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Abstract
Function calling using Large Language Mod-
els (LLMs) is an active research area that aims
to empower LLMs with the ability to execute
APIs to perform real-world tasks. However,
sequential function calling using LLMs with in-
terdependence between functions is still under-
explored. To this end, we introduce GraphQL-
RestBench, a dataset consisting of natural lan-
guage utterances paired with function call se-
quences representing real-world REST API
calls with variable mapping between functions.
In order to represent the response structure
of the functions in the LLM prompt, we use
the GraphQL schema of the REST APIs. We
also introduce a custom evaluation framework
for our dataset consisting of four specially de-
signed metrics. We evaluate various open-
source LLMs on our dataset using few-shot
Chain-of-Thought and ReAct prompting to es-
tablish a reasonable baseline.

1 Introduction

Tool use in Large Language Models (LLMs) is
an active area of research that aims to overcome
the limits of pretraining LLMs (which usually re-
sults in a “knowledge cutoff date”) by enabling the
LLMs to fetch data that they were not trained on
using tools such as web APIs and databases. In
this context the idea of using LLMs for function
calling has gained traction since using tools in the
form of functions requires LLMs to accurately pass
correct parameter values to the functions. Any web
API can be encapsulated as a function which re-
quires inputs in a predefined format and outputs a
structured response object.

The idea of empowering LLMs to use tools to
harness external knowledge and perform complex
computational tasks was introduced by Toolformer
(Schick et al., 2024). There have been several at-
tempts to train LLMs to use tools such as APIs
(Liang et al., 2023; Shen et al., 2024; Patil et al.,
2023; Song et al., 2023; Patil et al., 2024).

Figure 1: An example sequential function calling sce-
nario from Spotify in GraphQLRestBench.

LLMs still do not perform well on API calling
due to their inability to generate accurate input
arguments and their tendency to hallucinate the
wrong usage of an API call. It is essential for
API-augmented LLMs to have robust planning and
decision-making capabilities. Planning based ap-
proaches like ReAct (Yao et al., 2022) encounter
challenges in effectively adapting API feedback
and generating viable plans. RestGPT (Song et al.,
2023) introduced a coarse-to-fine online planning
mechanism for task decomposition and API selec-
tion, and API execution.

While methods like ReAct and RestGPT have
demonstrated promising abilities for online plan-
ning and execution, they may generate incorrect
APIs during the exploration phase. In contrast, Go-
rilla (Patil et al., 2023) focuses on the ability of the
LLM to call a given API correctly. We wish to ex-
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tend this approach to the sequential API execution
scenario of RestGPT. While the Gorilla OpenFunc-
tions framework (see the Berkeley Function Calling
Leaderboard (Yan et al., 2024)) supports single and
parallel function calls, it does not as yet support
the use case of chained or sequential function calls
where there exist mappings between the input and
output parameters of functions.

The fundamental difficulty in calling sequential
APIs in a single shot is the lack of knowledge about
the response structure of APIs. While the OpenAPI
specification of the API might provide some clue as
to the response structure, it is often incomplete or
inadequate for the purpose of defining the variable
mapping in pythonic form.

GraphQL (Inc., 2015) is a query language for
APIs that allows the user to easily find the useful
fields and types in the API response object by in-
specting the so-called GraphQL “schema” of the
API using a feature called “introspection”. As a so-
lution to the above problem, we propose using the
GraphQL schema of the APIs as a reliable source
of information regarding their response structure.
Tools like StepZen (IBM, 2024), Apollo (Apollo
Graph Inc, 2024), and Hasura (Hasura, 2024) are
available for automatically generating the GraphQL
schema for querying RESTful APIs and databases.

In this paper, we introduce a new dataset,
GraphQLRestBench1 which is built using the
RestBench dataset introduced by RestGPT. No-
tably, RestBench only provides API sequences
and not input-output parameter mappings between
APIs. It can therefore be used only for measuring
whether the generated sequence of function names
is exactly the same as the ground truth sequence.
In GraphQLRestBench, we additionally add the
GraphQL schema generated by StepZen for the
APIs and also Python code to call the APIs in a
sequence using input-output parameter mapping
given the response structure of the APIs obtained
from the GraphQL schema. The task is to generate
the correct Python code consisting of a sequence
of function calls with accurate parameter mapping
between functions (see Figure 1). Sometimes the
model may generate a different sequence of func-
tion names which is still meaningful for the task
because the input-output dependence between the
function calls is preserved. Furthermore, we have
only considered required parameters for the APIs in

1https://github.com/GraphQL-Gen/
GraphQLRestBench

the ground truth function calls. But the model may
generate additional optional function arguments
which are not actually required by the APIs to re-
turn the correct response, but are still present in
the input signature. Keeping this in mind, we intro-
duce a custom evaluation framework for our dataset
consisting of four task-specific metrics. We also
evaluate various open source LLMs on this task us-
ing Chain-of-Thought (Wei et al., 2022) and ReAct
(Yao et al., 2022) style prompting as a reasonable
baseline.

The concept of using GraphQL to represent the
output signatures of the functions was not in Rest-
Bench or in any other function calling dataset
such as the Berkeley Function Calling Leaderboard
dataset. We would like to claim this as the main
contribution of our work. The provided GraphQL
schemas are useful for interacting with the APIs
through a GraphQL interface rather than through a
standard HTTP request.

2 Related Work

Tool use and function calling (Mialon et al., 2023)
presents a survey of augmented language models in
general. Gorilla (Patil et al., 2023) introduced the
idea of fine-tuning a base LLM for function call-
ing by supplementing it with information retrieval.
Toolformer (Schick et al., 2024) fine-tunes an LLM
on the task of function calling with some custom
built tools. (Yang et al., 2024) teaches LLMs to use
such tools with self-instruction. TaskMatrix (Liang
et al., 2023) studied the problem of task comple-
tion using a large number of APIs. ToolLLM (Qin
et al., 2023) is a general tool-use framework en-
compassing data construction, model training, and
evaluation over 16,000 APIs from RapidAPI Hub.

Agent-based frameworks have also been ex-
plored in this area. ReAct (Yao et al., 2022) studied
the integration of reasoning and acting (by means
of function calls) in LLM agents. Inspired by Re-
Act, RestGPT (Song et al., 2023) proposes a dual-
agent planner-executor approach to connect LLMs
with real-world RESTful APIs. (Song et al., 2024)
introduced exploration-based trajectory optimiza-
tion for open-source LLM agents by fine-tuning on
the agent trajectories. AnyTool (Du et al., 2024) in-
troduced self-reflective, hierarchical agents for API
calling using the function calling ability of GPT-4
(Achiam et al., 2023). HuggingGPT (Shen et al.,
2024) is an LLM-powered agent that connects var-
ious AI models in machine learning communities
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such as Hugging Face to solve AI tasks.
RESTful is the popular web service develop-

ment standard (Li et al., 2016), which supports
HTTP protocols and URIs to serve resources. Ope-
nAPI Specification (Initiative, 2021) describes the
operations, parameters, and response schemas in
RESTful APIs.
Function calling datasets APIBench from Go-
rilla (Patil et al., 2023) consists of HuggingFace,
TorchHub, and TensorHub APIs. RestBench from
RestGPT (Song et al., 2023) consists of APIs from
TMDB movie database and Spotify music player.
ToolBench from ToolLLM (Qin et al., 2023) con-
sists of 16,464 real-world RESTful APIs spanning
49 categories from RapidAPI Hub. AnyToolBench
from AnyTool (Du et al., 2024) is similar to Tool-
Bench but with a different evaluation protocol.
GraphQL (Wittern et al., 2018) discussed gen-
erating GraphQL wrappers for REST APIs using
the OpenAPI specifications. (Farré et al., 2019)
proposed automatic GraphQL schema generation
for data-intensive web APIs using a semantic meta-
model. Works such as (Brito and Valente, 2020)
compare GraphQL and REST frameworks.

3 Methodology

In this section we explain the methodology we used
to create the GraphQLRestBench dataset.
GraphQL Schema Generation First we generate
GraphQL schema for all the API endpoints in Rest-
Bench, except for those whose output schema is
never required. We use the import curl command
from the StepZen CLI to generate the GraphQL
schema for the endpoints using appropriate dummy
values for the parameters if required. The schema
files thus generated are collated to form the com-
bined schema for a given sample (sequence of API
calls) in RestBench.
Function Signature Generation We programmat-
ically generated function signatures in the OpenAI
compatible format used by Gorilla OpenFunctions
(Patil et al., 2023) and the Berkeley Function Call-
ing LeaderBoard (Yan et al., 2024) by parsing the
OpenAPI specifications for Spotify and TMDB
available in RestBench.
API Function Calling We then manually gener-
ated the code to call the APIs, where each API is
encapsulated by a function named as the Query
type corresponding to the API in the GraphQL
schema, and the arguments of the function are the
API parameters (which may be in the path, the

query string or the body of the REST API call).
Some arguments are required whereas others are
optional as per the OpenAPI specification. In the
ground truth code that we generated, we consid-
ered only the required arguments and ignored the
optional ones. The generated code is organized as
a sequence of function calls along with variables to
store the function outputs.

Data Organization
Each sample of GraphQLRestBench consists of
(1) a natural language utterance from a sample
of RestBench, (2) the function signatures of the
ground truth APIs in the sample, (3) the combined
GraphQL schema of these APIs, and (4) the ground
truth code to call these APIs as functions.

split overall spotify tmdb

train 107 38 69
val 16 6 10
test 32 12 20

Table 1: Number of samples in each data split of
GraphQLRestBench.

Data Splits We split both Spotify and TMDB data
from GraphQLRestBench into train, validation and
test splits in the ratio 7:1:2. The corresponding
splits from the two domains are combined to form
the overall train, validation and test splits. Basic
statistics of the data (number of samples per cate-
gory) are shown in Table 1. The overlap statistics
are shown in Table 2, indicating the amount of
overlap in function and argument names.

4 Experiments

We report results on our test data, benchmarking
multiple open source models, namely Llama 3 (8B
and 70B) (Dubey et al., 2024), Code Llama (34B)
(Rozière et al., 2024), DeepSeek Coder (33B) (Guo
et al., 2024) and Granite Code (34B) (Mishra et al.,
2024). We demonstrate the capability of these mod-
els on our code generation task using (i) Chain-of-
Thought style prompting (Wei et al., 2022) where
the model reasons about the sequence of functions
it must call as well as the parameter values it must
use, generating additional code if necessary to ex-
tract the correct parameter values from API re-
sponses represented by GraphQL types, and (ii)
ReAct style prompting (Yao et al., 2022) where the
model generates code in a step by step fashion (one
function call per step).
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Domain Data split Total function names Unique function names Total arg names Unique arg names

overall train 254 75 640 77
overall val 34 28 70 30
overall test 77 43 158 41

spotify train 99 32 235 28
spotify val 14 10 34 17
spotify test 31 22 65 26

tmdb train 155 43 405 49
tmdb val 20 18 36 13
tmdb test 46 21 93 15

Table 2: Overlap statistics of GraphQLRestBench.

Model Prompt Test Arg Match Arg Match Seq Match Seq Match
Style split (full) (functions) (full) (conn. subseq.)

llama-3-8b-instruct CoT overall 0.5000 0.6623 0.7812 0.7187
llama-3-70b-instruct CoT overall 0.5312 0.6623 0.8437 0.7812
codellama-34b-instruct CoT overall 0.6875 0.8051 0.9062 0.9375
deepseek-coder-33b-instruct CoT overall 0.7500 0.8701 0.9687 1.0000
granite-34b-code-instruct CoT overall 0.7812 0.8701 0.9375 0.9687
llama-3-8b-instruct ReAct overall 0.4062 0.5844 0.8125 0.7187
llama-3-70b-instruct ReAct overall 0.6250 0.8182 0.8750 0.8437
codellama-34b-instruct ReAct overall 0.7188 0.8182 0.9062 0.8750
deepseek-coder-33b-instruct ReAct overall 0.7500 0.8312 0.9375 0.8438
granite-34b-code-instruct ReAct overall 0.7812 0.8571 0.8750 0.8750

llama-3-8b-instruct CoT spotify 0.3333 0.5484 0.7500 0.5833
llama-3-70b-instruct CoT spotify 0.5000 0.7419 0.8333 0.7500
codellama-34b-instruct CoT spotify 0.5833 0.7741 0.9166 0.9166
deepseek-coder-33b-instruct CoT spotify 0.5833 0.7741 1.0000 1.0000
granite-34b-code-instruct CoT spotify 0.5000 0.7096 0.9166 0.9166
llama-3-8b-instruct ReAct spotify 0.3333 0.5806 0.8333 0.6667
llama-3-70b-instruct ReAct spotify 0.4167 0.7097 1.0000 0.8333
codellama-34b-instruct ReAct spotify 0.4167 0.7097 0.8333 0.7500
deepseek-coder-33b-instruct ReAct spotify 0.5000 0.7419 1.0000 0.7500
granite-34b-code-instruct ReAct spotify 0.5000 0.6774 0.8333 0.8333

llama-3-8b-instruct CoT tmdb 0.5500 0.6522 0.8500 0.8500
llama-3-70b-instruct CoT tmdb 0.6500 0.7826 0.8500 0.8500
codellama-34b-instruct CoT tmdb 0.7500 0.8260 0.9000 0.9500
deepseek-coder-33b-instruct CoT tmdb 0.8500 0.9347 0.9500 1.0000
granite-34b-code-instruct CoT tmdb 1.0000 1.0000 1.0000 1.0000
llama-3-8b-instruct ReAct tmdb 0.5000 0.6304 0.8000 0.7500
llama-3-70b-instruct ReAct tmdb 0.7500 0.8913 0.8500 0.9000
codellama-34b-instruct ReAct tmdb 0.9000 0.8913 0.9500 0.9500
deepseek-coder-33b-instruct ReAct tmdb 0.9000 0.8913 0.9000 0.9000
granite-34b-code-instruct ReAct tmdb 0.9500 0.9783 0.9000 0.9000

Table 3: Few-shot Chain-of-Thought (CoT) and ReAct prompting results on the test split of GraphQLRestBench.

As in RestBench, our dataset contains real-world
examples from two domains: Spotify (Spotify,
2024) and TMDB (TMDB, 2024). For each do-
main, we carefully select representative few-shot
examples from the corresponding train splits to
guide the model in understanding the sequence of
function calls and parameter assignments required
to generate the correct Python code.

4.1 Metrics

We used the following metrics to evaluate perfor-
mance of all the models on our test data. (1) Arg

Match (full): This metric measures the recall of all
the required function arguments in the generated
and ground truth code snippets post standardization
of response variable names. It assigns a score of
1 if all the required arguments of all the functions
in the ground truth code snippet are also present in
the generated code snippet and a score of 0 other-
wise. The final score is the average of the scores
over the code snippets. (2) Arg Match (functions):
This metric measures the recall of all the required
function arguments per function post response vari-
able name standardization. It assigns a score of 1
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if all the required arguments of a ground truth func-
tion call are also present in the generated function
call and a score of 0 otherwise. The final score is
the average of the scores over the functions. (3)
Seq Match (full): This metric measures the exact
match of the sequence of functions in the generated
and ground truth code snippets. It assigns a score
of 1 if the two sequences match and a score of 0
otherwise. The final score is the average of the
scores over the code snippets. (4) Seq Match (con-
nected subsequences): A connected subsequence
is a sequence of function calls that are dependent
because of input-output variable mapping. We can
extract all such connected subsequences from a
code snippet by matching the input and output vari-
able names. This metric measures the exact match
of these connected subsequences in the generated
and ground truth code snippets. It assigns a score
of 1 if all the connected subsequences match and a
score of 0 otherwise. The final score is the average
of the scores over the code snippets. This metric is
more robust than Seq Match (full) since functions
can be called in any order so long as they are not
dependent on each other.

4.1.1 Discussion on metrics
Arg Match (full) and Arg Match (functions) mea-
sure whether the models are generating the correct
mandatory function arguments. A high Arg Match
(full) score means that the model is capable of gen-
erating all the mandatory arguments in a complete
code snippet correctly. A high Arg Match (func-
tions) score means that the model on the average
generates individual function calls correctly. Both
the Arg Match (full) and Arg Match (functions)
metrics have been defined to measure the recall
(not accuracy) of the generated mandatory function
arguments. Hence, even if the model generates
optional arguments which are not present in the
ground truth, it will not be penalized so long as it
generates all the required arguments correctly.

Seq Match (full) and Seq Match (connected sub-
sequences) measure whether the model is generat-
ing the sequence of function names correctly (ig-
noring arguments). A high Seq Match (full) score
score means that the model most often generates
the same sequence of function names as in the
ground truth. A high Seq Match (connected sub-
sequences) score means that the model most often
generates the dependent functions in the same or-
der, thus generating syntactically correct code even
if the ground truth sequence is different. Seq Match

(connected subsequences) is a more useful metric
than Seq Match (full) since LLMs may not always
generate code that is identical to the ground truth,
but can still generate code that is meaningful for
the task.
Models We used five open-source LLMs avail-
able on Hugging Face, viz. llama-3-8b-instruct
(Meta), llama-3-70b-instruct (Meta), codellama-
34b-instruct (Meta), deepseek-coder-33b-instruct
(DeepSeek), and granite-34b-code-instruct (IBM).
We also experimented with gorilla-openfunctions-
v2 but the results were very poor.
Experimental Setup For the few shot learning
setting, we prompt models using greedy decod-
ing and a temperature setting of 0.05. We use
3-shot prompting for Code Llama and DeepSeek
Coder (which have 16K context length) for Chain-
of-Thought and ReAct prompting. In case of Gran-
ite Code and Llama 3 (which have 8K context
length), some adjustments were needed: (i) for
CoT, only 2-shot prompts were used due to lim-
ited context length, and (ii) for ReAct, the function
descriptions were stripped out from the function
specs (this saves context length but slightly affects
performance).

Results
We compare the few-shot performance of the LLMs
in Table 3. We see that in the overall test split,
Deepseek Coder is generally the best model, while
Granite Code performs better for Arg Match (full).
CodeLLama and DeepSeek Coder perform better
on Spotify data while Granite Code performs bet-
ter on TMDB data. We see that for code LLMs
(models other than Llama 3) Seq Match (connected
subsequences) is generally higher than Seq Match
(full), indicating that models can generate indepen-
dent functions in an arbitrary order, but they are
less likely to generate dependent functions in the
wrong order since it would result in incorrect code.

Conclusion

In this paper, we introduce GraphQLRestBench, a
new benchmark for evaluating sequential function
calling performance of Large Language Models
(LLMs). GraphQLRestBench leverages GraphQL
schema for input-output variable mapping and code
generation. We propose new metrics that better
evaluate sequential function calling and evaluate
various open source LLMs using few shot Chain-of-
Thought and ReAct style prompting on this dataset.
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Limitations and Ethical Statement

In this section, we briefly highlight the limitations
and ethical considerations of our work. This work
suffers from three major limitations:

• RestBench is a relatively small dataset, con-
sisting only of two domains (Spotify and
TMDB). Since our dataset is based on Rest-
Bench, it is also small in size. It is difficult to
fine-tune LLMs effectively on this data.

• The function calls are currently not executable.
In future we would like to add the execution
functionality in the evaluation framework.

• We did not evaluate the performance of state
of the art closed source models like GPT-4
(Achiam et al., 2023) or Claude 3 (Anthropic,
2024), preferring instead to evaluate open
source models. While these open source mod-
els are quite good, they do not match the per-
formance of the closed source models.

Ethical Considerations
In this work, we have used publicly available
datasets and open source Large Language Models.
There are mentions of names of people and organi-
zations in the dataset. While this can be considered
innocuous data about well known people, we do
not know if the organisations that produced and
released these datasets offered options for people
to opt out.

Our work proposes methods to use LLMs for
function calling, namely generating functions from
natural language instructions given function spec-
ifications and GraphQL schema generated from
REST APIs. Function calling is a well known task.
Several datasets and leaderboards exist for this task.
However, the potential for a malicious user or or-
ganization using this kind of work for exploiting
vulnerabilities in REST APIs does exist.

Such exploitation of vulnerabilities could lead to
leak of sensitive data from API services and could
generally be used for distributed denial of service
attacks. While such attacks can be carried out by
malicious users coding themselves, LLMs could
help scale such attacks. But this kind of misuse of
LLMs is possible with all code models. The ability
to generate code using natural language in general
and our contribution here to the particular aspect
of function calling can be used by malicious users
but is generally useful to a much larger population
who use it for good and productive reasons.
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