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Abstract

Evaluating the generalisation capabilities of
multimodal models based solely on their per-
formance on out-of-distribution data fails to
capture their true robustness. This work intro-
duces a comprehensive evaluation framework
that systematically examines the role of instruc-
tions and inputs in the generalisation abilities of
such models, considering architectural design,
input perturbations across language and vision
modalities, and increased task complexity. The
proposed framework uncovers the resilience
of multimodal models to extreme instruction
perturbations and their vulnerability to observa-
tional changes, raising concerns about overfit-
ting to spurious correlations. By employing this
evaluation framework on current Transformer-
based multimodal models for robotic manipu-
lation tasks, we uncover limitations and sug-
gest future advancements should focus on ar-
chitectural and training innovations that bet-
ter integrate multimodal inputs, enhancing a
model’s generalisation prowess by prioritising
sensitivity to input content over incidental cor-
relations.1

1 Introduction

Designing artificial agents to follow natural lan-
guage instructions—to understand and act within
the context of their environment—is a long-term
goal of artificial intelligence (Winograd, 1972). An
artificial agent should generalise to unseen scenar-
ios by combining concepts and skills underpinning
its training data in novel ways (Lake et al., 2017).

Previous work which proposed several language-
guided tasks for tackling this challenge, largely fo-
cused on generalising to environments with differ-
ent scenes from the training ones (e.g., ALFRED;
Shridhar et al., 2020). However, relying solely on
language for embodied action execution tasks can
be inefficient, especially in collaborative settings

1Code available https://github.com/amitkparekh/
CoGeLoT.

with high ambiguity, such as visually cluttered
scenes (Chiyah-Garcia et al., 2024, 2023; Li et al.,
2023). Multimodal prompts—instructions which
interleave vision and language tokens—represent a
way to specify commands which can be more flex-
ible and specific than can be explained using text
only (Jiang et al., 2023; Ma et al., 2024; Stone et al.,
2023). This capability is crucial for realistic human-
robot collaboration tasks and can be viewed as anal-
ogous to pointing at objects within a scene (Chen
et al., 2021; Islam et al., 2022). For this reason,
Jiang et al. (2023) presented VIMA-BENCH, the
first benchmark aimed at studying several axes of
generalisation involving novel concepts and tasks,
with models receiving instructions combining both
language and visual referents.

Many other benchmarks test for generalisation
by solely looking at held-out examples (Open X-
Embodiment Collaboration, 2024; Stone et al.,
2023). However, as highlighted by Hupkes et al.
(2023), generalisation should be evaluated across
multiple dimensions when creating truly robust
models, capable of performing safely in varied en-
vironments. Inspired by these ideals, we assess
generalisation along key axes such as structural,
compositional, and robustness through specific co-
variate shifts (i.e., input perturbations) as outlined
in Figure 1. Specifically, we looked at 1) an exten-
sive set of linguistic perturbations on instructions,
such as paraphrasing, corrupting the language con-
tent, and replacing visual referents with language
descriptions; 2) masking entire modalities within
instructions; 3) introducing visual perturbations by
permuting object order; and 4) increasing the diffi-
culty of the tasks (e.g., placing distractors between
source and target). We categorise each perturbation
as either plausible (e.g., paraphrases) or unrealistic
(e.g., nonsensical instructions). We expect mod-
els to be robust to plausible inputs while dropping
performance when faced with unrealistic inputs.

To implement this formalisation, we use VIMA-
BENCH which, unlike other state-of-the-art bench-
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Figure 1: Our evaluation framework. Each perturbation affects the instruction or observation inputs, which can be
linguistic, visual, or a combination of both. The plausibility of a perturbation relates to a model’s expected perfor-
mance. Sensitivity to unreasonable conditions (é) indicates that a model should not perform the task successfully
given the perturbation, while plausible perturbations (Ë) suggest that it should still perform successfully.

marks such as ALFRED (Shridhar et al., 2020),
CLIPort (Shridhar et al., 2022), ARNOLD (Gong
et al., 2023), and Ravens (Zeng et al., 2021), pro-
vides several advantages: 1) it covers the majority
of robotic manipulation tasks, 2) it offers more
fine-grained levels for assessing the systematic gen-
eralisation of models; and 3) it represents a bench-
mark that allows for careful examinations of spe-
cific architecture and training regimes. For this
reason, this paper builds on the controllability of
VIMA-BENCH to extensively study the impact
that properties of multimodal prompts and visual
representations have on model performance.

We applied our novel evaluation setup on mul-
tiple state-of-the-art architectures commonly used
for different Embodied AI tasks and datasets (Jiang
et al., 2023; Octo Model Team, 2023; Open X-
Embodiment Collaboration, 2024; Reed et al.,
2022; Shridhar et al., 2022; Zhao et al., 2023).2 We
uncover several deficiencies of current “generalist
agents” including 1) insensitivity to language per-
turbations, as they still perform several tasks when
provided with gibberish instructions; and 2) inabil-
ity to handle tasks of increasing difficulty, poten-

2While feasible, we refrain from applying our evaluation
framework on larger Vision and Language Models (VLMs)
such as LLaVa (Liu et al., 2023), as we focus on models of
a similar size to VIMA, which are amenable to on-device
processing when deployed on real-world robots.

tially including more distractors in the visual scene.
These findings aim to shed light on state-of-the-art
model performance and call for more research on
systematically assessing model robustness with ad-
equate tasks and settings that are indicative of the
generalisation capacities of Embodied AI models
designed to safely and effectively complete tasks
in the real world in collaboration with humans.

2 Related Work

Language-driven Embodied AI Embodied AI
focuses on designing agents that are embodied in
some environment (simulated or real) and generates
actions to complete a given task, whose objective
is typically specified in natural language (Das et al.,
2018). Tasks for Embodied AI have been formu-
lated in different ways depending on the degree of
complexity of the action space. For example, Vi-
sion+Language Navigation (VLN; Anderson et al.,
2018; Thomason et al., 2020) requires agents to
generate navigation actions to follow natural lan-
guage instructions and reach some destination in
the environment. With more sophisticated 3D sim-
ulated environments such as AI2Thor (Kolve et al.,
2017), more recent works also define several tasks
involving object interaction (e.g., Gao et al., 2023;
Shridhar et al., 2022, 2020; Stone et al., 2023).
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Language in Robotic Manipulation Tasks Lan-
guage plays a crucial role in many Embodied
AI tasks, providing an interface for task learn-
ing (Laird et al., 2017), with many Embodied
AI tasks that require language instructions which
are typically hand-crafted via templates (e.g.,
VIMA-BENCH, CLIPort, ARNOLD) or crowd-
sourced (e.g., ALFRED). However, benchmarks
often focus on evaluating generalisation using held-
out episodes (Open X-Embodiment Collaboration,
2024) and do not thoroughly evaluate the impor-
tance of language (Octo Model Team, 2023; Open
X-Embodiment Collaboration, 2024; Stone et al.,
2023). For instance, models trained on ALFRED
have shown to be insensitive to language instruc-
tions (Akula et al., 2022), while nonsensical instruc-
tions have even improved downstream performance
on the VLN benchmark (Zhu et al., 2023).

We focus on tabletop robotic manipulation tasks
with natural language instructions to measure per-
formance on a well-scoped action execution task.
This allows for assessment of visual grounding ca-
pabilities from grounding instructions in the real
world, while also removing the extra complexity
of sophisticated skills (e.g., SLAM) required for
navigation tasks (Anderson et al., 2018) or the need
to predict fine-grained joint control by relying on
inverse-kinematics (Ma et al., 2024; Octo Model
Team, 2023; Open X-Embodiment Collaboration,
2024; Zeng et al., 2021).

Assessing Generalisation and Robustness Em-
bodied AI systems must generalise to any com-
plex and novel tasks they might face (Duan et al.,
2022), making robustness a highly-desired char-
acteristic in models, illustrating how well they
can ignore spurious correlations and generalise to
new domains and tasks (Akula et al., 2022; Gong
et al., 2023; Hupkes et al., 2023). Embodied AI
benchmarks often assess generalisation through
seen/unseen scenes (e.g., Gao et al., 2023; Shrid-
har et al., 2020; Zheng et al., 2022), assuming that
all tasks the agent must complete and the objects
the agent must interact with are fully specified at
training time. While recent benchmarks evaluate
models on unseen objects and scenes (Gong et al.,
2023; Open X-Embodiment Collaboration, 2024;
Stone et al., 2023), there is no notion of systematic
or compositional generalisation to new concepts, af-
fordances (Pantazopoulos et al., 2022; Suglia et al.,
2020), or novel tasks (Chung et al., 2022).

Although models trained on realistic simulations

can transfer learned behaviours to real-world en-
vironments (Octo Model Team, 2023; Open X-
Embodiment Collaboration, 2024), they remain
sensitive to distributional shifts in visual inputs
(Li et al., 2024), an issue that persists even when
training data includes perturbations (Pumacay et al.,
2024). Furthermore, while models can adapt to re-
located targets, they struggle with mid-trajectory
linguistic shifts, such as swapping directions from
“left” to “right” (Anwar et al., 2024). Our work ex-
tends these findings by examining model behaviour
under extreme instruction perturbations, providing
insights into how models handle challenging and
unconventional scenarios.

3 Experimental Setup

Evaluation Data We use VIMA-BENCH to com-
pare model performance across various skills, tasks,
and levels of systematicity, as it is best suited for
evaluating the role instructions play in generalising
from multimodal prompts.3 Specifically, we assess
the compositional generalisation capabilities at four
distinct levels of systematicity (Hupkes et al., 2020;
Pantazopoulos et al., 2022): object pose sensitivity
(L1), combinatorial generalisation (L2), novel ob-
jects (L3), and novel tasks (L4). See Appendix B
for environment and evaluation details.

Models We compare four model architectures:
encoding visual representations with either object-
centric or image-patches; and conditioning prompts
on the state through either cross-attention or con-
catenation (Ma et al., 2024). All models are trained
on multimodal instructions with interleaved visual
and linguistic features. Multimodal instructions are
encoded through a frozen pretrained T5 language
model (Raffel et al., 2020), where encoded visual
features are injected into the embedding space of
the language model (Driess et al., 2023; Ma et al.,
2024; Tsimpoukelli et al., 2021). Visual features
are implicitly encoded through embedding image
frames per observation—more adaptable, more ef-
ficient, and outperforming explicit symbolic repre-
sentations (Gadre et al., 2022; Song et al., 2024).
For each observation, the model predicts an ac-
tion defining a linear movement between two end-
effector poses in SE(3)—each representing posi-
tion and rotation in 3D space. See Appendix A for
further training and implementation details.

3Jiang et al. (2023) did not release a reproducible bench-
mark; Appendix C.1 details how we remedied this issue.

19391



L1 L2 L3 L4

(a) Trained on Original; Evaluated on Original
Cross-Attn + Obj-Centric 79.3 78.8 72.3 48.6
Cross-Attn + Patches 63.0 62.0 44.9 13.9
Concatenate + Obj-Centric 79.2 78.8 77.1 49.2
Concatenate + Patches 68.0 66.3 52.9 23.4

(b) Trained on Original; Evaluated on Paraphrases
Cross-Attn + Obj-Centric 78.6 77.6 69.8 47.1
Cross-Attn + Patches 61.1 58.5 45.3 16.8
Concatenate + Obj-Centric 71.5 72.2 62.7 43.0
Concatenate + Patches 61.3 57.0 46.0 20.5

(c) Trained on Paraphrases; Evaluated on Original
Cross-Attn + Obj-Centric 82.7 81.8 77.4 48.0
Cross-Attn + Patches 63.9 63.0 49.5 20.4
Concatenate + Obj-Centric 80.4 78.2 74.8 49.0
Concatenate + Patches 67.1 62.8 52.0 19.8

(d) Trained on Paraphrases; Evaluated on Paraphrases
Cross-Attn + Obj-Centric 77.4 77.5 70.8 48.6
Cross-Attn + Patches 62.2 61.0 45.7 16.1
Concatenate + Obj-Centric 68.8 67.2 59.6 46.0
Concatenate + Patches 67.2 67.8 60.5 46.9

Table 1: Average success rate per level for each model
when trained or evaluated on either original or para-
phrased multimodal instructions.

4 The Evaluation Framework

We systematically perturb model inputs at test time
to investigate the importance of visual and linguis-
tic information in multimodal prompts. This ap-
proach helps us understand how input character-
istics contribute to a model’s task comprehension.
Full per-task results are reported in Appendix F.

4.1 Substitutivity in Instructions

We explore how resilient models with multimodal
prompts are to substitutivity (Hupkes et al., 2020)
by comparing performance on paraphrased instruc-
tions: a meaning-preserving operation. We expect
robust models to perform similarly to these plausi-
ble inputs.4 We also replace visual referents with
textual descriptors to assess how models map visu-
als to the language embedding space.5

Baseline Table 1a shows model performance for
each combination of prompt-conditioning method
and visual encoder when trained and evaluated us-
ing the default instructions from VIMA-BENCH.

4Appendix E.2 details how paraphrases were created.
5We focus on single-object referents, excluding scene or

frame referents. See Appendix D.5 for implementation details.

The best-performing approach uses cross-attention
to condition prompts on object-centric observa-
tions, outperforming image patches. Performance
for each model is similar at L1–2 but worsens at
L3–4, indicating their inability to generalise to new
objects and tasks.

Evaluating on Paraphrases Table 1b shows that
models trained on original instructions are predom-
inantly robust to substitutivity in instructions; how-
ever, models do exhibit a small performance loss
with cross-attention affected less than those using
concatenation. This robustness to paraphrased in-
structions likely stems from using T5 (Raffel et al.,
2020) as the frozen pretrained language model
(Tsimpoukelli et al., 2021); Raffel et al. (2020)
demonstrate that T5 exhibits strong performance
on GLUE/SuperGLUE (Wang et al., 2019a,b). The
lack of syntactic or lexical diversity in the VIMA-
BENCH inputs, suggests that the models might over-
fit to the surface form rather than learning to gener-
alise to new sentences.

Training on Paraphrases Table 1c and 1d show
that training on linguistically-diverse instructions
can improve performance for models that use cross-
attention to condition prompts or use object-centric
visual features. However, performance worsens
when evaluated on paraphrased instructions. Taken
together, this suggests that training on diverse
instructions helps models better connect the se-
mantics of a multimodal instruction over its sur-
face form, aiding in generalisation to novel scenes.
However, poor performance on L3 shows that mod-
els struggle more with unseen objects. Furthermore,
using image patches and concatenation performs
better when trained and evaluated on diverse in-
structions over any training/evaluation condition.
This suggests that these architectures are more re-
silient to unseen objects and unseen tasks allowing
for better generalisation in more complex settings.

Replacing Visual Referents with Descriptors
Table 2 shows object-centric models perform com-
parably when replacing objects with natural lan-
guage descriptors, suggesting that models have
learned to map visual features within the language
model’s embedding space (Driess et al., 2023;
Tsimpoukelli et al., 2021). Furthermore, cross-
attention outperforms concatenation, indicating it
better preserves relationships between natural lan-
guage descriptors and visual referents. Addition-
ally, both models that use image patches perform
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L1 L2 L3 L4

With Visual Referents*
Cross-Attn + Obj-Centric 87.3 86.4 75.8 49.2
Cross-Attn + Patches 78.3 77.5 54.6 17.8
Concatenate + Obj-Centric 88.9 86.4 81.2 48.5
Concatenate + Patches 79.9 75.1 55.0 15.2

Replace Visual Referents with Descriptors*
Cross-Attn + Obj-Centric 87.9 87.2 73.3 49.0
Cross-Attn + Patches 46.8 44.7 38.2 25.5
Concatenate + Obj-Centric 79.4 78.1 70.0 38.5
Concatenate + Patches 56.4 50.6 52.0 25.8

Table 2: Average success rate per level when visual
referents are replaced with textual descriptors during
evaluation only. Models trained on paraphrased mul-
timodal instructions—using visual referents. * Not all
tasks included; see Appendix D.5 for details.

notably worse on L1–3. When using patches, all
visuals provided to the model in the prompt—be it
a single object or a frame—are encoded into a fixed
number of patches, whereas object-centric methods
encode one object per token. Due to the cardinality
of this mapping, the former is a more difficult task
than the latter.

4.2 Perturbations of Instruction Syntax
We introduce two methods to distort language
within a multimodal prompt: Gobbledygook Words
and Gobbledygook Tokens. As shown in Figure 2,
each method removes information from the lan-
guage modality differently without affecting the
visual referents. Gobbledygook Tokens preserves
the tokenised sequence length, while Gobbledy-
gook Words maintains the word count but increases
the tokenised sequence length (see Appendix D.4
for implementation details). As Gobbledygook per-
turbations are unrealistic, we expect performance
to plummet to near-random chance.6 Furthermore,
while the Gobbledygook perturbations removes sig-
nal from the linguistic channel, it does not remove
text from the instruction. While irrelevant to the
task, they are still provided to, and considered by,
the language model. To investigate the contribution
of each modality further, we compare their individ-
ual impact on the overall model performance.

Gobbledygook Perturbations Table 3 shows that
Gobbledygook perturbations degrade performance
across architectures, but not to random chance, im-
plying that models rely on other cues to infer tasks

6We derive random chance in Appendix D.1.
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Figure 2: Illustration of language perturbations chal-
lenging model sensitivity to language content in mul-
timodal instructions: Gobbledygook Words (random
characters, increased token length) and Gobbledygook
Tokens (random words, same sequence length).

L1 L2 L3 L4

Without Gobbledygook*
Cross-Attn + Obj-Centric 82.7 81.8 77.4 48.0
Cross-Attn + Patches 63.9 63.0 49.5 20.4
Concatenate + Obj-Centric 80.4 78.2 74.8 49.0
Concatenate + Patches 67.1 62.8 52.0 19.8

Gobbledygook Tokens
Cross-Attn + Obj-Centric 56.7 54.5 36.6 22.9
Cross-Attn + Patches 45.2 45.9 34.0 15.1
Concatenate + Obj-Centric 56.7 55.3 45.8 26.4
Concatenate + Patches 45.9 44.3 32.9 20.0

Gobbledygook Words
Cross-Attn + Obj-Centric 50.8 51.8 39.9 33.8
Cross-Attn + Patches 46.7 48.4 33.9 18.6
Concatenate + Obj-Centric 44.8 44.5 35.4 23.9
Concatenate + Patches 44.3 42.7 31.0 19.0

Table 3: Average success per level after applying each
Gobbledygook perturbation to the original multimodal
instructions, showing all models outperforming random
chance. Models trained on multimodal paraphrased
instructions. * Copied from Table 1c.

despite nonsensical instructions.
When applying Gobbledygook Tokens, object-

centric features outperform image-patches, re-
gardless of the prompt-conditioning method used.
This implies that object-centric features provide a
stronger signal for models to infer the desired task
without explicit direction. While we would expect
similar performance drops across both perturbation
methods, object-centric models exhibit poorer per-
formance with Gobbledygook Words compared to
Gobbledygook Tokens. With Gobbledygook Words,
conditioning with cross-attention helps models un-
cover the task at lower levels, but cross-attention
with patches struggles more with novel tasks and
objects, possibly indicating overfitting. This prob-
lem might arise because the decoder uses absolute
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L1 L2 L3 L4

No Tokens Masked*
Cross-Attn + Obj-Centric 82.7 81.8 77.4 48.0
Cross-Attn + Patches 63.9 63.0 49.5 20.4
Concatenate + Obj-Centric 80.4 78.2 74.8 49.0
Concatenate + Patches 67.1 62.8 52.0 19.8

Mask Language Tokens
Cross-Attn + Obj-Centric 36.3 35.1 19.1 14.8
Cross-Attn + Patches 26.3 26.5 20.7 11.2
Concatenate + Obj-Centric 39.0 39.0 28.8 25.9
Concatenate + Patches 30.2 29.0 24.5 16.2

Mask Visual Referents
Cross-Attn + Obj-Centric 63.6 62.6 56.4 47.9
Cross-Attn + Patches 64.8 63.0 49.6 20.6
Concatenate + Obj-Centric 59.8 58.9 53.2 47.8
Concatenate + Patches 67.1 63.7 52.8 23.0

Table 4: Average success rate per level after masking
tokens from one modality within the multimodal in-
struction. Models trained on paraphrased instructions
and evaluated on original instructions. * Copied from
Table 1c.

positional embeddings, which are known to poorly
extrapolate to longer sequences (Press et al., 2022;
Sun et al., 2022).

Comparing Modalities We investigate whether
models rely equally on both modalities by mask-
ing one modalities at test time—a perturbation that
should significantly decrease performance. Table 4
shows that when masking one modality, perfor-
mance across all models and levels is above ran-
dom chance, indicating that models continue to
determine the task. Notably, performance suffers
more when masking language tokens than when the
visual referents are masked. While this indicates
that models may rely more heavily on the language
content, we would expect that applying Gobbledy-
gook perturbations to lead to a comparable drop
in performance as masking out the language to-
kens entirely. Since this is not the case, we instead
hypothesise that we can attribute the observed dif-
ferences to the nature of autoregressive modelling
and the order in which modalities are arranged in
the instructions. Specifically, as all instructions
begin with language tokens, models may struggle
with sequences that do not start this way.

4.3 Are Models Relying on Heuristics?

When provided with incomplete instructions, hu-
mans often combine available information with

L1 L2 L3 L4

(a) Mistakes Allowed*
Cross-Attn + Obj-Centric 82.7 81.8 77.4 48.0
Cross-Attn + Patches 63.9 63.0 49.5 20.4
Concatenate + Obj-Centric 80.4 78.2 74.8 49.0
Concatenate + Patches 67.1 62.8 52.0 19.8

(b) No Mistakes Allowed
Cross-Attn + Obj-Centric 70.3 69.7 67.9 46.8
Cross-Attn + Patches 58.2 57.3 44.2 15.9
Concatenate + Obj-Centric 72.2 71.4 65.7 45.5
Concatenate + Patches 61.2 57.6 46.0 12.9

Table 5: Average success rate per level when models
must solve tasks either with or without mistakes per-
mitted. Models trained on paraphrased instructions and
evaluated on original instructions. * Copied from Ta-
ble 1c.

heuristics to act rationally in the face of uncer-
tainty (Gigerenzer and Goldstein, 1996; Simon,
1955). Similarly, models may rely on heuristics—
combining any available information with prior
knowledge and world understanding—to infer ap-
propriate actions and complete tasks. Furthermore,
when given the opportunity, models may attempt
to recover from mistakes through trial and error.

Models Try to Recover from Mistakes Table 5b
shows object-centric representations outperform
models encoding visuals with image-patches, show-
ing that these models are better at solving the tasks
without any errors. However, the performance
across all levels and models is lower compared
to the more lenient time limit (Table 5a), indicating
that given additional time, models explore alterna-
tive actions, often successfully. While beneficial,
extended time may lead to misleading conclusions
when evaluating model performance under unrea-
sonable conditions or nonsensical instructions, as
models simply have more time to perform sub-
optimal action sequences that eventually lead to
success. We attribute this behaviour to recovery
demonstrations from VIMA-BENCH (see discus-
sion in Appendix B.3.1).

Models Act Without Instructions Table 6 re-
veals that models continue to perform tasks when
instructions are entirely removed, which suggests
that models learn to rely on heuristics from obser-
vations. Concatenation with object-centric visual
features exhibits worse performance, indicating a
higher sensitivity to the presence of an instruction,
which is a desirable characteristic. Additionally,
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L1 L2 L3 L4

Mask Instructions; Mistakes Allowed
Cross-Attn + Obj-Centric 52.4 50.5 40.6 33.0
Cross-Attn + Patches 26.5 25.8 20.2 11.9
Concatenate + Obj-Centric 30.9 30.5 22.1 14.1
Concatenate + Patches 30.4 29.4 25.0 15.6

Mask Instructions; No Mistakes Allowed
Cross-Attn + Obj-Centric 45.2 43.9 33.1 27.4
Cross-Attn + Patches 19.5 18.7 14.5 7.6
Concatenate + Obj-Centric 7.0 7.2 3.5 2.2
Concatenate + Patches 22.5 22.2 18.2 8.8

Table 6: Average success rate per level with instruc-
tions entirely masked at test-time. Models trained on
paraphrased instructions and evaluated with original in-
structions before masking. Performing above random
chance indicates that the model is using other informa-
tion solve each task.

cross-attention with object-centric features outper-
forms concatenation, despite both models using the
same visual encoding method. Model performance
across all levels is greater when they can recover
from errors, suggesting that models will persis-
tently attempt to solve the task if uninterrupted.
This behaviour raises important safety concerns:
models are acting without clear direction, and yet
somehow find the right answer. Furthermore, this
difference highlights the effects of how instructions
are conditioned on observations, especially when
those instructions are masked.

4.4 Task Complexity

As each architecture can infer the correct task with-
out instruction, it implies that they rely on cues
solely from the observations, as that is the only
other source of input into the model. We test this
in two ways: 1) by introducing distractors with the
Distracting difficulty level, or 2) by increasing task
difficulty with the Extreme difficulty level. Distrac-
tors are objects similar to the target objects in either
texture or shape and “task difficulty increases” are
specific to each task. The Extreme level assesses a
model reliance on object affordances when reason-
ing about actions (Lohmann et al., 2020). These
new difficulty levels are plausible: agents should be
able to disregard unnecessary details and focus on
task-critical objects or aspects. Figure 3 provides
an example, with further details in Appendix E.1.

Table 7 presents results on our novel evaluation
set. Models using patches likely perform poorly
due to their inability to represent objects in complex

L1 L2 L3 L4

(a) Distracting
Cross-Attn + Obj-Centric 53.8 52.4 46.6 34.8
Cross-Attn + Patches 27.9 27.4 18.2 3.8
Concatenate + Obj-Centric 60.2 59.8 53.3 39.0
Concatenate + Patches 29.2 27.0 18.4 5.1

(b) Extreme
Cross-Attn + Obj-Centric 53.1 53.5 55.5 36.6
Cross-Attn + Patches 13.0 12.5 9.7 9.2
Concatenate + Obj-Centric 22.5 23.0 23.2 10.5
Concatenate + Patches 16.2 15.0 12.1 12.1

(c) Extremely Distracting
Cross-Attn + Obj-Centric 30.2 30.7 33.0 31.8
Cross-Attn + Patches 4.5 3.8 2.1 2.9
Concatenate + Obj-Centric 14.6 14.3 10.8 8.5
Concatenate + Patches 5.7 5.2 2.8 4.1

(d) Distracting; Mask Instructions
Cross-Attn + Obj-Centric 33.0 32.2 21.0 21.9
Cross-Attn + Patches 6.7 7.3 2.4 2.6
Concatenate + Obj-Centric 5.9 4.5 1.2 0.6
Concatenate + Patches 6.5 6.7 3.4 1.6

(e) Extreme; Mask Instructions
Cross-Attn + Obj-Centric 15.2 15.5 17.4 11.2
Cross-Attn + Patches 5.7 4.6 2.7 4.6
Concatenate + Obj-Centric 4.5 3.3 2.0 2.2
Concatenate + Patches 3.9 4.1 2.7 7.4

(f) Extremely Distracting; Mask Instructions
Cross-Attn + Obj-Centric 10.1 8.7 8.7 10.9
Cross-Attn + Patches 2.9 2.8 0.4 3.6
Concatenate + Obj-Centric 4.3 4.3 2.0 1.4
Concatenate + Patches 1.7 1.6 0.4 1.2

Table 7: Average success rates across difficulty levels.
Models trained on paraphrased instructions and evalu-
ated with original instructions without any mistakes.

scenes, a known limitation of Transformer-based
vision encoders (Darcet et al., 2024; Pantazopoulos
et al., 2024). Recent work has proposed several so-
lutions to favour suitable object-centric representa-
tion learning (Locatello et al., 2020). While increas-
ing the resolution per patch or image might improve
performance (Karamcheti et al., 2024; Liu et al.,
2024), it can increase the number of tokens in the
decoder, potentially introducing new issues such
as increased computational complexity (Lin et al.,
2022) or inference time (Firoozi et al., 2024). The
Extreme difficulty level, which changes expected
affordances of objects (e.g., using non-container
objects to place objects on) impacts patch-based
models more significantly than object-centric mod-
els. This indicates that patch-based models are less
robust when objects are used in unexpected ways,
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Figure 3: Difficulty level comparisons to default (first column). Distracting add visual clutter; Extreme changes
parameters, complexity, and affordances; and, Extremely Distracting combines both. Top row: T1 (“pick and place
into the container”). Bottom row: T15 (“place all objects with the same shape as the container into it”). For
illustration purposes, we denote target containers with a green dashed box and target objects with pink dashed box.

Figure 4: Illustration comparing default and permuted
object tokens per observation. In the default ordering
(top), tokens in each observation follow the same pat-
tern: the container object first, the target object second,
and then any distractor objects. The permuted ordering
(bottom) randomises the order differently for each ob-
servation in the same sequence.

while object-centric models adapt better to these
changes. At the Extremely Distracting difficulty
level, patch-based models struggle substantially, in-
dicating their inability to handle both altered object
affordances and excessive visual clutter. This de-
cline highlights limitations of patch-based models
in complex, yet plausible, scenarios.

As task complexity increases, we expect the
model to be increasingly reliant on an instruction
to be able to solve the task without error. Tables 7d–
f show that with masked instructions, all models
except Cross-Attn + Obj-Centric plummet, though
not to random chance. This suggests that instruc-
tions are crucial in more complex settings, there
remains some chance that the model may success-

L1 L2 L3 L4

Permute Object Tokens; Mistakes Allowed
Cross-Attn + Obj-Centric 40.9 39.1 33.3 11.8
Concatenate + Obj-Centric 40.6 40.6 36.3 14.5

Permute Object Tokens; No Mistakes Allowed
Cross-Attn + Obj-Centric 24.9 24.6 20.7 5.9
Concatenate + Obj-Centric 27.6 27.8 24.8 8.2

Permute Object Tokens; Distracting
Cross-Attn + Obj-Centric 14.5 14.3 12.0 1.2
Concatenate + Obj-Centric 13.3 12.5 12.0 1.4

Permute Object Tokens; Extreme
Cross-Attn + Obj-Centric 12.0 12.7 10.8 6.1
Concatenate + Obj-Centric 7.7 7.3 7.2 7.1

Train + Eval with Permutation; Mistakes Allowed
Cross-Attn + Obj-Centric 59.7 42.1 38.1 14.4
Concatenate + Obj-Centric 70.6 49.9 44.7 14.5

Train + Eval with Permutation; No Mistakes Allowed
Cross-Attn + Obj-Centric 50.3 34.1 30.1 10.0
Concatenate + Obj-Centric 58.4 41.0 34.5 8.1

Table 8: Average success rate per level when evaluated
with permuted object tokens. All models are trained
with paraphrased instructions and evaluated with origi-
nal instructions.

fully solve the task.7 As Cross-Attn + Obj-Centric
outperforms all other models without instruction,
it suggests that it is using heuristics from the envi-
ronment to determine and solve the task.

7See Appendix F.2 for additional analysis into why average
performance is above random chance.
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4.5 Order Permutations

Object-centric models outperform others, but how
they succeed without instruction remains unclear,
possibly due to cues from observation encoding.
We explore whether permuting the order of object
tokens when provided in the model’s input affects
model performance (see Figure 4 for example per-
mutations). We assume that Transformer-based
models using object-centric tokens should be in-
variant to order permutations (Carion et al., 2020).

Instead, as shown in Table 8, we note that per-
muting the order of object-centric tokens causes
performance on the default difficulty level to half.
Exploring how well models perform without the
opportunity to recover from mistakes halves this
result further. This indicates that when they do
not rely on spurious correlations, models try to re-
cover from mistakes until an episode terminates.
Further proof of this is that performance degrades
as the environment becomes more complex: both
with more objects present (Distracting) and when
various affordances are not as expected (Extreme).

Similar to findings from Carion et al. (2020),
Transformer-based models are vulnerable to order
permutations. When trained on these permutations,
model performance improves, however, it is not at
the same level as Table 1, suggesting that a con-
siderable proportion of model performance stems
from learned spurious correlations.

5 Conclusion

We define an evaluation framework for Embodied
AI grounded in the generalisation framework from
(Hupkes et al., 2023). Specifically, we assess gen-
eralisation across important axes by means of spe-
cific multimodal input perturbations including para-
phrases, replacing visual referents with descriptors,
and manipulating the instruction syntax as well as
entire input modalities. We instantiate this evalu-
ation framework in VIMA-BENCH to assess the
robustness of state-of-the-art models.

Overall, our findings indicate that while substitu-
tivity can lead to performance gains, language per-
turbations do not impact performance as expected.
To further explore this effect, we evaluate whether
models rely on heuristics to complete tasks by re-
moving individual modalities. We show that mod-
els perform tasks even without instructions by re-
lying on spurious correlations within observations,
as learned during training. We further prove this ef-
fect by showing that performance decreases when

the number of objects in an environment increases,
and agents can no longer randomly perform the
correct sequence of actions.

Taken together, our findings suggest that it is im-
portant to define evaluation frameworks like ours
that can assess generalisation across multiple axes
in order to have a more reliable characterisation
of the overall model performance. In future work,
we aim to apply this evaluation framework system-
atically to other benchmarks as well to discover
important architectural insights that will guide the
next generation of Embodied AI models.

Limitations & Ethical Considerations

Limited in Embodied AI This study aims to
provide Embodied AI researchers with an experi-
mental evaluation framework for studying generali-
sation capabilities of robot policies via an extensive
set of multimodal input perturbations. We have in-
stantiated this framework using VIMA-BENCH.
VIMA-BENCH was created to evaluate robot ma-
nipulation tasks in a controlled setting with a focus
on compositional generalisation skills. To date,
many proposed embodied AI tasks require several
skills, such as navigation and manipulation. We fo-
cus on manipulation skills as they remove an extra
degree of complexity found in navigation tasks that
require more sophisticated skills (e.g., SLAM). Fur-
ther, tabletop manipulation allows us to focus on
problems in grounding language instructions in the
real world to assess visual grounding capabilities.

The architectures used in this work are also
used in more realistic benchmarks (e.g., Open X-
Embodiment Collaboration, 2024). Therefore, this
provides the possibility to study architectures used
for embodied AI tasks under very strict conditions
without being influenced by differences in robotic
platforms and embodiments.

The main contribution of our paper is to assess
to what extent this is true and to shed light on
the weaknesses of current Transformer-based ac-
tion policies. Additionally, we believe that our
framework is generic enough to be applied to other
datasets considering that it analyses model perfor-
mance using core concepts of systematic generali-
sation (Hupkes et al., 2023).

Choice of Perturbations on Visual Observations
In this work, we focus primarily on perturbations
that directly affect how models make decisions.
However, a possible avenue for future work would
be to explore how robust models are to other fac-
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tors such as camera choice and background colours
(Pumacay et al., 2024). In robotic manipulation
tasks, the camera’s distance from the robot is often
constant (Octo Model Team, 2023; Shridhar et al.,
2022; Zeng et al., 2021). Changing the camera’s
position relative to the robot after training would
introduce confounds and increase downstream diffi-
culties, unless trained to do so (e.g., Grauman et al.,
2024; Pumacay et al., 2024). When deploying mod-
els, it is crucial to test them under varying light lev-
els and background colours. Reducing light levels
can impede the model’s ability to perceive objects.
Therefore, using ground-truth segmentation masks
in low-light conditions is ecologically invalid; re-
quiring a new model to extract segmentation masks
at risk of introducing new confounds and potential
issues like sensitivity to light or camera limitations.

Safety Concerns with Embodied AI The aim of
Embodied AI is to build artificial agents that can
collaborate and enhance the human experience via
either offering companionship (Deng et al., 2019;
Strohmann et al., 2023) or performing tasks (Duan
et al., 2022; Takeda et al., 2019). As explained
by Duan et al. (2022), the latter is tested via simu-
lations which attempt to create ecologically valid
frameworks to evaluate agent performance before
deployment in a real-world setting. Through this
lens, the findings shown in this paper are particu-
larly worrisome, as the shortcomings that we de-
scribe indicate issues with the evaluation process
itself. This could mean that embodied agents previ-
ously evaluated as successful in their generalisation
capabilities may fail outside of a simulated envi-
ronment, increasing the chance to harm humans.

While our framework explains how to thor-
oughly and systematically assess the training and
evaluation of an embodied agent, it is important to
note that while our exploration is extensive, there
are still aspects that fall outside of the scope of this
paper. Our future work aims to apply our frame-
work to a wider array of environments. This will
allow us to provide the research community with
a more systematic evaluation approach aimed at
pinpointing edge cases and limitations of Embod-
ied AI systems, paving the way to a more robust
solution for Sim2Real transfer.
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Hyperparameter Value

Pretrained Language Model t5-base (Raffel et al., 2020)
Optimizer AdamW (Loshchilov and

Hutter, 2019)
Dropout 0.1
Weight Decay 0
Gradient Clip Threshold 1.0
Maximum Learning Rate 1e-4
Minimum Learning Rate 1e-7
Warmup steps 7K (896K examples)
Cosine Annealing steps All remaining steps
Training epochs 10
Total examples seen 6 099 200
Examples per optimizer step 128

Table A.1: Hyperparameters using during model train-
ing for each model.

A Training Details

A.1 Policy Definition

In the environment, models must learn a non-
Markovian policy π : P × H → A, which is
essential for completing tasks that rely on previous
observations (such as tasks 5 and 16). The policy π
maps a multimodal instruction p ∈ P and a history
trajectory of observations and actions ht ∈ H up
to some discrete time step t to the two-pose action
primitive at = (Tstart, Tend) ∈ A.

A multimodal instruction p is an ordered se-
quence (x1, . . . , xl) of length l, where each ele-
ment xi can either be a word wi or a visual rep-
resentation of an object or frame of a scene vi.
Observations provided to the model are denoted
as ot ∈ Ω, where t represents the time step of the
observation in the sequence.

Each action at defines a linear movement be-
tween two end effector poses—where the robot arm
moves linearly from the start pose Tstart to the end
pose Tend before retracting. Each pose is defined in
the special Euclidean group SE(3) and represented
as the state vector (x, y, z, qw, qx, qy, qz), where
x, y, z are Cartesian coordinates and qw, qx, qy, qz
are quaternion components representing the orien-
tation of the end effector.

The history trajectory ht consists of pairs of past
observations and actions up to time step t, with
the final element being the observation at time step
t. Formally, each history trajectory is structured
as ht = (o0, a0, o1, . . . , at−1, ot). Consequently,
the history trajectory space for time step t can be
defined as H = (Ω×A)t × Ω.

Training objective Similar to Jiang et al. (2023),
the model is trained through behaviour cloning of
expert demonstrations (Duan et al., 2017) that min-
imises a loss function for a trajectory of T actions
given by Equation (1):

L(θ) =
1

T

T∑

t=0

log πθ(at|p, ht) (1)

Notably, the loss function was modified to prevent
the model from being influenced by the trajectory
length (Pantazopoulos et al., 2023).

A.2 Implementation Details
To allow for a fair comparison, all model code uses
the code provided from Jiang et al. (2023). Various
alterations were made to capture metrics and im-
prove performance, however all architectures are
identical. Hyperparameters per component follow
that stated in Appendix C in Jiang et al. (2023).

Following Brohan et al. (2023) and Jiang et al.
(2023), each coordinate of the pose is predicted
separately into one-of-n bins. We follow Jiang
et al. (2023), where each coordinate per pose is
discretised into 50 bins, with the exception of the
y-position which is discretised into 100 bins. For
each action dimension, the bin width is uniform
across the total action space of the environment.

A.3 Training Hyperparameters
To control for possible confounding variables
across all models, we use the same training hyper-
parameters from Appendix D in Jiang et al. (2023)
and from the various GitHub issues. We report
a comprehensive table of hyperparameters in Ta-
ble A.1. Across all models that were trained, these
hyperparameters were kept constant and no hyper-
parameter sweeps were performed. All models
were trained for 10 epochs and we used the check-
point created at the end of epoch 10.

Computation Budget All models were trained
using four NVIDIA A100 40GB GPUs, with each
run taking approximately 10 hours. Each evalua-
tion run on the environment took approximately
2 hours and did not require the use of any GPUs.
Therefore, the total computational budget for this
work is 480 GPU hours.

Pretrained Language Model Following Jiang
et al. (2023) and Octo Model Team (2023), we also
use the pretrained encoder from t5-base (Raffel
et al., 2020) as the pretrained language model that
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encodes multimodal instructions. Additionally, fol-
lowing Jiang et al. (2023) and Tsimpoukelli et al.
(2021), we unfreeze the last two layers of the T5
encoder during training.

Learning Rate Schedule While our training pro-
cess is similar to Jiang et al. (2023), preliminary
experiments showed that using a cosine annealing
learning rate schedule that reduced the learning rate
to the end of the 10th epoch performed better than
annealing to 17K steps and training the model at
10−7 for 5 epochs.

A.4 Training Components from Scratch
Following Jiang et al. (2023), the instruction en-
coder was the only pretrained component—using
t5-base (Raffel et al., 2020); all other components
were trained from scratch.

Segmentation Masks We used the ground-truth
segmentation masks during training and evaluation
over a trained object detector model because there
is minimal performance difference between using
a ground truth predictor and one that was trained
for the task (Jiang et al., 2023; Octo Model Team,
2023). As a result, this allows us to control for
possible confounding variables from propagated
errors.

B Environment Details

In this section, we further outline details of VIMA-
BENCH from Jiang et al. (2023). Built on top of
the Ravens simulator (Zeng et al., 2021), VIMA-
BENCH contains 17 tabletop object manipulation
tasks to assess the capabilities learned by VLMs
through a four-level protocol that evaluates their
systematic generalisation capabilities. All models
are trained using behavioural cloning from 50K
expert demonstrations for each of 13 tasks, with 4
tasks held out for zero-shot evaluation.

B.1 Skills Models Must Learn to Perform
One of the benefits of VIMA-BENCH is that mod-
els must learn skills either in isolation or in combi-
nation with other skills, which is a desirable capa-
bility of intelligent systems (Lake et al., 2017).

1. Simple Object Manipulation. Picking up ob-
jects from a name or a visual representation,
and placing them in specific locations and posi-
tions.

2. Visual Goal Completion. Manipulating ob-
jects to match the scene in the provided frame.

3. Visual Memory. After performing actions, re-
member the previous state of the workspace
and perform an action given information from
that time.

4. Visual Reasoning. Only performing actions
on objects that have the same colours/shapes as
in the instruction.

5. One-Shot Imitation. Imitate the actions nec-
essary to make the workspace look like a given
sequence of frames.

6. Novel Concept Grounding. The prompt con-
tains unfamiliar words like “dax” which are
explained through visual referents and used
within an instruction similar to multimodal in-
context learning (Zhang et al., 2024).

B.2 Different Levels of Generalisation

VIMA-BENCH uses tiers of generalisation levels
to enable more precise assessment of a model’s
capabilities in the environment by testing its adapt-
ability conditions unseen during training that are
either object or instruction specific, as described
below:

Placement Generalisation (L1) Object poses—
starting positions and orientation—are novel. Fail-
ure at this level indicates that model learning is
not invariant to object poses, and therefore indi-
cates the model is unable to generalise beyond how
objects are positioned in training data.

Combinatorial Generalisation (L2) Object
shape and texture combinations are novel (e.g.,
the model has seen either red objects and squares
during training, but never a red square). Failure
indicates an inability learn and/or combine object-
specific information, therefore unable to perform
systematicity within the visual scenes.

Novel Object Generalisation (L3) Objects
shapes and textures are novel (e.g., the model has
never seen blue objects or triangles during training).
Failure at this level indicates difficulty in abstract-
ing object-specific information beyond the training
corpus.

Novel Task Generalisation (L4) Tasks (includ-
ing instructions and success criteria) have never
been seen. Failure at this level indicates an in-
ability to perform compositional generalisation to
combine skills/movements to solve novel tasks.
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Task 1 2 3 4 5 6 7 9 11 12 15 16 17

Minimum 1 1 1 1 1 1 1 1 2 1 2 2 3
Maximum 2 3 2 4 7 2 3 3 2 8 4 4 4

Table B.1: Minimum and maximum actions taken to
solve each task across all episodes within the training
data. Missing tasks (8, 10, 13, 14) do not appear in
the training data as they are only seen when evaluating
unseen tasks (L4).

B.3 Dataset Preparation for Training

We parse all 664 976 instances across the 13 tasks
used for training—as provided by Jiang et al.
(2023)—each containing an action trajectory cre-
ated by a scripted oracle. We create a validation
set using stratified sampling such that a total of
50 000 instances across all the tasks are held out.8

Each instance is prepared for training in advance
by tokenizing any natural language and preparing
visual features for the model. We release all code
used to prepare the dataset as well as the examples
for each split, both before and after preprocessing
(see Appendix C for more).

B.3.1 Error Recovery Is Not Emergent
Behaviour

We analysed the expert trajectories used to train
the model from the VIMA-BENCH dataset to de-
termine whether models are only shown the most
efficient solution. Table B.1 shows the minimum
and maximum number of actions shown to models
to solve each task from the given expert trajectories.
The minimum number of moves required per task
is dependent on the number of objects and parame-
ters for a given episode. They are not identical for
all episodes. We found multiple observation-action
pairs in several examples, showing that VIMA-
BENCH contains expert trajectories that are not
always optimal, thereby suggesting that recovering
from mistakes is not an emergent behaviour of the
models.

C Reproducibility

We are deeply committed to reproducibility in
ML research. To this end, we provide a fully re-
producible training and evaluation framework at
https://github.com/amitkparekh/CoGeLoT.

8Authors state that they held out 50 000 examples for val-
idation on their GitHub: https://github.com/vimalabs/
VIMA/issues/8#issuecomment-1491255242.

License VIMA-BENCH from Jiang et al. (2023),
including model code, pre-trained checkpoint, and
the VIMA-BENCH environment are licensed under
MIT. All artefacts produced from this work will
also be released under the MIT license.

Codebase We are providing our entire codebase—
the full, unabridged version we used throughout de-
velopment, training, and evaluation. This includes
implementations for every perturbation, including
the Gobbledygook perturbations, to encourage use
in other evaluation settings and benchmarks.

Training Data We are releasing all training data,
including the exact training/validation splits used,
using the process outlined in Appendix B.3. Our
codebase includes the methodology for generat-
ing these from the original VIMA-BENCH dataset,
which did not include pre-defined splits. Addi-
tionally, we provide additional datasets with para-
phrased multimodal instructions, along with the
commands used to create them. For all datasets
splits and variations, we provide the pre-processed
instances—stripped of unnecessary metadata and
with tokenised instructions with T5—that we used
to accelerate model training. All datasets are hosted
on our Hugging Face repository9, and we recom-
mend using them with our provided framework.

Model Checkpoints We provide every model
checkpoint used in our evaluation, including check-
points from earlier training epochs, to facilitate fur-
ther interpretability experiments and explorations.
Table B.1 provides a list of unique IDs for each
trained model, along with the architecture used.
These IDs can be used to source model check-
points from our Hugging Face repository10, or us-
ing our provided framework. As mentioned in Ap-
pendix A.3, we only evaluate models after complet-
ing all 10 training epochs. However, we provide
checkpoints created at the end of each epoch to
support future work.

Reproducibility We trained our models using
PyTorch (Ansel et al., 2024) and Lightning (Fal-
con and The PyTorch Lightning Team, 2024), and
tracked all dependencies with PDM11. We are pro-
viding all components, including a Docker image,
to facilitate replication. Our experiments were man-
aged using Hydra configuration files (Yadan, 2019),

9https://huggingface.co/datasets/amitkparekh/
vima

10https://huggingface.co/amitkparekh/cogelot
11https://pdm-project.org/
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Instruction-style Instruction Modalities Prompt-conditioning Vision Encoder Shuffled Objects? Model ID

Original Text + Visual Cross-Attention Object-Centric False 8lkml12g

Original Text + Visual Cross-Attention Object-Centric True ftwoyjb1

Original Text + Visual Cross-Attention Image-Patches N/A ln4nrqhg

Original Text + Visual Concatenate Object-Centric False bhuja4vo

Original Text + Visual Concatenate Object-Centric True wn9jc5l8

Original Text + Visual Concatenate Image-Patches N/A efxugme9

Paraphrases Text + Visual Cross-Attention Object-Centric False 2df3mwfn

Paraphrases Text + Visual Cross-Attention Object-Centric True 0nsnkaer

Paraphrases Text + Visual Cross-Attention Image-Patches N/A ah5btw8w

Paraphrases Text + Visual Concatenate Object-Centric False fs5v61mz

Paraphrases Text + Visual Concatenate Object-Centric True xb3yttg9

Paraphrases Text + Visual Concatenate Image-Patches N/A zby6xk27

Table B.1: Unique ID for each model checkpoint to aid with reproducibility and the conditions they were trained on.

and we are sharing all configurations, commands,
hyperparameters, and seeds used. Our codebase is
designed to automatically download the required
datasets and models from our Hugging Face repos-
itories when run with the provided configurations
and commands, mirroring our exact training and
evaluation process.

C.1 Discrepancies in Reported Results
Jiang et al. (2023) only provided the code for the
model and the dataset did not contain a train-test
split. After creating a working codebase, we were
unable to reproduce the results reported by Jiang
et al. (2023) using the provided model checkpoint.
We spent several weeks trying to reproduce the re-
sults, including consulting the original authors on
their experimental setup, but were unsuccessful in
doing so. Table C.2 contains the reported results
from Jiang et al. (2023) and our results when run-
ning the evaluation on their provided checkpoint.
For this comparison, no new models were trained.
Note that the provided checkpoint uses cross-
attention to condition prompts and object-centric
visual features. Across all tasks/generalisation lev-
els (with the exception of T3), task success is sig-
nificantly lower than what was reported. Possible
reasons for this difference include:

• Pure randomness as only 200 episodes are sam-
pled per task, and the exact episodes are not
compared.

• There may be a different checkpoint provided
compared to the paper.

• Possible misunderstandings during re-
implementation.

D Evaluation Details

D.1 Estimating Random Chance

The model predicts actions by mapping embedded
action tokens to the action space, which consists of
14 coordinates across two SE(3) poses. Each pose
has seven coordinates that predict a discrete bin.
There are 50 discrete bins for each axis, except for
the y-position which has 100.

To correctly predict a movement, the model must
accurately predict 14 coordinates. Assuming each
axis is predicted independently, and that the likeli-
hood of choosing each discrete bin per coordinate
is equal, the probability of randomly predicting the
correct action is 1/(50×12+100×2) = 1/800 =
0.125%. Assuming each predicted action is i.i.d.,
for a task requiring t time steps, the probability that
a model will randomly succeed is 0.00125t.

D.2 Sample Size for Computing Task
Performance

Jiang et al. (2023) claimed to run each task in the
environment for 100 episodes.12 However, we as-
sume there is some inconsistency in the statement
as the reported success rates consist of multiples
of “0.5”. Furthermore, due to inconsistencies in
the environment, the model will not view the same
instantiation of each 200 episodes. As a result, we
assume that running 200 samples is large enough to
fall under the law of large numbers. Li et al. (2023)

12While not reported in the final manuscript, it
was mentioned on their public GitHub repository:
https://github.com/vimalabs/VIMA/issues/16#
issuecomment-1622973970.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 Avg.

Reported in Jiang et al. (2023)
L1 100.0 100.0 99.5 100.0 56.5 100.0 100.0 — 18.0 — 77.0 93.0 — — 97.0 76.5 43.0 81.6
L2 100.0 100.0 99.5 100.0 54.5 100.0 100.0 — 17.5 — 77.0 93.0 — — 98.5 75.0 45.0 81.5
L3 99.0 100.0 100.0 97.0 54.5 100.0 99.0 — 17.5 — 90.5 — — — 97.5 46.0 43.5 70.4
L4 — — — — — — — 100.0 — 0.0 — — 0.0 94.5 — — — 48.6

From the Provided Checkpoint
L1 93.0 93.5 99.5 85.0 49.5 93.5 95.5 — 14.5 — 90.5 96.0 — — 5.0 43.5 3.0 66.3
L2 92.0 93.0 100.0 89.5 55.0 91.5 91.0 — 16.0 — 84.0 95.5 — — 7.0 40.5 0.5 65.8
L3 91.5 94.5 99.5 83.0 51.5 87.0 90.5 — 20.0 — 93.5 — — — 6.0 35.5 2.0 62.9
L4 — — — — — — — 80.0 — 2.0 — — 0.0 4.5 — — — 21.6

Table C.2: Comparing the average success rate per task as reported by Jiang et al. (2023) with our results obtained
from running the checkpoint provided in the environment. Each task was run for 200 samples.

also sampled 200 episodes for each task during
evaluation on VIMA-BENCH.

D.3 When Does an Evaluation Episode End?

During the online evaluation, the episode ends
when one of two conditions are met:

1. the model has successfully completed the in-
struction with the previous action it took; or,

2. the model has not successfully completed the
instruction within a maximum of 10 actions.

A maximum length of 10 actions is longer than
the default length used by Jiang et al. (2023).

D.4 Gobbledygook Perturbations

We outline how Gobbledygook Words and Gob-
bledygook Tokens manipulate multimodal instruc-
tions to remove all linguistic information without
altering the positions of any visual referents.

Gobbledygook Words Let wi = (c1, c2, . . . , cj)
represent a word with j characters, where each
character is from a set A containing all upper-
case and lowercase alphabetical English characters.
Given a multimodal prompt p of multiple words,
we transform the sequence by: first replacing each
character per word with a random choice from A,
then randomly swap the positions of words within
the sequence without changing the position of any
visual representations within the sequence.

Gobbledygook Tokens This method transforms
the multimodal prompt by randomising each sub-
word unit after tokenizing the instruction with any
other token from the vocabulary such that the num-
ber of sub-word units is the same as the original

# Words # Tokens

Original Instruction 12.9 ± 7.6 20.2 ± 13.6
Gobbledygook Tokens 15.2 ± 9.3 20.2 ± 13.6
Gobbledygook Words 12.9 ± 7.6 49.7 ± 27.8

Table D.1: Average length of instructions (with standard
deviation), both before and after transforming through a
language perturbation method. A single word is defined
as sequences of alphanumeric characters delimited by a
whitespace character. Tokens are defined as the number
of IDs returned from the tokenizer.

instruction. See Figure 2 for an example where an
instruction perturbed with Gobbledygook Tokens
does not contain any information in the language
modality pertaining to the original task.

Controlling for sequence lengths To avoid in-
troducing additional difficulty into the tasks, we
ensure that the length of the instruction is identi-
cal to before perturbing for either natural language
words or the tokenised form. Table D.1 further ver-
ifies this as the number of words in an instruction
does not change for Gobbledygook Words, and the
number of tokens does not change for Gobbledy-
gook Tokens. It also allows for checking whether or
not the length of the instruction in natural language
has any impact on model performance.

As illustrated in Figure 2, Gobbledygook Words
ensures that the number of characters and “words”
within the multimodal prompt—and the number of
words between each visual placeholder—does not
change. However, the average length of the prompt
after tokenizing has increased because T5 uses a
SentencePiece tokenizer that was trained on natural
language text (Raffel et al., 2020).
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Figure D.1: In-environment observations seen by the
model, showing task performance when using Gobbledy-
gook Words. Instructions given to the model are shown
on top of the images, with the images themselves show-
ing different iterations of either success (see 1, 2, and 4)
or failure (see 3).

Put the into the .

Rearrange to this:

T1

T4

Figure D.2: Example instruction for T1 (pick and place)
and T4 (rearrange to this scene).

In-environment examples after applying Gob-
bledygook Words Figure D.1 contains some ex-
amples where the model still succeeds in perform-
ing the task, even when provided with perturbed
language from Gobbledygook Words. From Fig-
ure D.1, Examples 1 and 2 both show that the
model followed through on incomprehensible in-
structions and successfully performed the tasks of:
identifying the task to perform with the stated ob-
ject from a choice of two, picking it up, and putting
it into a destination. Example 4 indicates inter-
esting behaviour as the model continued to place
all objects into the container to end the episode.13

Such a failure is indicated in Example 3, where
the model picked the object and placed it onto the
receptacle in a way that resulted in a scenario it
could not recover from, having chosen the wrong
object to place and by balancing it on the edge of
the container.

13We outline the termination conditions for a given episode
in Appendix D.3.

D.5 Which Visual Referents Can Be
Substituted as Text?

There are two types of visual referents that appear
in VIMA-BENCH: ones that refer to a single ob-
ject, and ones that represent an object within a
scene. For example, as shown in Figure D.2, T1
directly refers to an object whereas T4 directly in-
cludes a frame of a scene. As a result, it does not
make sense to convert tasks that include frames or
scenes in their instruction as the textual description
can refer to more than necessary. In total, 9 of
the 17 tasks (across all 4 generalisation levels) use
instructions that do not use frames.

E Extensions to VIMA-Bench

In this work, we propose multiple extensions to
VIMA-BENCH. In this section, we provide further
analysis and details for each.

E.1 Increasing Difficulty Across All Tasks

Bowl Pallet

Square
Three-sided

rectangle

Frame

Container Pan

Figure E.1: Objects within VIMA-BENCH that are
often regarded as “containers”; i.e., other objects are
always placed within these.

Table E.1 outlines the changes made for each
difficulty level for each task. The Distracting dif-
ficulty level focuses on drastically increasing the
number of distractors in the scene to try and con-
fuse the model, whereas the Extreme difficulty level
alters the parameters of the task to check whether
a model is over-reliant on the parameters seen dur-
ing training. Additionally, a subset of objects in
VIMA-BENCH is always used as “containers” (Fig-
ure E.1): objects are always put into/onto them
across all tasks. Therefore, as part of the Extreme
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difficulty, the container/destination object is just
any other acceptable object (within the generalisa-
tion level constraints) that is not one of these.

E.2 Paraphrasing Multimodal Instructions
We created paraphrases by manually inspecting the
instructions and using meta-templates to construct
variations. Notably, we were careful to avoid in-
troducing ambiguity that could introduce any mis-
understanding into the semantic meaning of the
instruction. As a result, only the natural language
words are altered; any novel words (as in T6–8)
remained unchanged. The observations seen, the
actions the model must perform, and the instances
for each train-valid-test split are unchanged. We
provide examples of some paraphrased alternatives
of the original instruction in Table E.2. All meta-
templates used for each task are included within
the provided source code.
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Description Distracting Extreme

T1 Put specified objects into specified container. Distractors: 1 → 6 Containers are now one of the draggable objects
instead of the designated container shapes

T2 Place objects with specified texture from the given
frame into container with specified colour.

Distractors in frame: 1 → 3. Distractors in
workspace: 1 → 3

Containers are now one of the draggable objects
instead of the designated container shapes

T3 Rotate the specified object by the given number of
degrees.

Distractors: 1 → 8 Possible Angles of rotation: From [30, 60, 90, 120,
150] to [20, 40, 60, 80, 100, 120, 140, 160]

T4 Look at the objects within the frame and move the
objects in the workspace to those positions. Dis-
tractors in the workspace may need to be moved
out the way. Not all objects in the workspace are
visible in the frame.

Distractors in workspace: 2 → 3 Distractors in workspace will ALWAYS be in the
way (therefore the model must move them out the
way to complete the task)

T5 Perform T4, and then put all the objects back to
the start

Distractors in workspace: 2 → 3 Distractors in workspace will ALWAYS be in the
way (therefore the model must move them out the
way to complete the task)

T6 Compare the size or texture saturation of objects
and make adjustments to the specified object(s)
accordingly.

Distractors: 1 → 3 All container shapes are replaced with other
shapes. Adjective word choices are now:
“xachup”, “feplicat”, “gazip”, or “duchat”.

T7 Apply novel words to two objects (one is a con-
tainer class), and put one object into the container.

Distractors: 1 → 3 All container shapes are replaced with other
shapes. Noun word choices are now:

T8 Combination of T6 and T7 Combination of T6 and T7. All container shapes are replaced with other
shapes.

T9 Determine the degrees to rotate an object from
three before/after demonstrations (i.e., 3-shot
demonstration to learn the task)

Total number of objects: 3 → 8 Possible Angles of rotation: [30, 60, 90, 120, 150,
180, 210, 240, 270, 300, 330] → [20, 40, 60, 80,
100, 120, 140, 160]

T10 Follow motions for specific objects from demon-
strations of frames

Distractors in workspace: 1 → 3. Distractors in
frames: 1 → 3

Possible motion points: 5 → 10

T11 Stack objects with the order illustrated in given
frames.

Distractors in workspace: 1 → 3 Objects in workspace: 3 → 5

T12 Sweep the objects into the region without exceed-
ing the boundary

Objects in the scene 1–5 → 6–10 Sweepable objects are now any dragged object

T13 Sweep the objects into a region without touching
the constraint.

Objects in the scene 1–5 → 6–10 Sweepable objects are now any dragged object

T14 Pick all objects in the workspace with the same tex-
ture as the container object specified in the prompt,
into it.

Distractors: 1 → 5 All container shapes are replaced with other
shapes.

T15 Put all objects in the workspace with the same
top-down profile goal container into it.

Distractors: 1 → 5 All container shapes are replaced with other
shapes.

T16 Put the target object into the container, and then
put one of its old neighbours into the same con-
tainer

Distractors: 1 → 3 Density grid of objects: 3×3 → 4×4

T17 Pick and place the object into different containers
in order then restore to the initial container.

Distractors: 0 → 4 All containers can be different types of shapes

Table E.1: Descriptions of each task, number of distractors added to increase difficulty, and description of the
extreme difficulty for each.

Task Original Alternative

1 Put the blue spiral object in {scene} into the wooden object. From the {scene} stack the blue spiral object on the wooden thing.
2 Put the {dragged_texture} object in {scene} into the {base_texture}

object.
Move objects in the {scene} so that the {dragged_texture} item is on
one {base_texture} item.

3 Rotate the {dragged_obj} {angle_in_degree} degrees. Turn the {dragged_obj} precisely {angle_in_degree} degrees.
4 Rearrange to this {scene}. Rearrange things into this setup {scene}.
5 Rearrange objects to this setup {scene} and then restore. Rearrange objects into this configuration {scene} and put it back.
6 {demo_blicker_obj_1} is kobar than {demo_blicker_obj_2}.

{demo_blicker_obj_3} is kobar than {demo_blicker_obj_4}. Put
the kobar {dragged_obj} into the {base_obj}.

{object1} {object3} and {object5} are all kobar than objects {object2}
{object4} and {object6} respectively. move the kobar {dragged_obj}
inside of the {base_obj}.

7 This is a blinket {dragged_obj}. This is a zup {base_obj}. Put a zup into
a blinket.

This is a blinket {object2}. this is a zup {object1}. drop the zup inside
of the blinket.

11 Stack objects in this order: {frame1} {frame2} {frame3}. Move objects like this: {frame1} {frame2} {frame3}.
16 First put {object1} into {object2} then put the object that was previously

at its {direction} into the same {object2}.
Set {object1} in {object2} then place the item that was at its
{direction} before you placed it into the same place.

17 Put {object1} into {object2}. Finally restore it into its original container. Set {object1} within {object2} then restore it to its original place.

Table E.2: Examples of how each original instruction was converted into an alternative paraphrase using the
meta-templates.
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F Further Experimental Results

F.1 Per-Task Results
We report the per-task results for each table re-
ported in the main paper. Table F.1 contains a
mapping from each table in the paper to the one
with the per-task results. Some tasks only exist for
certain generalisation levels and therefore are left
blank for other levels.

Per-Level Per-Task

Table 1 Table F.2 and Table F.3
Table 2 Table F.4
Table 3 Table F.5
Table 4 Table F.6
Table 5 Table F.7
Table 6 Table F.8
Table 7 Table F.9 and Table F.10
Table 8 Table F.11, Table F.12, Table F.13, and Table F.14

Table F.1: Mapping of per-task results for each table
listed in the main paper.

F.2 Exploring Task Success at Higher
Difficulty Levels and Masked Instructions

Table F.10 shows that model performance drops to
0 for most tasks without instructions, as expected.
However, T1 (pick-and-place), T2 (pick-and-place
from a frame), and particularly T12 (object sweep-
ing) can still be performed. T12 shows the best
performance, followed by T1 and T2, with T12’s
performance remaining significantly higher than T1
at increased difficulty levels for all models except
Cross-Attn + Obj-Centric.

T12 is unique in VIMA-BENCH as the only
training task requiring sweeping objects into some
boundary. Without instructions, the model has a
50/50 chance of choosing the correct object type
to sweep. Therefore, the model has likely overfit
to perform a sweeping action when using a spatula,
as it’s the only task with this specific end-effector.
This explains T12’s higher performance across dif-
ficulty levels and reinforces the claim that without
instructions, models rely on spurious correlations
learned during training, such as associating the
spatula with sweeping, rather than true task under-
standing.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 Avg.

Trained and Evaluated on Original Instructions
Cross-Attn + Obj-Centric
L1 100.0 99.5 99.5 97.0 8.5 100.0 100.0 — 19.0 — 91.5 96.0 — — 96.5 49.5 73.5 79.3
L2 99.5 99.5 100.0 98.0 9.5 99.0 99.5 — 18.0 — 95.0 96.5 — — 92.0 47.5 71.0 78.8
L3 100.0 99.0 100.0 99.0 10.0 98.5 99.5 — 14.0 — 90.5 — — — 93.0 43.0 21.5 72.3
L4 — — — — — — — 96.5 — 0.5 — — 0.0 97.5 — — — 48.6
Cross-Attn + Patches
L1 91.5 75.0 97.5 12.0 1.0 76.5 95.0 — 9.0 — 90.5 93.0 — — 79.5 95.5 2.5 63.0
L2 94.0 73.5 96.5 9.5 2.5 78.5 92.0 — 14.0 — 87.5 91.5 — — 71.5 94.5 0.0 62.0
L3 57.0 70.0 68.0 9.0 0.5 72.5 57.5 — 11.5 — 85.0 — — — 62.0 44.0 2.0 44.9
L4 — — — — — — — 25.5 — 1.0 — — 0.0 29.0 — — — 13.9
Concatenate + Obj-Centric
L1 100.0 100.0 99.5 97.0 19.0 100.0 100.0 — 13.5 — 88.5 95.0 — — 96.0 45.5 75.5 79.2
L2 99.5 100.0 99.5 99.0 19.0 100.0 100.0 — 16.0 — 91.0 95.5 — — 92.0 39.0 74.5 78.8
L3 98.0 97.0 100.0 99.0 21.0 92.0 96.5 — 18.5 — 95.0 — — — 96.5 43.0 68.5 77.1
L4 — — — — — — — 97.0 — 2.5 — — 0.0 97.5 — — — 49.2
Concatenate + Patches
L1 96.0 84.5 97.5 13.0 2.5 87.0 95.0 — 42.5 — 96.0 96.5 — — 75.0 94.0 4.0 68.0
L2 92.5 73.5 97.5 17.0 3.5 93.5 91.0 — 31.0 — 95.5 88.0 — — 75.0 96.5 7.0 66.3
L3 71.5 66.5 91.0 12.5 3.5 93.0 58.0 — 30.5 — 87.0 — — — 58.5 61.0 2.0 52.9
L4 — — — — — — — 44.0 — 11.0 — — 0.0 38.5 — — — 23.4

Trained on Original Instructions; Evaluated on Paraphrases
Cross-Attn + Obj-Centric
L1 99.5 100.0 99.0 86.5 57.0 100.0 100.0 — 15.0 — 60.5 94.0 — — 99.5 47.0 64.0 78.6
L2 97.5 100.0 99.5 85.5 52.5 100.0 100.0 — 14.5 — 59.0 96.5 — — 97.5 49.5 57.0 77.6
L3 92.0 96.5 99.5 87.0 58.5 99.0 99.0 — 12.0 — 51.0 — — — 97.0 39.5 6.5 69.8
L4 — — — — — — — 90.5 — 0.0 — — 0.0 98.0 — — — 47.1
Cross-Attn + Patches
L1 88.5 72.5 96.0 11.5 0.5 66.5 95.0 — 13.5 — 91.5 92.5 — — 76.5 86.5 3.0 61.1
L2 81.5 52.0 93.5 8.0 2.0 66.0 93.5 — 12.5 — 94.5 89.5 — — 68.5 93.5 6.0 58.5
L3 57.0 64.0 81.0 8.5 2.0 64.0 65.0 — 14.5 — 90.0 — — — 51.0 45.5 1.0 45.3
L4 — — — — — — — 27.5 — 1.5 — — 0.0 38.0 — — — 16.8
Concatenate + Obj-Centric
L1 100.0 100.0 96.5 73.5 4.0 100.0 100.0 — 16.5 — 80.0 89.5 — — 88.5 42.0 38.5 71.5
L2 99.5 99.0 96.5 79.0 10.0 99.5 100.0 — 18.0 — 79.0 94.5 — — 83.5 46.5 33.0 72.2
L3 87.0 81.5 97.0 76.0 6.0 85.0 94.5 — 17.5 — 71.0 — — — 79.0 47.5 10.0 62.7
L4 — — — — — — — 90.5 — 0.5 — — 0.5 80.5 — — — 43.0
Concatenate + Patches
L1 95.0 80.5 47.5 11.5 3.0 76.0 93.5 — 34.0 — 91.5 94.0 — — 78.5 85.5 7.0 61.3
L2 90.0 66.5 42.5 12.5 4.0 74.5 89.5 — 28.5 — 86.5 89.0 — — 77.0 77.5 3.0 57.0
L3 70.5 66.5 45.0 13.0 1.0 69.0 59.0 — 33.0 — 89.0 — — — 47.0 56.0 3.0 46.0
L4 — — — — — — — 29.0 — 17.0 — — 0.0 36.0 — — — 20.5

Table F.2: Per-task average success rate when evaluating performance on either original instructions or para-
phrases during inference, corresponding to Table 1a and Table 1b respectively. All models are trained on original
instructions.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 Avg.

Trained on Paraphrases; Evaluated on the Original Instructions
Cross-Attn + Obj-Centric
L1 99.5 100.0 99.5 98.5 62.5 100.0 100.0 — 11.5 — 92.0 97.5 — — 99.0 43.5 72.0 82.7
L2 99.0 100.0 99.5 98.0 55.5 100.0 100.0 — 13.5 — 91.5 92.5 — — 97.0 48.0 69.0 81.8
L3 99.0 99.0 99.5 99.0 68.5 99.0 99.0 — 15.5 — 93.0 — — — 99.0 48.5 10.0 77.4
L4 — — — — — — — 93.0 — 0.5 — — 0.0 98.5 — — — 48.0
Cross-Attn + Patches
L1 92.0 77.0 96.0 12.5 0.5 83.0 97.0 — 16.5 — 93.0 93.0 — — 74.5 92.0 3.5 63.9
L2 90.0 66.5 97.0 9.5 1.0 93.5 94.5 — 13.0 — 93.0 87.5 — — 79.0 91.0 3.5 63.0
L3 66.5 65.0 78.0 12.5 0.5 88.0 58.5 — 10.5 — 89.5 — — — 60.5 61.5 2.5 49.5
L4 — — — — — — — 45.5 — 0.5 — — 0.0 35.5 — — — 20.4
Concatenate + Obj-Centric
L1 100.0 100.0 99.0 99.0 18.0 100.0 100.0 — 13.0 — 93.0 98.0 — — 96.5 51.0 77.5 80.4
L2 100.0 100.0 100.0 98.0 8.5 100.0 100.0 — 13.5 — 92.0 92.5 — — 92.0 46.5 73.5 78.2
L3 98.0 94.0 100.0 99.5 14.0 94.5 93.0 — 12.5 — 96.5 — — — 98.0 42.0 56.0 74.8
L4 — — — — — — — 96.5 — 2.5 — — 0.0 97.0 — — — 49.0
Concatenate + Patches
L1 97.0 81.5 98.5 13.0 1.5 94.5 96.0 — 33.0 — 89.0 92.5 — — 73.5 98.0 4.0 67.1
L2 89.5 69.5 96.0 11.5 2.0 93.5 87.5 — 23.0 — 91.5 92.5 — — 67.0 92.5 1.0 62.8
L3 65.0 74.5 87.5 14.0 3.0 88.5 60.5 — 29.0 — 85.5 — — — 50.5 65.0 1.5 52.0
L4 — — — — — — — 38.5 — 10.0 — — 0.0 30.5 — — — 19.8

Trained and Evaluated on Paraphrases
Cross-Attn + Obj-Centric
L1 98.5 100.0 97.5 85.5 56.0 99.5 100.0 — 12.0 — 55.5 96.0 — — 99.0 44.0 62.5 77.4
L2 98.0 99.5 99.5 90.5 63.5 99.0 100.0 — 10.5 — 55.0 92.0 — — 98.0 45.0 57.5 77.5
L3 91.5 98.0 98.5 88.0 64.0 97.5 98.5 — 14.0 — 48.0 — — — 95.5 53.0 2.5 70.8
L4 — — — — — — — 94.0 — 2.5 — — 0.0 98.0 — — — 48.6
Cross-Attn + Patches
L1 92.0 66.5 97.5 8.0 0.5 73.0 95.5 — 15.0 — 91.5 92.0 — — 82.0 92.0 3.5 62.2
L2 92.5 53.5 96.0 13.5 0.5 72.5 94.0 — 17.5 — 93.0 90.0 — — 75.0 93.5 1.5 61.0
L3 63.5 50.0 80.0 1.5 0.5 69.0 62.0 — 16.0 — 87.5 — — — 64.5 50.5 3.0 45.7
L4 — — — — — — — 24.5 — 3.5 — — 0.0 36.5 — — — 16.1
Concatenate + Obj-Centric
L1 100.0 99.5 99.5 56.5 2.5 100.0 100.0 — 15.5 — 69.0 95.5 — — 94.0 45.5 17.5 68.8
L2 100.0 97.5 99.5 54.5 7.0 100.0 99.5 — 15.5 — 60.0 94.0 — — 89.5 43.5 13.0 67.2
L3 88.5 84.0 100.0 52.5 5.0 94.5 94.0 — 14.5 — 54.0 — — — 86.0 39.0 3.5 59.6
L4 — — — — — — — 97.5 — 2.0 — — 0.0 84.5 — — — 46.0
Concatenate + Patches
L1 100.0 99.0 99.5 53.5 5.5 99.5 100.0 — 11.0 — 61.0 94.5 — — 92.5 42.5 15.5 67.2
L2 99.5 99.5 100.0 62.0 6.5 100.0 100.0 — 14.0 — 60.5 95.0 — — 90.0 43.0 12.0 67.8
L3 93.0 79.5 99.5 59.5 4.0 95.5 94.5 — 13.0 — 57.5 — — — 88.5 38.0 4.0 60.5
L4 — — — — — — — 97.0 — 4.0 — — 0.0 86.5 — — — 46.9

Table F.3: Per-task average success rate when evaluating performance on either original instructions or para-
phrases during inference, corresponding to Table 1c and Table 1d respectively. All models are trained on para-
phrased instructions.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 Avg.

With Visual Referents*
Cross-Attn + Obj-Centric
L1 99.5 — 99.5 — — — 100.0 — — — — 97.5 — — 99.0 43.5 72.0 87.3
L2 99.0 — 99.5 — — — 100.0 — — — — 92.5 — — 97.0 48.0 69.0 86.4
L3 99.0 — 99.5 — — — 99.0 — — — — — — — 99.0 48.5 10.0 75.8
L4 — — — — — — — — — — — — 0.0 98.5 — — — 49.2
Cross-attention + Patches
L1 92.0 — 96.0 — — — 97.0 — — — — 93.0 — — 74.5 92.0 3.5 78.3
L2 90.0 — 97.0 — — — 94.5 — — — — 87.5 — — 79.0 91.0 3.5 77.5
L3 66.5 — 78.0 — — — 58.5 — — — — — — — 60.5 61.5 2.5 54.6
L4 — — — — — — — — — — — — 0.0 35.5 — — — 17.8
Concatenate + Obj-Centric
L1 100.0 — 99.0 — — — 100.0 — — — — 98.0 — — 96.5 51.0 77.5 88.9
L2 100.0 — 100.0 — — — 100.0 — — — — 92.5 — — 92.0 46.5 73.5 86.4
L3 98.0 — 100.0 — — — 93.0 — — — — — — — 98.0 42.0 56.0 81.2
L4 — — — — — — — — — — — — 0.0 97.0 — — — 48.5
Concatenate + Patches
L1 97.0 — 98.5 — — — 96.0 — — — — 92.5 — — 73.5 98.0 4.0 79.9
L2 89.5 — 96.0 — — — 87.5 — — — — 92.5 — — 67.0 92.5 1.0 75.1
L3 65.0 — 87.5 — — — 60.5 — — — — — — — 50.5 65.0 1.5 55.0
L4 — — — — — — — — — — — — 0.0 30.5 — — — 15.2

Replace Visual Referents with Descriptors*
Cross-Attn + Obj-Centric
L1 100.0 — 100.0 — — — 100.0 — — — — 97.5 — — 97.5 47.5 72.5 87.9
L2 100.0 — 99.0 — — — 99.5 — — — — 94.5 — — 98.5 47.0 72.0 87.2
L3 99.0 — 99.5 — — — 96.5 — — — — — — — 96.5 48.5 0.0 73.3
L4 — — — — — — — — — — — — 0.0 98.0 — — — 49.0
Cross-attention + Patches
L1 69.5 — 41.5 — — — 64.0 — — — — 72.5 — — 44.0 33.0 3.0 46.8
L2 61.5 — 31.0 — — — 64.5 — — — — 81.0 — — 38.5 35.5 1.0 44.7
L3 56.0 — 42.5 — — — 50.0 — — — — — — — 42.0 37.0 1.5 38.2
L4 — — — — — — — — — — — — 0.0 51.0 — — — 25.5
Concatenate + Obj-Centric
L1 100.0 — 99.5 — — — 100.0 — — — — 97.0 — — 98.5 44.0 17.0 79.4
L2 99.0 — 100.0 — — — 99.5 — — — — 93.0 — — 92.5 47.0 16.0 78.1
L3 94.5 — 99.5 — — — 94.5 — — — — — — — 89.0 41.0 1.5 70.0
L4 — — — — — — — — — — — — 0.0 77.0 — — — 38.5
Concatenate + Patches
L1 82.5 — 92.5 — — — 61.5 — — — — 85.5 — — 25.5 45.0 2.5 56.4
L2 65.5 — 80.5 — — — 58.5 — — — — 81.0 — — 29.0 39.0 0.5 50.6
L3 72.0 — 88.0 — — — 55.5 — — — — — — — 55.5 41.0 0.0 52.0
L4 — — — — — — — — — — — — 0.0 51.5 — — — 25.8

Table F.4: Per-task average success rate when evaluating performance either with visual referents (top) and when
visual referents are replaced with descriptors (bottom), corresponding to Table 2. All models are trained on
paraphrases. As mentioned in Appendix D.5, not all instructions contain visual referents that can be directly
substituted for language. For ease of comparison, only tasks with instructions that support substitutions are included
in the top section, with the average for the level calculated with only these tasks.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 Avg.

Gobbledygook Tokens
Cross-Attn + Obj-Centric
L1 89.5 74.5 5.5 73.5 8.5 92.5 90.0 — 1.0 — 92.5 94.0 — — 29.0 19.5 67.5 56.7
L2 89.5 67.5 5.0 71.5 12.0 86.5 89.5 — 0.5 — 92.0 93.5 — — 25.0 19.0 56.5 54.5
L3 63.0 48.0 7.5 75.0 11.5 59.5 59.5 — 0.0 — 93.5 — — — 10.5 11.0 0.5 36.6
L4 — — — — — — — 72.5 — 0.0 — — 0.0 19.0 — — — 22.9
Cross-Attn + Patches
L1 88.5 32.5 23.0 7.0 0.5 53.5 90.0 — 13.0 — 92.0 88.5 — — 66.5 28.0 4.5 45.2
L2 87.5 33.0 24.5 8.5 0.5 53.5 92.5 — 12.0 — 94.0 91.5 — — 67.0 30.0 2.0 45.9
L3 63.0 43.5 17.5 7.0 0.5 48.5 61.5 — 13.5 — 88.0 — — — 49.5 14.5 1.5 34.0
L4 — — — — — — — 22.5 — 1.5 — — 0.0 36.5 — — — 15.1
Concatenate + Obj-Centric
L1 100.0 97.0 15.0 81.5 9.5 100.0 99.5 — 0.5 — 93.0 95.0 — — 17.5 21.5 7.5 56.7
L2 99.0 95.0 9.5 86.0 5.5 99.0 99.5 — 1.0 — 94.0 96.5 — — 12.5 16.0 5.5 55.3
L3 87.0 68.0 10.0 93.5 7.0 86.0 78.0 — 0.5 — 90.5 — — — 15.5 11.5 2.0 45.8
L4 — — — — — — — 89.5 — 4.5 — — 0.0 11.5 — — — 26.4
Concatenate + Patches
L1 89.5 56.5 16.0 11.5 0.5 52.0 85.0 — 11.5 — 76.0 92.0 — — 66.5 35.5 4.0 45.9
L2 89.5 46.5 15.0 7.5 2.0 53.0 85.0 — 12.0 — 78.5 87.0 — — 64.0 33.0 3.0 44.3
L3 66.5 53.0 21.0 8.5 1.5 47.5 45.5 — 11.0 — 80.5 — — — 37.5 21.0 1.0 32.9
L4 — — — — — — — 25.5 — 8.0 — — 0.0 46.5 — — — 20.0

Gobbledygook Words
Cross-Attn + Obj-Centric
L1 95.0 98.5 9.5 17.0 4.5 98.0 99.5 — 0.5 — 56.0 90.5 — — 58.5 17.0 16.5 50.8
L2 95.5 97.0 7.0 23.0 2.5 99.0 100.0 — 1.5 — 52.5 93.0 — — 64.5 25.0 13.5 51.8
L3 74.5 86.5 6.0 23.5 3.0 93.5 87.5 — 0.0 — 56.5 — — — 37.0 11.0 0.0 39.9
L4 — — — — — — — 85.5 — 0.0 — — 0.0 49.5 — — — 33.8
Cross-Attn + Patches
L1 95.5 47.5 21.5 8.0 0.5 50.5 92.5 — 11.0 — 89.0 87.5 — — 72.5 28.0 3.5 46.7
L2 91.5 55.5 21.5 6.5 1.0 63.0 93.0 — 12.5 — 91.5 91.5 — — 75.0 24.5 2.5 48.4
L3 61.0 52.0 13.5 7.0 0.5 52.5 57.0 — 12.5 — 81.5 — — — 47.5 22.0 0.0 33.9
L4 — — — — — — — 26.5 — 3.5 — — 0.0 44.5 — — — 18.6
Concatenate + Obj-Centric
L1 99.5 99.0 15.5 10.0 0.0 100.0 100.0 — 0.5 — 46.0 90.5 — — 4.0 13.0 5.0 44.8
L2 99.5 94.5 17.5 11.0 1.0 98.5 98.5 — 1.5 — 47.0 87.5 — — 5.0 12.0 4.5 44.5
L3 84.0 74.5 19.5 10.0 0.0 88.5 84.0 — 2.5 — 51.5 — — — 7.0 3.0 0.0 35.4
L4 — — — — — — — 87.0 — 3.0 — — 0.0 5.5 — — — 23.9
Concatenate + Patches
L1 91.0 60.5 15.0 7.0 1.0 48.5 86.0 — 10.0 — 70.5 91.0 — — 69.0 23.5 2.5 44.3
L2 87.0 50.5 22.0 9.5 0.5 51.5 82.0 — 5.5 — 69.5 90.5 — — 63.0 22.0 1.5 42.7
L3 60.5 51.0 17.0 6.0 1.5 46.0 56.5 — 6.0 — 70.0 — — — 40.5 16.0 0.5 31.0
L4 — — — — — — — 21.0 — 9.0 — — 0.0 46.0 — — — 19.0

Table F.5: Per-task average success rate when evaluating performance with either Gobbledygook Tokens (top) and
Gobbledygook Words (bottom). All models are trained on paraphrased instructions. This table corresponds to
Table 3.

19416



T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 Avg.

Mask Language Tokens
Cross-Attn + Obj-Centric
L1 74.5 49.0 0.5 2.0 0.0 76.0 71.0 — 0.0 — 23.5 96.0 — — 20.5 15.5 44.0 36.3
L2 72.5 53.0 0.0 4.0 0.0 66.0 68.0 — 0.0 — 25.5 94.0 — — 20.0 17.5 35.5 35.1
L3 45.0 39.5 0.5 3.5 0.0 51.0 48.0 — 0.0 — 30.0 — — — 6.0 5.5 0.0 19.1
L4 — — — — — — — 43.0 — 0.5 — — 0.0 15.5 — — — 14.8
Cross-Attn + Patches
L1 58.5 35.5 8.0 0.0 0.0 46.5 56.0 — 6.0 — 18.0 87.0 — — 6.5 17.0 3.5 26.3
L2 58.0 24.0 10.0 0.0 0.0 54.0 60.0 — 6.0 — 17.0 83.5 — — 6.0 23.5 2.5 26.5
L3 50.5 23.5 14.0 0.0 0.0 43.5 50.0 — 11.5 — 21.5 — — — 21.0 11.0 1.5 20.7
L4 — — — — — — — 19.5 — 2.5 — — 0.0 23.0 — — — 11.2
Concatenate + Obj-Centric
L1 97.0 95.5 8.0 0.0 0.0 99.5 99.0 — 0.0 — 5.0 92.5 — — 2.5 7.0 0.5 39.0
L2 96.0 96.0 6.0 0.0 0.0 99.0 98.5 — 1.5 — 5.0 91.5 — — 1.5 11.0 1.5 39.0
L3 80.0 79.0 5.0 0.0 0.0 87.0 79.5 — 1.5 — 3.0 — — — 1.0 9.0 0.0 28.8
L4 — — — — — — — 94.5 — 4.0 — — 0.0 5.0 — — — 25.9
Concatenate + Patches
L1 71.5 58.5 7.0 0.0 0.0 56.0 60.5 — 1.5 — 9.0 78.5 — — 33.0 17.5 0.0 30.2
L2 66.5 60.0 5.0 0.0 0.0 49.0 61.5 — 1.0 — 11.0 77.5 — — 28.5 16.0 1.0 29.0
L3 60.0 55.5 8.5 0.0 0.0 57.0 57.0 — 1.0 — 9.0 — — — 37.0 9.5 0.0 24.5
L4 — — — — — — — 23.0 — 3.0 — — 0.0 39.0 — — — 16.2

Mask Visual Referents
Cross-Attn + Obj-Centric
L1 100.0 100.0 100.0 0.0 0.0 100.0 100.0 — 13.5 — 6.5 95.0 — — 94.5 48.5 69.0 63.6
L2 100.0 99.5 100.0 0.0 0.0 98.0 99.5 — 12.0 — 6.0 94.0 — — 88.0 49.5 67.0 62.6
L3 99.0 100.0 100.0 0.0 0.0 98.5 99.0 — 9.0 — 4.0 — — — 98.0 50.0 19.5 56.4
L4 — — — — — — — 92.0 — 0.5 — — 0.0 99.0 — — — 47.9
Cross-Attn + Patches
L1 96.0 82.0 98.5 10.0 0.5 89.0 95.5 — 16.0 — 91.5 93.5 — — 72.5 94.5 2.5 64.8
L2 92.0 64.5 97.5 12.5 1.5 92.5 95.0 — 11.5 — 89.5 93.5 — — 70.0 94.0 5.0 63.0
L3 64.0 70.0 82.0 9.5 1.5 83.5 58.5 — 14.5 — 90.0 — — — 63.0 57.0 2.0 49.6
L4 — — — — — — — 41.5 — 5.5 — — 0.0 35.5 — — — 20.6
Concatenate + Obj-Centric
L1 100.0 100.0 99.5 0.0 0.0 100.0 100.0 — 15.5 — 1.0 98.5 — — 96.5 47.0 19.0 59.8
L2 100.0 100.0 99.5 0.0 0.0 100.0 100.0 — 15.5 — 0.5 97.0 — — 91.0 43.5 19.0 58.9
L3 94.5 92.5 100.0 0.0 0.0 95.5 94.5 — 14.5 — 3.0 — — — 94.0 47.0 2.5 53.2
L4 — — — — — — — 95.5 — 2.5 — — 0.0 93.0 — — — 47.8
Concatenate + Patches
L1 97.5 86.0 98.5 13.5 5.5 88.5 94.0 — 35.0 — 90.0 92.5 — — 71.5 97.0 3.0 67.1
L2 89.5 67.0 95.5 15.5 2.0 93.5 90.0 — 29.0 — 89.0 90.5 — — 71.5 92.5 2.0 63.7
L3 69.0 73.5 89.0 15.5 2.0 85.5 63.5 — 30.5 — 86.5 — — — 52.5 65.5 0.5 52.8
L4 — — — — — — — 44.0 — 10.0 — — 0.0 38.0 — — — 23.0

Table F.6: Per-task average success rate when evaluating performance after masking language tokens (top) or
visual referents (bottom) within each multimodal instruction. All models are trained on paraphrased instructions.
This table corresponds to Table 4.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 Avg.

Cross-Attn + Obj-Centric
L1 99.0 99.0 99.0 83.5 0.0 97.5 98.0 — 11.5 — 92.0 97.5 — — 96.0 41.5 0.0 70.3
L2 97.5 98.0 99.5 78.0 0.0 98.0 99.0 — 13.5 — 91.0 91.5 — — 94.5 46.0 0.0 69.7
L3 98.0 97.0 99.5 77.5 0.0 97.5 95.5 — 15.5 — 92.5 — — — 94.5 47.5 0.0 67.9
L4 — — — — — — — 92.0 — 0.0 — — 0.0 95.0 — — — 46.8
Cross-Attn + Patches
L1 88.5 66.0 92.0 8.0 0.0 79.0 96.5 — 10.5 — 93.0 75.5 — — 58.5 89.5 0.0 58.2
L2 87.5 56.0 92.0 6.5 0.5 87.0 91.5 — 4.5 — 92.0 82.0 — — 58.5 87.0 0.0 57.3
L3 61.0 59.5 69.0 7.0 0.0 84.5 50.5 — 5.0 — 87.5 — — — 46.5 60.5 0.0 44.2
L4 — — — — — — — 38.0 — 0.0 — — 0.0 25.5 — — — 15.9
Concatenate + Obj-Centric
L1 99.5 99.5 98.5 98.0 6.5 99.5 99.0 — 13.0 — 90.0 92.0 — — 95.5 47.5 0.0 72.2
L2 99.0 100.0 99.5 97.5 4.5 98.5 99.5 — 13.5 — 90.5 91.0 — — 89.5 45.0 0.0 71.4
L3 91.5 90.0 100.0 99.5 9.5 72.0 84.0 — 12.5 — 93.0 — — — 94.0 42.0 0.0 65.7
L4 — — — — — — — 90.5 — 0.0 — — 0.0 91.5 — — — 45.5
Concatenate + Patches
L1 94.0 72.5 97.5 6.5 1.5 92.5 90.5 — 26.0 — 87.0 74.0 — — 59.0 95.0 0.0 61.2
L2 83.5 62.5 90.5 9.5 2.0 91.5 82.5 — 14.0 — 90.0 79.0 — — 52.0 91.5 0.0 57.6
L3 57.5 68.5 81.5 11.0 1.5 86.5 49.5 — 18.0 — 81.5 — — — 32.0 64.0 0.0 46.0
L4 — — — — — — — 34.0 — 2.5 — — 0.0 15.0 — — — 12.9

Table F.7: Per-task average success rate when evaluating performance without allowing models to recover from
mistakes. This table corresponds to Table 5. All models are trained on paraphrased instructions.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 Avg.

Mask Instructions; Mistakes Allowed
Cross-Attn + Obj-Centric
L1 99.5 99.0 22.0 0.0 0.0 96.0 100.0 — 2.0 — 30.5 97.5 — — 73.5 23.0 38.0 52.4
L2 99.0 98.5 15.5 0.0 0.0 96.5 100.0 — 1.0 — 26.0 93.5 — — 67.0 29.0 30.0 50.5
L3 97.0 92.5 17.5 0.0 0.0 84.0 94.5 — 1.5 — 30.0 — — — 48.5 22.0 0.0 40.6
L4 — — — — — — — 84.0 — 0.0 — — 0.0 48.0 — — — 33.0
Cross-Attn + Patches
L1 62.0 24.0 11.5 0.0 0.0 46.5 57.0 — 8.0 — 13.5 89.0 — — 7.5 19.5 5.5 26.5
L2 54.0 26.5 15.0 0.0 0.0 53.0 53.0 — 6.5 — 17.0 86.0 — — 6.0 16.5 2.5 25.8
L3 46.0 30.0 12.5 0.0 0.0 44.5 50.0 — 5.5 — 18.0 — — — 19.0 14.5 2.0 20.2
L4 — — — — — — — 22.5 — 1.0 — — 0.0 24.0 — — — 11.9
Concatenate + Obj-Centric
L1 73.0 71.5 8.0 0.0 0.0 71.5 75.0 — 1.0 — 1.5 88.5 — — 1.0 11.0 0.0 30.9
L2 67.5 68.5 11.0 0.0 0.0 72.0 76.5 — 1.0 — 1.5 85.5 — — 1.0 11.0 0.5 30.5
L3 58.0 63.5 9.0 0.0 0.0 59.5 60.0 — 1.5 — 3.0 — — — 4.0 6.5 0.0 22.1
L4 — — — — — — — 53.0 — 0.0 — — 0.0 3.5 — — — 14.1
Concatenate + Patches
L1 70.0 65.0 4.0 0.0 0.0 56.0 62.5 — 1.5 — 13.5 74.5 — — 28.5 17.5 2.0 30.4
L2 71.5 59.5 8.5 0.0 0.0 51.0 61.0 — 0.5 — 6.5 80.5 — — 27.5 14.0 1.5 29.4
L3 62.5 53.0 7.0 0.0 0.0 53.0 55.5 — 0.0 — 16.0 — — — 38.0 15.0 0.0 25.0
L4 — — — — — — — 25.0 — 4.0 — — 0.0 33.5 — — — 15.6

Mask Instructions; No Mistakes Allowed
Cross-Attn + Obj-Centric
L1 99.0 97.0 10.0 0.0 0.0 83.0 99.5 — 1.5 — 22.0 95.0 — — 61.0 19.5 0.0 45.2
L2 98.0 95.5 8.5 0.0 0.0 86.5 98.0 — 0.5 — 13.0 89.5 — — 55.5 26.0 0.0 43.9
L3 96.0 78.0 6.0 0.0 0.0 62.0 86.5 — 1.0 — 18.0 — — — 32.0 18.0 0.0 33.1
L4 — — — — — — — 76.0 — 0.0 — — 0.0 33.5 — — — 27.4
Cross-Attn + Patches
L1 52.0 13.0 2.5 0.0 0.0 37.0 45.0 — 1.5 — 4.5 79.5 — — 3.0 16.0 0.0 19.5
L2 44.0 15.5 4.5 0.0 0.0 41.0 41.0 — 1.0 — 5.0 75.5 — — 1.0 14.0 0.0 18.7
L3 37.5 17.5 3.5 0.0 0.0 35.5 44.5 — 1.0 — 5.0 — — — 15.0 14.0 0.0 14.5
L4 — — — — — — — 12.5 — 0.0 — — 0.0 18.0 — — — 7.6
Concatenate + Obj-Centric
L1 12.5 14.5 0.0 0.0 0.0 12.0 15.0 — 0.0 — 0.0 33.0 — — 0.0 4.5 0.0 7.0
L2 16.5 15.5 0.0 0.0 0.0 10.0 15.5 — 0.0 — 0.5 32.5 — — 0.5 2.5 0.0 7.2
L3 10.0 11.0 0.0 0.0 0.0 10.0 10.0 — 0.0 — 1.0 — — — 0.0 0.0 0.0 3.5
L4 — — — — — — — 9.0 — 0.0 — — 0.0 0.0 — — — 2.2
Concatenate + Patches
L1 56.5 50.0 0.5 0.0 0.0 45.0 46.0 — 0.0 — 6.0 63.0 — — 11.5 13.5 0.0 22.5
L2 59.5 46.0 2.0 0.0 0.0 36.5 51.5 — 0.0 — 1.5 71.0 — — 11.0 10.0 0.0 22.2
L3 52.0 44.0 0.5 0.0 0.0 40.5 42.5 — 0.0 — 5.0 — — — 24.5 9.5 0.0 18.2
L4 — — — — — — — 19.0 — 0.5 — — 0.0 15.5 — — — 8.8

Table F.8: Per-task average success rate when evaluating performance with entirely masked instructions. This
compares models’ ability to recover from mistakes (top) versus acting without making mistakes (bottom). All
models are trained on paraphrased instructions. This table corresponds to Table 6.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 Avg.

Distracting
Cross-Attn + Obj-Centric
L1 65.5 84.5 99.0 0.5 0.0 87.0 73.5 — 4.5 — 88.0 74.5 — — 78.0 44.5 0.0 53.8
L2 66.5 86.0 97.5 1.0 0.0 84.0 72.5 — 2.5 — 86.5 70.0 — — 69.0 46.0 0.0 52.4
L3 59.0 70.0 98.0 1.5 0.0 83.0 70.5 — 5.0 — 83.5 — — — 44.5 44.5 0.0 46.6
L4 — — — — — — — 79.5 — 0.0 — — 0.0 59.5 — — — 34.8
Cross-Attn + Patches
L1 22.5 25.0 19.5 0.0 0.0 16.0 22.5 — 1.0 — 87.5 56.0 — — 25.0 87.5 0.0 27.9
L2 20.5 15.0 21.0 0.0 0.0 15.0 22.0 — 0.5 — 88.0 57.0 — — 26.5 91.0 0.0 27.4
L3 11.0 20.0 12.5 0.0 0.0 12.5 9.5 — 0.5 — 84.5 — — — 9.0 59.5 0.0 18.2
L4 — — — — — — — 12.0 — 1.0 — — 0.0 2.0 — — — 3.8
Concatenate + Obj-Centric
L1 98.5 99.5 99.0 1.5 0.0 96.0 99.0 — 3.5 — 86.0 76.5 — — 79.0 44.5 0.0 60.2
L2 99.5 98.0 99.5 0.0 0.0 98.0 99.5 — 4.5 — 85.0 73.5 — — 73.0 47.5 0.0 59.8
L3 95.0 83.0 100.0 0.0 0.0 80.0 86.5 — 4.0 — 84.5 — — — 64.0 42.5 0.0 53.3
L4 — — — — — — — 87.0 — 0.0 — — 0.0 69.0 — — — 39.0
Concatenate + Patches
L1 35.5 30.0 18.0 0.0 0.0 18.0 21.5 — 7.5 — 84.0 55.0 — — 12.5 98.0 0.0 29.2
L2 27.0 20.0 21.5 0.0 0.0 15.5 14.5 — 2.5 — 84.5 61.0 — — 12.5 91.5 0.0 27.0
L3 13.0 20.5 13.5 0.0 0.0 16.0 10.0 — 2.5 — 81.0 — — — 2.5 62.0 0.0 18.4
L4 — — — — — — — 14.5 — 3.0 — — 0.0 3.0 — — — 5.1

Extreme
Cross-Attn + Obj-Centric
L1 97.5 97.5 74.5 96.0 5.5 98.5 97.0 — 12.0 — 2.0 33.0 — — 77.0 0.0 0.0 53.1
L2 98.0 96.5 80.0 95.0 7.0 93.5 98.0 — 13.0 — 0.5 34.0 — — 79.5 0.0 0.0 53.5
L3 100.0 99.5 79.5 98.5 5.0 95.0 99.5 — 16.0 — 0.5 — — — 72.5 0.0 0.0 55.5
L4 — — — — — — — 70.5 — 0.5 — — 0.0 75.5 — — — 36.6
Cross-Attn + Patches
L1 19.0 7.0 52.0 8.5 1.0 13.0 9.0 — 9.0 — 0.5 33.5 — — 16.5 0.0 0.0 13.0
L2 15.0 7.5 49.0 10.0 0.5 12.0 8.5 — 5.0 — 2.0 33.5 — — 20.0 0.0 0.0 12.5
L3 11.0 7.0 46.5 6.0 0.5 10.5 8.0 — 8.0 — 2.5 — — — 16.5 0.0 0.0 9.7
L4 — — — — — — — 3.0 — 11.0 — — 0.5 22.5 — — — 9.2
Concatenate + Obj-Centric
L1 25.0 4.0 77.0 99.0 4.5 0.5 2.5 — 15.5 — 1.5 32.5 — — 30.5 0.0 0.0 22.5
L2 22.0 1.5 71.5 99.0 7.0 0.5 3.0 — 13.5 — 4.0 36.5 — — 40.0 0.0 0.0 23.0
L3 30.5 4.0 77.0 100.0 7.0 1.0 2.0 — 15.5 — 3.0 — — — 38.0 0.0 0.0 23.2
L4 — — — — — — — 0.5 — 8.5 — — 1.5 31.5 — — — 10.5
Concatenate + Patches
L1 12.5 13.5 74.5 7.0 2.5 11.5 15.5 — 22.5 — 3.5 28.5 — — 19.5 0.0 0.0 16.2
L2 13.5 11.0 66.5 6.5 0.5 19.5 7.5 — 18.0 — 5.0 29.0 — — 18.5 0.0 0.0 15.0
L3 15.0 13.0 51.0 7.0 1.0 15.0 5.0 — 16.5 — 3.5 — — — 18.0 0.0 0.0 12.1
L4 — — — — — — — 4.5 — 18.0 — — 0.0 26.0 — — — 12.1

Extremely Distracting
Cross-Attn + Obj-Centric
L1 48.0 71.5 78.5 0.0 0.0 58.0 41.0 — 3.0 — 2.0 33.0 — — 57.0 0.0 0.0 30.2
L2 43.5 68.5 80.5 0.0 0.0 60.0 47.0 — 4.5 — 0.5 36.0 — — 58.5 0.0 0.0 30.7
L3 49.0 77.5 74.0 0.0 0.0 67.5 50.0 — 4.0 — 0.5 — — — 73.0 0.0 0.0 33.0
L4 — — — — — — — 58.0 — 0.0 — — 0.5 68.5 — — — 31.8
Cross-Attn + Patches
L1 3.5 1.0 10.0 0.0 0.0 4.0 1.5 — 1.5 — 0.5 32.0 — — 4.0 0.0 0.0 4.5
L2 1.5 0.0 9.5 0.0 0.0 2.0 1.0 — 0.0 — 1.5 32.5 — — 2.0 0.0 0.0 3.8
L3 2.0 4.0 8.5 0.0 0.0 5.0 2.0 — 1.0 — 0.0 — — — 3.0 0.0 0.0 2.1
L4 — — — — — — — 2.5 — 8.5 — — 0.0 0.5 — — — 2.9
Concatenate + Obj-Centric
L1 27.5 1.0 75.0 0.0 0.0 0.5 4.0 — 6.5 — 4.0 36.0 — — 35.5 0.0 0.0 14.6
L2 26.5 0.5 75.0 0.0 0.0 1.5 3.5 — 6.5 — 0.5 41.0 — — 31.0 0.0 0.0 14.3
L3 19.5 0.5 68.5 0.0 0.0 2.5 1.5 — 7.5 — 1.5 — — — 28.0 0.0 0.0 10.8
L4 — — — — — — — 0.5 — 0.0 — — 0.0 33.5 — — — 8.5
Concatenate + Patches
L1 3.5 5.0 11.0 0.0 0.0 4.5 3.0 — 9.5 — 2.0 32.0 — — 3.0 0.0 0.0 5.7
L2 4.0 4.0 14.0 0.0 0.0 2.5 4.0 — 3.0 — 1.5 31.5 — — 2.5 0.0 0.0 5.2
L3 3.5 7.0 9.0 0.0 0.0 4.5 1.0 — 5.5 — 3.0 — — — 0.0 0.0 0.0 2.8
L4 — — — — — — — 3.5 — 12.5 — — 0.0 0.5 — — — 4.1

Table F.9: Per-task average success rate when evaluating performance across each difficulty level, without making
mistakes. This corresponds to the top of Table 7. All models were trained on paraphrased instructions.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 Avg.

Distracting
Cross-Attn + Obj-Centric
L1 69.0 63.5 10.5 0.0 0.0 67.5 70.5 — 0.5 — 10.5 69.0 — — 47.0 21.5 0.0 33.0
L2 67.5 74.0 8.0 0.0 0.0 67.5 71.0 — 0.0 — 10.0 65.5 — — 38.0 17.0 0.0 32.2
L3 46.0 55.0 5.0 0.0 0.0 50.5 53.0 — 1.0 — 8.5 — — — 20.5 13.0 0.0 21.0
L4 — — — — — — — 62.0 — 0.0 — — 0.0 25.5 — — — 21.9
Cross-Attn + Patches
L1 3.5 2.0 0.5 0.0 0.0 8.0 2.5 — 0.0 — 2.5 56.0 — — 0.0 12.5 0.0 6.7
L2 2.5 4.5 0.0 0.0 0.0 4.0 3.5 — 0.0 — 3.0 62.0 — — 0.0 16.0 0.0 7.3
L3 4.0 4.5 0.0 0.0 0.0 5.5 2.0 — 0.0 — 0.5 — — — 0.0 12.5 0.0 2.4
L4 — — — — — — — 7.5 — 3.0 — — 0.0 0.0 — — — 2.6
Concatenate + Obj-Centric
L1 3.5 12.0 0.0 0.0 0.0 9.0 1.5 — 0.0 — 1.5 42.5 — — 0.0 6.5 0.0 5.9
L2 3.5 4.0 0.0 0.0 0.0 4.0 4.5 — 0.0 — 1.0 40.0 — — 0.0 2.0 0.0 4.5
L3 2.5 6.5 0.0 0.0 0.0 2.5 2.0 — 0.0 — 0.5 — — — 0.0 0.0 0.0 1.2
L4 — — — — — — — 2.0 — 0.0 — — 0.0 0.5 — — — 0.6
Concatenate + Patches
L1 2.0 13.0 0.0 0.0 0.0 4.5 5.5 — 0.0 — 1.0 49.5 — — 1.0 8.5 0.0 6.5
L2 3.5 12.5 0.0 0.0 0.0 4.5 3.0 — 0.0 — 3.5 48.0 — — 0.5 11.5 0.0 6.7
L3 6.5 17.0 0.0 0.0 0.0 6.0 3.5 — 0.0 — 2.0 — — — 1.0 5.0 0.0 3.4
L4 — — — — — — — 6.5 — 0.0 — — 0.0 0.0 — — — 1.6

Extreme
Cross-Attn + Obj-Centric
L1 61.0 14.5 10.5 0.0 0.0 2.5 30.5 — 0.5 — 0.5 39.5 — — 37.5 0.0 0.0 15.2
L2 69.0 14.5 6.5 0.0 0.0 5.0 26.5 — 1.0 — 0.0 36.0 — — 43.0 0.0 0.0 15.5
L3 77.0 31.0 6.0 0.0 0.0 9.0 41.0 — 0.5 — 2.0 — — — 42.5 0.0 0.0 17.4
L4 — — — — — — — 10.0 — 0.0 — — 0.0 35.0 — — — 11.2
Cross-Attn + Patches
L1 4.0 4.0 3.5 0.0 0.0 6.0 6.0 — 1.5 — 1.0 37.5 — — 10.5 0.0 0.0 5.7
L2 3.5 2.5 3.5 0.0 0.0 5.0 2.5 — 1.5 — 0.5 34.0 — — 7.0 0.0 0.0 4.6
L3 4.5 1.0 7.5 0.0 0.0 4.5 2.5 — 4.0 — 0.0 — — — 8.0 0.0 0.0 2.7
L4 — — — — — — — 2.5 — 8.0 — — 0.0 8.0 — — — 4.6
Concatenate + Obj-Centric
L1 8.5 6.0 1.0 0.0 0.0 8.0 5.0 — 0.5 — 0.5 29.0 — — 0.5 0.0 0.0 4.5
L2 2.5 3.5 0.0 0.0 0.0 7.0 7.5 — 0.0 — 0.5 21.5 — — 1.0 0.0 0.0 3.3
L3 6.0 4.0 0.0 0.0 0.0 8.5 4.5 — 0.0 — 0.5 — — — 0.0 0.0 0.0 2.0
L4 — — — — — — — 3.5 — 5.0 — — 0.5 0.0 — — — 2.2
Concatenate + Patches
L1 4.5 3.0 1.5 0.0 0.0 4.0 5.0 — 0.0 — 1.5 20.5 — — 11.0 0.0 0.0 3.9
L2 7.0 5.5 0.5 0.0 0.0 6.0 6.0 — 0.0 — 1.0 18.5 — — 9.0 0.0 0.0 4.1
L3 8.0 2.0 0.0 0.0 0.0 5.5 4.5 — 0.0 — 0.0 — — — 12.0 0.0 0.0 2.7
L4 — — — — — — — 2.5 — 5.0 — — 0.0 22.0 — — — 7.4

Extremely Distracting
Cross-Attn + Obj-Centric
L1 22.5 3.0 9.0 0.0 0.0 8.5 17.5 — 1.0 — 2.5 36.5 — — 31.0 0.0 0.0 10.1
L2 14.5 6.0 7.0 0.0 0.0 6.5 14.0 — 0.5 — 1.0 35.0 — — 29.0 0.0 0.0 8.7
L3 23.0 10.5 7.5 0.0 0.0 6.0 17.5 — 0.5 — 2.0 — — — 37.0 0.0 0.0 8.7
L4 — — — — — — — 9.5 — 0.0 — — 0.0 34.0 — — — 10.9
Cross-Attn + Patches
L1 1.0 2.5 0.0 0.0 0.0 1.5 1.0 — 0.0 — 0.0 32.0 — — 0.0 0.0 0.0 2.9
L2 1.0 1.0 0.0 0.0 0.0 1.0 0.5 — 0.0 — 0.5 32.5 — — 0.5 0.0 0.0 2.8
L3 1.5 0.5 0.0 0.0 0.0 0.0 2.0 — 0.0 — 0.5 — — — 0.0 0.0 0.0 0.4
L4 — — — — — — — 2.0 — 12.0 — — 0.5 0.0 — — — 3.6
Concatenate + Obj-Centric
L1 9.5 5.0 0.5 0.0 0.0 6.0 6.5 — 0.5 — 0.0 28.0 — — 0.0 0.0 0.0 4.3
L2 3.5 5.0 0.0 0.0 0.0 6.5 7.5 — 0.0 — 0.0 32.5 — — 0.5 0.0 0.0 4.3
L3 3.0 7.5 0.0 0.0 0.0 7.0 5.0 — 0.0 — 1.0 — — — 0.5 0.0 0.0 2.0
L4 — — — — — — — 3.0 — 2.5 — — 0.0 0.0 — — — 1.4
Concatenate + Patches
L1 1.5 2.0 0.0 0.0 0.0 1.5 0.0 — 0.0 — 0.0 16.5 — — 0.5 0.0 0.0 1.7
L2 1.0 1.0 0.0 0.0 0.0 4.0 1.0 — 0.0 — 0.0 13.5 — — 0.0 0.0 0.0 1.6
L3 0.5 0.5 0.0 0.0 0.0 1.0 1.0 — 0.0 — 0.5 — — — 1.0 0.0 0.0 0.4
L4 — — — — — — — 2.5 — 2.0 — — 0.5 0.0 — — — 1.2

Table F.10: Per-task average success rate when evaluating performance across each difficulty level when the
instruction is entirely masked. The model must perform without making mistakes. This corresponds to the
bottom of Table 7. All models were trained on paraphrased instructions.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 Avg.

Permute Object Order; Can Recover From Mistakes
Cross-Attn + Obj-Centric
L1 60.5 58.5 56.0 9.5 0.5 56.0 63.0 — 14.5 — 92.0 55.0 — — 33.5 28.5 4.5 40.9
L2 60.0 51.5 61.5 12.0 0.0 53.5 54.0 — 8.5 — 91.0 49.5 — — 34.5 28.5 3.5 39.1
L3 42.5 38.5 58.5 11.0 1.0 47.5 44.5 — 12.0 — 91.0 — — — 27.5 25.5 0.0 33.3
L4 — — — — — — — 20.5 — 0.0 — — 0.0 26.5 — — — 11.8
Concatenate + Obj-Centric
L1 59.5 61.0 50.5 19.5 3.5 63.0 60.0 — 8.5 — 91.5 42.0 — — 30.5 35.0 3.0 40.6
L2 65.5 56.5 56.5 13.0 1.0 56.0 58.5 — 10.5 — 96.5 42.5 — — 32.0 35.0 4.5 40.6
L3 53.5 49.0 59.0 17.0 3.0 42.5 44.0 — 8.5 — 93.5 — — — 29.5 35.5 0.5 36.3
L4 — — — — — — — 21.5 — 1.0 — — 0.0 35.5 — — — 14.5

Permute Object Order; No Mistakes Allowed
Cross-Attn + Obj-Centric
L1 22.5 19.0 44.5 6.5 0.0 23.5 20.5 — 5.0 — 91.0 41.5 — — 24.5 25.5 0.0 24.9
L2 19.5 19.5 49.0 8.5 0.0 23.5 20.5 — 1.5 — 91.0 40.5 — — 20.0 26.0 0.0 24.6
L3 14.5 13.0 47.5 6.0 0.0 17.5 17.0 — 5.0 — 90.5 — — — 13.0 24.5 0.0 20.7
L4 — — — — — — — 7.5 — 0.0 — — 0.0 16.0 — — — 5.9
Concatenate + Obj-Centric
L1 21.0 27.0 40.5 19.0 2.0 41.0 30.0 — 2.0 — 89.5 39.0 — — 18.0 29.5 0.0 27.6
L2 20.5 28.0 49.5 12.0 0.5 34.0 27.5 — 6.5 — 94.0 39.5 — — 17.0 32.0 0.0 27.8
L3 17.0 20.5 52.5 16.5 2.0 24.0 16.5 — 6.0 — 90.5 — — — 17.0 35.5 0.0 24.8
L4 — — — — — — — 13.0 — 0.0 — — 0.0 20.0 — — — 8.2

Table F.11: Per-task average success rate when evaluating performance for object-centric models with a permuted
object order per observation during inference. This table compares a models’ ability to recover from mistakes (top)
versus acting without making mistakes (bottom). All models are trained on paraphrased instructions.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 Avg.

Permute Object Order; Distracting; Can Recover From Mistakes
Cross-Attn + Obj-Centric
L1 12.5 26.0 17.0 0.0 0.0 13.0 13.0 — 0.5 — 89.5 46.5 — — 5.0 29.0 0.0 19.4
L2 11.0 23.5 19.5 0.5 0.0 10.5 9.5 — 1.5 — 88.5 46.0 — — 4.5 25.5 0.0 18.5
L3 7.5 10.5 19.0 0.5 0.0 10.0 9.0 — 1.0 — 87.0 — — — 6.5 33.0 0.0 15.3
L4 — — — — — — — 8.0 — 0.0 — — 0.0 2.5 — — — 2.6
Concatenate + Obj-Centric
L1 6.0 24.5 11.5 0.0 0.0 21.0 6.5 — 1.0 — 91.0 20.5 — — 1.5 35.0 0.0 16.8
L2 5.5 25.5 12.5 0.0 0.0 12.0 9.0 — 1.5 — 86.0 21.5 — — 2.0 31.5 0.0 15.9
L3 6.5 18.0 12.0 0.0 0.0 10.5 8.0 — 4.5 — 87.5 — — — 1.5 32.0 0.0 15.0
L4 — — — — — — — 10.0 — 0.0 — — 0.0 2.5 — — — 3.1

Permute Object Order; Extreme; Can Recover From Mistakes
Cross-Attn + Obj-Centric
L1 37.0 33.5 48.0 12.0 1.5 24.0 33.5 — 15.0 — 1.0 31.0 — — 34.0 0.0 0.5 20.8
L2 37.0 37.0 49.0 12.5 1.0 23.0 33.0 — 8.5 — 1.5 29.0 — — 31.0 0.0 1.5 20.3
L3 38.0 34.0 49.5 15.0 1.5 25.5 34.0 — 11.0 — 0.5 — — — 25.0 0.0 0.0 19.5
L4 — — — — — — — 10.5 — 5.5 — — 0.5 31.5 — — — 12.0
Concatenate + Obj-Centric
L1 37.0 23.0 40.0 14.0 2.5 18.5 25.0 — 10.5 — 5.0 17.0 — — 38.5 0.0 1.5 17.9
L2 30.5 22.5 41.0 14.0 2.0 18.5 30.0 — 10.0 — 3.5 15.5 — — 27.0 0.0 0.0 16.5
L3 36.0 22.0 40.5 12.0 2.0 21.5 22.0 — 9.0 — 6.0 — — — 29.0 0.5 0.0 16.7
L4 — — — — — — — 12.0 — 20.0 — — 2.0 31.0 — — — 16.2

Permute Object Order; Extremely Distracting; Can Recover From Mistakes
Cross-Attn + Obj-Centric
L1 4.0 11.0 19.5 0.0 0.0 8.5 4.0 — 2.0 — 0.5 25.0 — — 3.0 0.0 0.0 6.0
L2 5.0 12.5 13.5 0.0 0.0 9.0 7.5 — 1.0 — 2.0 36.5 — — 4.5 0.0 0.5 7.1
L3 7.0 13.0 21.5 0.0 0.0 7.0 6.0 — 1.5 — 1.5 — — — 4.0 0.0 0.0 5.1
L4 — — — — — — — 8.0 — 0.0 — — 1.0 4.0 — — — 3.2
Concatenate + Obj-Centric
L1 3.5 10.0 8.5 0.0 0.0 3.5 5.0 — 3.0 — 4.5 13.5 — — 1.5 0.5 0.0 4.1
L2 2.5 8.5 9.5 0.0 0.0 7.0 6.0 — 0.0 — 4.0 16.5 — — 3.0 1.5 0.0 4.5
L3 3.5 6.5 13.0 0.0 0.0 4.5 6.0 — 0.0 — 6.0 — — — 3.0 0.0 0.0 3.5
L4 — — — — — — — 8.0 — 1.0 — — 0.0 2.0 — — — 2.8

Table F.12: Per-task average success rate when evaluating performance for models with permuted object order per
observation across each difficulty level. All models are trained on paraphrased instructions and can recover
from mistakes during inference. This table corresponds to the middle section of Table 8, and also provides per-task
results for the Extremely Distracting difficulty level.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 Avg.

Default Difficulty; Can Recover From Mistakes
Cross-Attn + Obj-Centric
L1 84.5 94.0 16.0 90.5 10.0 60.5 82.5 — 10.5 — 93.0 91.5 — — 92.5 48.0 2.5 59.7
L2 31.5 41.0 16.0 73.0 7.0 68.0 24.5 — 5.5 — 93.0 86.0 — — 53.0 46.5 2.0 42.1
L3 42.5 55.0 19.0 46.5 4.0 54.0 42.0 — 8.0 — 93.0 — — — 49.5 42.5 1.0 38.1
L4 — — — — — — — 23.5 — 0.0 — — 0.0 34.0 — — — 14.4
Concatenate + Obj-Centric
L1 96.0 99.0 46.5 93.0 22.5 63.0 89.0 — 78.0 — 95.0 87.5 — — 97.5 44.5 6.0 70.6
L2 35.5 44.5 52.0 88.0 16.5 54.0 20.5 — 39.5 — 94.0 87.5 — — 65.0 47.5 4.0 49.9
L3 37.0 63.0 49.0 76.5 12.0 39.5 27.0 — 60.5 — 94.5 — — — 32.0 45.0 0.0 44.7
L4 — — — — — — — 29.0 — 6.0 — — 0.0 23.0 — — — 14.5

Distracting Difficulty; Can Recover From Mistakes
Cross-Attn + Obj-Centric
L1 31.0 71.0 1.0 7.5 0.0 20.5 38.0 — 4.0 — 92.5 82.0 — — 92.5 45.0 0.0 37.3
L2 1.0 11.5 0.5 4.5 0.0 6.5 1.0 — 1.5 — 93.5 75.5 — — 27.0 49.0 0.0 20.9
L3 7.5 31.0 0.5 3.5 0.0 13.5 8.0 — 3.5 — 88.0 — — — 13.0 44.5 0.0 17.8
L4 — — — — — — — 8.5 — 0.0 — — 0.0 2.5 — — — 2.8
Concatenate + Obj-Centric
L1 42.0 93.0 6.5 0.0 0.0 26.5 34.5 — 27.5 — 93.0 73.0 — — 71.0 46.5 0.0 39.5
L2 0.5 15.0 7.0 0.0 0.0 15.5 1.5 — 6.5 — 91.5 81.0 — — 20.0 40.5 0.0 21.5
L3 7.5 27.0 7.0 2.0 0.0 8.0 6.0 — 15.0 — 93.5 — — — 2.0 46.0 0.0 17.8
L4 — — — — — — — 11.5 — 1.0 — — 0.0 2.0 — — — 3.6

Extreme Difficulty; Can Recover From Mistakes
Cross-Attn + Obj-Centric
L1 32.0 41.5 17.5 81.5 9.5 17.5 39.5 — 11.5 — 5.0 52.5 — — 22.5 0.0 2.0 25.6
L2 5.5 22.5 9.5 74.0 5.5 20.0 3.5 — 6.5 — 2.0 56.0 — — 15.5 0.0 2.5 17.2
L3 20.5 26.5 19.0 45.0 6.5 20.5 22.0 — 9.5 — 2.0 — — — 21.0 0.5 1.5 16.2
L4 — — — — — — — 9.5 — 1.0 — — 0.5 24.0 — — — 8.8
Concatenate + Obj-Centric
L1 17.5 47.5 31.0 93.0 17.5 29.0 22.0 — 73.0 — 9.5 51.0 — — 21.5 0.5 2.5 32.0
L2 21.5 42.0 37.0 93.0 15.5 31.0 11.5 — 38.5 — 9.0 45.5 — — 27.0 0.5 2.5 28.8
L3 28.5 49.5 37.0 73.0 13.0 24.5 22.0 — 56.5 — 7.0 — — — 33.5 0.0 0.0 28.7
L4 — — — — — — — 14.5 — 18.5 — — 0.0 19.5 — — — 13.1

Extremely Distracting Difficulty; Can Recover From Mistakes
Cross-Attn + Obj-Centric
L1 5.0 18.5 0.5 0.0 0.0 9.5 12.5 — 3.0 — 2.0 48.0 — — 9.5 1.0 0.0 8.4
L2 1.5 10.5 0.5 0.0 0.0 5.5 0.0 — 0.5 — 1.5 46.0 — — 2.0 0.0 0.0 5.2
L3 7.0 10.0 1.5 0.0 0.0 10.5 6.5 — 1.0 — 1.0 — — — 2.5 0.0 0.0 3.3
L4 — — — — — — — 7.5 — 0.0 — — 1.0 0.5 — — — 2.2
Concatenate + Obj-Centric
L1 3.0 35.0 5.5 0.0 0.0 15.0 4.5 — 29.0 — 11.0 50.5 — — 1.0 0.0 0.0 11.9
L2 5.0 30.5 3.5 0.0 0.0 12.0 2.5 — 7.0 — 9.0 49.0 — — 2.5 0.0 0.5 9.3
L3 4.0 28.0 7.0 0.0 0.0 6.5 6.0 — 12.0 — 7.5 — — — 3.5 0.5 0.0 6.2
L4 — — — — — — — 7.5 — 5.0 — — 0.0 0.5 — — — 3.2

Table F.13: Per-task average success rate when evaluating performance for models trained with a randomised
object order per observation for each difficulty level. Models can recover from mistakes and are trained with
paraphrased instructions.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 Avg.

Permute Object Order; Default Difficulty; No Mistakes Allowed
Cross-Attn + Obj-Centric
L1 69.0 85.0 5.0 90.0 3.5 37.5 71.5 — 5.5 — 92.0 85.5 — — 63.5 46.0 0.0 50.3
L2 18.5 31.0 5.0 73.0 2.0 38.5 16.5 — 3.0 — 92.0 75.0 — — 43.0 46.0 0.0 34.1
L3 32.5 44.0 10.5 46.5 2.0 31.0 27.0 — 3.5 — 92.0 — — — 29.5 42.5 0.0 30.1
L4 — — — — — — — 15.5 — 0.0 — — 0.0 24.5 — — — 10.0
Concatenate + Obj-Centric
L1 73.0 96.0 24.0 92.5 11.0 39.5 75.5 — 70.5 — 92.5 72.5 — — 68.5 44.0 0.0 58.4
L2 24.0 39.5 30.0 87.5 7.5 39.5 14.5 — 26.5 — 91.5 75.5 — — 51.5 46.0 0.0 41.0
L3 20.0 42.0 28.5 75.5 8.0 19.0 14.0 — 46.5 — 93.5 — — — 22.0 45.0 0.0 34.5
L4 — — — — — — — 18.5 — 0.0 — — 0.0 14.0 — — — 8.1

Permute Object Order; Distracting Difficulty; No Mistakes Allowed
Cross-Attn + Obj-Centric
L1 17.5 63.5 0.5 4.0 0.0 10.5 25.0 — 2.0 — 90.5 68.5 — — 75.0 42.5 0.0 30.7
L2 0.0 8.5 0.0 2.5 0.0 6.0 0.0 — 1.0 — 92.0 63.5 — — 24.0 47.0 0.0 18.8
L3 4.0 22.0 0.0 3.0 0.0 9.0 4.0 — 2.0 — 87.5 — — — 7.5 44.5 0.0 15.3
L4 — — — — — — — 3.5 — 0.0 — — 0.0 2.5 — — — 1.5
Concatenate + Obj-Centric
L1 33.5 85.0 3.0 0.0 0.0 13.5 22.5 — 25.0 — 82.5 61.5 — — 61.5 45.5 0.0 33.3
L2 0.0 14.0 5.5 0.0 0.0 8.0 0.0 — 3.5 — 87.5 62.5 — — 15.5 39.5 0.0 18.2
L3 4.5 21.5 5.0 0.0 0.0 4.5 4.5 — 11.5 — 91.0 — — — 1.5 46.0 0.0 15.8
L4 — — — — — — — 7.5 — 0.0 — — 0.0 1.0 — — — 2.1

Permute Object Order; Extreme Difficulty; No Mistakes Allowed
Cross-Attn + Obj-Centric
L1 2.5 17.0 7.5 81.5 3.5 4.0 3.5 — 10.0 — 4.5 34.5 — — 13.5 0.0 0.0 14.0
L2 0.0 4.0 1.5 73.5 2.5 5.5 0.0 — 3.0 — 1.5 42.5 — — 12.0 0.0 0.0 11.2
L3 3.5 10.0 4.5 44.5 3.5 4.0 3.5 — 5.0 — 0.5 — — — 16.5 0.5 0.0 8.0
L4 — — — — — — — 2.5 — 0.0 — — 0.5 15.0 — — — 4.5
Concatenate + Obj-Centric
L1 8.5 36.0 14.0 93.0 9.0 9.5 12.0 — 68.5 — 4.0 39.5 — — 16.5 0.5 0.0 23.9
L2 0.0 18.0 18.0 93.0 7.5 6.5 0.0 — 22.0 — 3.0 38.0 — — 17.0 0.5 0.0 17.2
L3 4.0 28.0 18.5 72.0 8.5 6.0 7.0 — 45.0 — 1.5 — — — 19.0 0.0 0.0 17.5
L4 — — — — — — — 7.0 — 5.5 — — 0.0 11.0 — — — 5.9

Permute Object Order; Extremely Distracting Difficulty; No Mistakes Allowed
Cross-Attn + Obj-Centric
L1 0.0 10.5 0.0 0.0 0.0 1.0 1.5 — 1.5 — 2.0 33.0 — — 8.5 0.5 0.0 4.5
L2 0.0 4.0 0.0 0.0 0.0 1.5 0.0 — 0.5 — 0.5 34.5 — — 2.0 0.0 0.0 3.3
L3 1.5 3.5 0.5 0.0 0.0 2.0 0.5 — 0.0 — 0.5 — — — 1.5 0.0 0.0 0.8
L4 — — — — — — — 1.0 — 0.0 — — 1.0 0.5 — — — 0.6
Concatenate + Obj-Centric
L1 0.0 27.0 3.0 0.0 0.0 5.0 3.0 — 26.5 — 3.0 36.0 — — 1.0 0.0 0.0 8.0
L2 0.0 14.5 2.0 0.0 0.0 3.0 0.0 — 3.0 — 4.5 38.5 — — 2.0 0.0 0.0 5.2
L3 1.5 15.0 3.0 0.0 0.0 1.0 0.5 — 10.0 — 2.0 — — — 3.0 0.5 0.0 3.0
L4 — — — — — — — 1.5 — 0.0 — — 0.0 0.5 — — — 0.5

Table F.14: Per-task average success rate for models trained with a randomised object order per observation for
each difficulty level, and then evaluated with a permuted object order. Models are trained with paraphrased
instructions and are not allowed to make mistakes during evaluation.
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