–8916.

19330

https://aclanthology.org/2022.findings-emnlp.351
https://aclanthology.org/2022.findings-emnlp.351
https://aclanthology.org/2022.findings-emnlp.351
https://aclanthology.org/2022.findings-emnlp.351
https://doi.org/10.18653/v1/2021.emnlp-main.776
https://doi.org/10.18653/v1/2021.emnlp-main.776
https://doi.org/10.18653/v1/2022.emnlp-main.736
https://doi.org/10.18653/v1/2022.emnlp-main.736
https://doi.org/10.18653/v1/2022.emnlp-main.736
https://doi.org/10.18653/v1/D19-1341
https://doi.org/10.18653/v1/D19-1341
https://arxiv.org/abs/1806.05236
https://arxiv.org/abs/1806.05236
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/V1/2023.ACL-LONG.877
https://doi.org/10.18653/V1/2023.ACL-LONG.877
https://doi.org/10.18653/V1/2023.ACL-LONG.877
https://openreview.net/forum?id=PDrUPTXJI_A
https://openreview.net/forum?id=PDrUPTXJI_A
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101

Wenpeng Yin, Huan Wang, Jin Qu, and Caiming Xiong.
2021. Batchmixup: Improving training by interpolat-
ing hidden states of the entire mini-batch. In FIND-
INGS.

Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo
Zhao, and Chao Zhang. 2021. Fine-tuning pre-
trained language model with weak supervision: A
contrastive-regularized self-training approach. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1063–1077, Online. Association for Computa-
tional Linguistics.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh,
Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
2019. Cutmix: Regularization strategy to train strong
classifiers with localizable features. In Proceedings
of the IEEE/CVF international conference on com-
puter vision, pages 6023–6032.

Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu,
Jindong Wang, Manabu Okumura, and Takahiro Shi-
nozaki. 2021. Flexmatch: Boosting semi-supervised
learning with curriculum pseudo labeling. Advances
in Neural Information Processing Systems, 34.

Haode Zhang, Haowen Liang, Yuwei Zhang, Li-Ming
Zhan, Xiao-Ming Wu, Xiaolei Lu, and Albert Lam.
2022. Fine-tuning pre-trained language models for
few-shot intent detection: Supervised pre-training
and isotropization. In Proceedings of the 2022 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 532–542, Seattle, United
States. Association for Computational Linguistics.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. 2018. mixup: Beyond empirical
risk minimization. In International Conference on
Learning Representations.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2020. DIALOGPT : Large-scale
generative pre-training for conversational response
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 270–278, Online. As-
sociation for Computational Linguistics.

A Appendix

A.1 Training Details

Pseudo-generated data construction We
mainly use Llama-3-8B-Instruct as large
language models (LLMs) in pseudo-generated
data construction from HuggingFace Transformers
library6. For LoRA-tuned Llama 3 (Low-Rank

6https://huggingface.co/docs/ transformers/index

Adaptation; Hu et al. (2021a)), we set hyper-
parameters as follows: learning rate as 2e-3,
training epoch as 3, LoRA alpha as 8, LoRA
dropout as 0.05, train batch size as 1, gradient
accumulation steps as 64. We set the LoRA rank
value as 4 for RTE, 16 for SICK, and 8 for both
SNLI and MNLI datasets. We use the system
prompt as follows: “<s>[INST] «SYS»\nYou
are a helpful, respectful, and
honest assistant. Always follow
the instructions provided and
answer honestly.\n«/SYS»\n\n” and
provide customized prompts depending on target
labels as follows: (1) entailment: “We will
give you the sentence. Using
only the given sentence and what
you know about the world. Write
one alternate sentence that is
definitely a true description of
the given sentence. Sentence:
{premise}”, (2) contradiction: “We will
give you the sentence. Using
only the given sentence and what
you know about the world. Write
one alternate sentence that is
definitely a false description
of the given sentence. Sentence:
{premise}” (3) neutral: “We will give
you the sentence. Using only
the given sentence and what you
know about the world. Write one
alternate sentence that might be
a true description of the given
sentence. Sentence: {premise}”.
We construct the system prompt as suggested by
the Llama 3 pre-training step while constructing
task-dependent prompts by referring to the in-
structions provided when generating a large-scale
Natural Language Inference (NLI) benchmark as
in Bowman et al. (2015).

We additionally compare the results of our
method using other various Large Language
Models (LLMs) on different settings in pseudo-
generated data construction, which are zero-shot
prompting/LoRA Llama 2 and full fine-tuning
GPT-2, and show results in Table 7. For this, we
use Llama-2-7b-chat-hf, and use GPT2
from the huggingface transformers library. For
zero-shot prompting Llama 2 in pseudo-generated
data construction, we observe that using the same
prompts as LoRA Llama 3 results in poor genera-

19331

https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.18653/v1/2022.naacl-main.39
https://doi.org/10.18653/v1/2022.naacl-main.39
https://doi.org/10.18653/v1/2022.naacl-main.39
https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1710.09412
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30

tion quality. This is because prompting can be a
brittle process due to LLMs being overly sensitive
to the surface form of the instruction (Perez
et al., 2021; Lu et al., 2022). Hence, we devise
the following prompt for zero-shot prompting
Llama 2 for pseudo-generated data construction:
“Please generate a hypothesis
that has the {target label}
relationship with the given
sentence: {premise} Hypothesis:”,
where "target label" is every possible class
label. For LoRA Llama 2, we follow the same
prompts and hyper-parameters as LoRA Llama
3. To fully fine-tune GPT-2, we set the training
epoch as 30, training batch size as 16, eval batch
size as 1, weight decay 0.01, and use the AdamW
optimizer (Loshchilov and Hutter, 2018) with
learning rate 3e-5. To produce class-specifically
fine-tuned GPT-2, we provide training samples
to the model by concatenating the premise and
hypothesis with special tokens that belong to a
specific class. We use the following special tokens:
[BOS], [EOS], [UNK], [PAD], [SEP].
We then generate hypotheses by giving unlabeled
premises as the inputs using class-specifically
tuned GPT-2 models. For this, we employ beam
search with beam size 5 and penalize repeated
bi-grams to introduce diversity to the generated
target sentences where the minimum length is 30
and the maximum length is 100. The hypotheses
generation models leveraging fully fine-tuned
GPT-2 are trained in ≈ 1 hour using a single
NVIDIA RTX A5000 GPU. It took less than ≈ 1
hour to generate the hypotheses for each dataset
using the same GPU.

Verifier For the verifier, we use
bert-base-uncased for BERT as a task
model where we use the final layer of BERT
[CLS] token output representations with a
maximum of 3 epochs. We optimize the models
by using AdamW (Loshchilov and Hutter, 2018).
We set a batch size of 32 for both labeled and
unlabeled data, a learning rate of 2e-5, a gradient
clip of 1.0, and no weight decay. For MixUp, we
set the beta distribution hyperparameter α = 0.4
for λ in Eq. (1), following previous studies that
observed α = 0.4 to yield the best performance in
text classification tasks (Thulasidasan et al., 2019;
Som et al., 2020). We utilize a sharpening function
on probability distribution produced by the verifier,
BERT, for numerical stability as follows:

Sharpen(P (y|x), T) = P (y|x) 1
T

||P (y|x) 1
T ||1

where ||.||1 is l1-norm of the vector, T is a temper-
ature hyper-parameter and set as 0.5. We report the
mean and standard deviation across three training
runs with random restarts.

All experiments are conducted on two NVIDIA
RTX A5000 GPUs with a total time for fine-
tuning all models being under 24 hours. For semi-
supervised learning baseline methods, we use batch
size 16 across all datasets. We set τ = 0.95 in
FixMatch (Sohn et al., 2020), set τ = 0.95 in Flex-
Match (Zhang et al., 2021), and λ = 0.3 to obtain
τ in FreeMatch (Wang et al., 2023b).

To evaluate VerifyMatch on other sentence-pair
classification tasks such as fact verification and
paraphrase detection, we do the following steps:
For the fact verification task, we randomly sample
2,500 labeled data per class from FEVER origi-
nal training data and then construct 2,500 pseudo-
generated samples per class. For the paraphrase
detection task, we also randomly sampled 2,500
labeled data per class from QQP (Iyer et al., 2017)
original training data and then generate 10,000
pseudo-generated samples per class.

A.2 Various Lage Language Models (LLMs)

To understand the impact of leveraging various
LLMs in the pseudo-generated data construction of
VerifyMatch instead of using LoRA Llama 3, we
explore zero-shot prompting Llama 2, LoRA Llama
2, and fully fine-tune GPT-2, and show results in Ta-
ble 7. Interestingly, we observe better performance
when using fully fine-tuned GPT-2 than zero-shot
prompting Llama 2 and LoRA Llama 2. We posit
that this is because the fully fine-tuning GPT-2
generates more meaningful hypotheses for each un-
labeled premise with reasonable class labels than
zero-shot prompting Llama 2 and LoRA Llama 2.
Still, VerifyMatch which leverages LoRA Llama
3 in pseudo-generated data construction achieves
the best performance in general, which proves the
effectiveness of our design choice.

A.3 Examples of Pseudo-generated Data

We show examples from the pseudo-generated
data on MNLI in Table 8 in comparison of full
fine-tuning GPT-2, Zero-shot prompting Llama 2,
LoRA Llama 2 and LoRA Llama 3. We make the
following observations: (1) Llama 3 (LoRA) and

19332

RTE SICK SNLI-2.5k MNLI-2.5km MNLI-2.5kmm

VerifyMatch (Ours, LoRA Llama 3) 71.032.1 86.960.8 82.060.3 74.200.5 74.100.3

VerifyMatch w/ Zero-shot Prompting Llama 2 69.822.5 85.930.5 81.330.3 73.080.5 73.550.8
VerifyMatch w/ LoRA Llama 2 69.771.8 86.920.6 81.160.8 73.490.2 73.900.2
VerifyMatch w/ Full Fine-tuning GPT-2 70.842.2 86.810.3 81.850.6 73.920.3 74.380.5

Table 7: The comparison of our method with different Large Language Models (LLMs) in pseudo-generated data construction.
Bold text shows the best performance. Underlined text shows the best performance among other LLM settings than ours.

Premise Generated Hypothesis Target Label
Full fine-tuning GPT-2 Zero-shot Prompting Llama 2 LoRA Llama 2 LoRA llama 3

The Turks adopted the Indian cuisine and
costume as well as a modified form of the
Hindu caste system.

A similar style was developed by Turkey in India,
with its custom for dancing on horseback

The Turks adopted the Indian cuisine and
costume as well as a modified form of the
Hindu caste system in order to create a
distinct cultural identity that would set them
apart from their neighbors.

The Turks took on Indian cuisine
and fashion.

The Turks adopted Hinduism. Entailment

During World War II, the US built
an Air Force base here that later
became the international airport.

The air force was established in Germany
during WWI when it started building a
facility there to serve as this country’s
national aviation terminal for future

The US built an Air Force base here
in order to protect its interests during
World War II.

The US built an air force base in
the country during World War II.

The US built an Air Force base
here during World War II.

Entailment

However, the evidence was strong
for a harm reduction effect across
various indicators of risk and re-injury.

There is no significant difference in risks
from these factors to different outcomes
at all levels except as shown above

Despite the evidence of a
harm reduction effect, the program
was not effective in reducing injuries

The evidence was not strong for a
harm reduction effect across various
indicators of risk and re-injury.

The evidence was weak for
a harm reduction effect.

Contradiction

Even so, its ascendancy is troublesome.

The Ascendant’s descent has been very successful
and it doesn’t require any special precautions or
procedures to gain control of the land at all times
for you as a member in this country

Despite its ascendancy, it will face a
decline in popularity.

It is a blessing to have the ascendancy. Its ascendancy is a good thing. Contradiction

Sisters are, you know, Mr. Hastings.
I’ll tell the truth about my father and mother’s
divorce because they were just divorcing in
December of that year (as I did)

Sisters are, on average, more likely to have
a positive relationship with their siblings
than with their parents.

Sisters are like the best of friends. Sisters are the best, Mr. Hastings. Neutral

And responsibilities of any groups or
committees of senior managers,
and the relationships between them.

The relationship to these leaders is important
because they have a lot more than just one
person in their office at all times that
you can get from an executive officer

The distribution of responsibilities among
senior managers and the relationships
between them are critical to the effective
functioning of an organization,
but they do not have a direct impact on
the organization’s overall performance.

The responsibilities of the groups and
committees are clearly defined and understood.

The responsibilities of the senior managers
are to make sure the company is successful.

Neutral

Table 8: The comparisons of generated hypothesis among full fine-tuning GPT-2, Zero-shot Prompting Llama 2, LoRA Llama
2, and LoRA Llama 3 in pseudo-generated data construction of VerifyMatch.

Competence Test Distraction Test Noise Test

Antonymy Numerical Word
Overlap Negation Length

Mismatch
Spelling

Error
m mm Reasoning m mm m mm m mm m mm

FT BERT
RTE

4.41 5.68 60.53 64.44 64.42 64.28 65.05 60.53 61.55 60.08 60.32
VerifyMatch w/ GPT-2 10.05 11.55 64.57 68.15 69.09 66.43 67.52 69.47 69.92 67.60 68.14

VerifyMatch w/ Llama 3 12.26 10.16 66.49 68.54 68.88 67.76 68.44 69.96 70.04 68.85 69.20

FT BERT
SICK

1.27 0.63 27.35 26.69 26.66 29.67 29.18 29.06 28.86 32.93 31.56
VerifyMatch w/ GPT-2 6.79 0.81 33.53 30.48 31.52 30.05 30.23 35.33 38.08 35.15 33.78

VerifyMatch w/ Llama 3 6.93 1.16 34.21 31.20 30.83 31.16 31.55 38.54 40.28 33.39 34.25

FT BERT
SNLI

50.16 48.17 32.32 35.54 31.82 40.54 40.49 43.99 43.19 41.57 40.96
VerifyMatch w/ GPT-2 73.99 89.85 35.42 40.77 41.01 44.76 44.20 53.14 54.79 50.81 50.35

VerifyMatch w/ Llama 3 75.16 86.65 36.11 40.86 45.53 45.88 45.56 55.30 55.47 51.12 51.58

FT BERT
MNLI

18.64 21.91 24.76 47.46 49.28 36.38 32.27 59.42 60.68 58.41 52.12
VerifyMatch w/ GPT-2 25.56 25.95 31.89 43.61 43.63 36.54 36.81 61.05 62.17 57.09 57.85

VerifyMatch w/ Llama 3 27.76 28.80 32.38 44.45 44.09 35.98 36.12 62.23 62.38 56.63 57.16

Table 9: The comparison of stress test accuracy (%) of the baseline fine-tuning BERT (FT BERT) and our method with different
large language models (LLMs). GPT-2 refers to full fine-tuning GPT-2 and Llama 3 refers to LoRA tuning Llama 3.

GPT-2 generate higher quality hypotheses / pseudo-
labels compared with Llama 2 (LoRA) and Llama
2 (zero-shot) although the GPT-2 generations are
longer in length compared with Llama 3; in some
cases, GPT-2 hallucinates; (2) Llama 2 (zero-shot)
generates in most cases longer hypotheses com-
pared with the other LLMs; (3) Llama 2 (zero-shot)
yields slightly better generation results compared
with Llama 2 (LoRA) especially on the contradic-
tion class on which Llama 2 (LoRA) often simply
adds negation words in front of the verb; (4) Llama
2 (zero-shot), although it was better than Llama
2 (LoRA), in many cases we observed that it was
generating hypotheses by copying the premise and

then generating additional tokens; and (5) None
of the four LLMs introduced toxicity or vulgarity
content in the generated hypotheses. Hence, we
conclude that Llama 3 and GPT-2 could be the best
competitor LLMs to use in VerifyMatch.

A.4 Baseline prompting

To obtain the baseline prompting results of
in-context and zero-shot learning on Large
Language Models (LLMs), we construct the
prompts as follows by referring to Brown
et al. (2020): {premise} \nQuestion:
{hypothesis} True, False, or
Neither?\nAnswer: ” For in-context

19333

RTE SICK SNLI-2.5k MNLI-2.5km MNLI-2.5kmm

VerifyMatch (Ours, w/ LoRA Llama 3) 71.032.1 86.960.8 82.060.3 74.200.5 74.100.3
VerifyMatch (w/ Full FT GPT-2) 70.842.2 86.810.3 81.850.6 73.920.3 74.380.5

w/o mismatched PG data (w/o Lmm) 70.031.2 86.210.1 81.150.5 72.450.9 72.580.7
w/o unconfident PG data (w/o Lunconf) 69.541.5 86.460.1 80.480.3 72.830.1 73.010.1
w/ Lower Weights 69.441.1 86.290.3 80.140.2 72.860.7 73.140.4

w/ Single GPT-2 69.311.8 86.050.6 81.050.3 71.020.6 71.490.3
w/ Fixed Threshold 66.111.3 85.970.7 80.240.5 72.910.2 73.220.3
w/ Median-Conf 69.941.8 86.360.3 80.910.2 73.050.1 73.470.2

Table 10: The results comparisons of ablation study using GPT-2 full fine-tuning in pseudo-generated data construction of
VerifyMatch.

Figure 2: Reliability diagrams of SNLI on BERT using
a fixed high-confidence threshold in self-training (left),
and our proposed method (right) with pseudo-generated
data by GPT-2.

RTE SICK SNLI MNLIm MNLImm

FT BERT, 500 labeled data 58.16 81.48 63.35 55.79 56.88
VerifyMatch, 500 labeled data (GPT-2) 65.65 83.83 74.41 63.17 64.47

FT BERT, 1,000 labeled data 60.90 84.63 71.89 64.85 65.37
VerifyMatch, 1,000 labeled data (GPT-2) 70.84 86.81 77.52 67.91 68.43

Table 11: The comparison on various low-resource settings
using full fine-tuning GPT-2.

RTE SICK SNLI-2.5k MNLI-2.5km MNLI-2.5kmm

7,500 PG samples 70.03 86.04 81.05 72.27 72.65
15,000 PG samples 70.84 86.81 81.85 73.92 74.38
30,000 PG samples 69.93 86.92 81.26 73.63 73.53
45,000 PG samples 69.78 86.43 81.11 72.35 73.48
60,000 PG samples 69.82 86.47 80.82 72.71 72.96

Table 12: The comparison of our method varying the number
of pseudo-generated (PG) samples using full fine-tuning GPT-
2.

learning, we concatenate randomly selected 10
labeled samples (around 3 labeled samples per
class) at the beginning of the prompts with their
answers. We follow the same evaluation protocol
provided by Gao et al. (2021) to report results.

A.5 Overconfidence

MixUp is widely known for preventing the model
from being overly confident in its predictions and
reducing miscalibration errors. To explore whether
the VerifyMatch method also relieves the miscali-
bration problem, we plot the reliability diagram of
our proposed method on the SNLI dataset and com-
pare it to a method of using fixed high-threshold
(i.e., 0.9) in Figure 2. We observe that VerifyMatch
alleviates the overconfidence problem, as the gap
between accuracy and confidence in each bin in
the reliability diagrams is reduced compared to the

baseline method.

A.6 Robustness Analysis

To explore the robustness of our method for NLI,
we test on NLI stress test (Naik et al., 2018) and
show results in Table 9. The stress test is developed
based on the weakness of NLI models in various as-
pects such as, presence of a negation word such as
‘no’ causes the model to predict the sample as con-
tradiction class (i.e., negation), and word overlap
between premise and hypothesis results in model
to predict the sample as entailment class (i.e., word
overlap), etc. To this end, we evaluate 11 different
tests that are divided into three parts: (1) compe-
tence test, (2) distraction test, and (3) noise test.
We compare the fine-tuning (FT) BERT baseline
method and our proposed approach, VerifyMatch,
with leveraging full fine-tuning GPT-2, and LoRA
Llama 3 in the pseudo-generated data construc-
tion, and show results in Table 9. We observe that
our method shows better performance than the FT
BERT baseline in general, all across the stress tests,
which proves the robustness of our VerifyMatch.

A.7 VerifyMatch with full fine-tuning GPT-2

We observe the best performance when using full
fine-tuning GPT-2, compared to LoRA Llama 2 and
zero-shot prompting Llama 2 in pseudo-generated
data construction. Consequently, we conduct the
same ablation study as in Section 6, focusing on
the full fine-tuning GPT-2, instead of leveraging
LoRA Llama 3 in the pseudo-generated data con-
struction of VerifyMatch. The results are presented
in Table 10. Specifically, we compare the test ac-
curacy (%) of VerfiyMatch (1) without leveraging
mismatched pseudo-generated data (i.e., removing
Lmm in the final training objective), (2) without
using unconfident pseudo-generated data (i.e., re-
moving Lunconf), (3) with a denoising technique
of lowering mismatched and unconfident pseudo-
generated samples instead of using MixUp (i.e.,

19334

w/ Lower weights), (4) using a single fully fine-
tuned GPT-2 instead of using class-specifically
fully fine-tuned GPT-2 (i.e., w/ Single GPT-2), (5)
using a fixed threshold in identifying unconfident
pseudo-generated samples (i.e., w/ Fixed Thresh-
old), and (6) using the median confidence in identi-
fying unconfident pseudo-generated samples (i.e.,
w/ Median-Conf). We observe there is a perfor-
mance drop in all cases compared to VerifyMatch
either leveraging full fine-tuned GPT-2 or LoRA
Llama 3, which proves the effectiveness of each
component in our proposed method.

We also explore VerifyMatch with full fine-
tuning GPT-2 by lowering the number of labeled
samples per class to 500 and 1,000 and show re-
sults in Table 11. The size of the pseudo-generated
data constructed by fully fine-tuned GPT-2 remains
the same as 15,000 samples per class. Notably, our
proposed method consistently outperformed the
baseline on all datasets, demonstrating its effective-
ness. Furthermore, we vary the number of pseudo-
generated data generated from class-specifically
fine-tuned GPT-2 (from 7,500 to 60,000 samples
per class), while using the size of labeled samples
as 2,500 samples per class, and show results in Ta-
ble 12. We observe the performance achieves the
best performance when leveraging 15,000 pseudo-
generated samples per class in general. We ob-
serve that using 60,000 PG samples per class re-
sults in performance degradation on all datasets.
We posit that this is because the large number of
pseudo-generated samples (e.g., more than 30,000
per class) compared to the limited labeled data
(e.g., 2,500 per class) weakens the influence of the
high-quality labeled samples in general.

19335

