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Abstract

We introduce a novel tagging scheme for dis-
continuous named entity recognition based on
an explicit description of the inner structure of
discontinuous mentions. We rely on a weighted
finite state automaton for both marginal and
maximum a posteriori inference. As such, our
method is sound in the sense that (1) well-
formedness of predicted tag sequences is en-
sured via the automaton structure and (2) there
is an unambiguous mapping between well-
formed sequences of tags and (discontinuous)
mentions. We evaluate our approach on three
English datasets in the biomedical domain, and
report comparable results to state-of-the-art
while having a way simpler and faster model.

1 Introduction

Named-entity recognition (NER) is a fundamental
natural language processing (NLP) task that aims
at identifying mentions of named entities in texts.
These mentions may for example refer to persons,
organizations, locations or even dates, among oth-
ers (Grishman and Sundheim, 1996; Chinchor and
Robinson, 1998). Over the years, this task has been
extensively studied by the community, with con-
tributions including decoding algorithms, neural
network architectures, loss functions and methods
for learning in different data availability situations,
inter alia.

There exists several variants of the NER problem,
among which the most studied are flat NER and
nested NER. The most common method for the flat
case is BIO tagging (Ramshaw and Marcus, 1995),
where each word in a sentence is tagged depending
on whether it is the begining of a mention (B),
inside a mention (I) or outside a mention (O).1 This
tagging scheme can be augmented to disambiguate
types, e.g. BLOC and BPER. An important benefit
of BIO tagging is that prediction has a linear time-

1See (Ratinov and Roth, 2009) for other variants.

complexity in the input length2 using the Viterbi
algorithm (Forney, 1973), contrary to concurrent
approaches like semi-Markov models that have a
quadratic time-complexity (Janssen and Limnios,
1999; Ge, 2002; Sarawagi and Cohen, 2004).

A less studied task is discontinuous NER, where
mentions are allowed to span discontinuous se-
quences of words. This problem is especially im-
portant for biomedical NLP. For example, pharma-
covigilance aims to detect adverse drug reactions
after a product is distributed in the market via auto-
matic analysis of medical reports or social media
(Berlin et al., 2008; Coloma et al., 2013). Mentions
of adverse drug reactions naturally occur in non-
contiguous sequences, for example the sentence
“The pain I was experiencing around the
hipjoints was incredible” contains the men-
tion “pain hipjoints” with a five word gap in
the middle.

Several methods for discontinuous NER have
been proposed in the literature, including transition
models (Dai et al., 2020) and other structured pre-
diction approaches (Wang et al., 2021; Fei et al.,
2021; Li et al., 2022). Unfortunately, they are more
costly than BIO tagging and require specialized
neural network architectures. There have also been
attempts to propose tagging schemes for discontin-
uous NER (Tang et al., 2013, 2018; Metke-Jimenez
and Karimi, 2016; Muis and Lu, 2016), but they all
exhibit structural ambiguity (see Section 5).

In this work, we propose a novel tagging scheme
for discontinuous NER that exploits the inner struc-
ture of discontinuous mentions. Contrary to previ-
ous attempts, our approach is sound in the sense
that: (1) there is no encoding ambiguity between
sets of mentions and sequences of tags (i.e. there
is a one-to-one mapping between the two represen-
tations); and (2) our prediction algorithm is con-

2It is quadratic in the number of tags, which depends on
the number of possible mention types. However, types are not
considered part of the input and are assumed to be fixed.
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strained to predict only well-formed sequences of
tags (i.e. we can always reconstruct a set of men-
tions from a predicted tag sequence). To ensure
well-formedness of predictions, we propose an al-
gorithm based on inference in a weighted finite-
state automaton. Using our approach, the time
complexity of maximum a posteriori inference for
prediction is linear in the length of the input. More-
over, our algorithm can be very efficiently imple-
mented on GPU for batched inference (Argueta and
Chiang, 2017; Rush, 2020).

Our contributions can be summarized as follows:

• We propose to decompose discontinuous men-
tions in a new two-layer representation;

• We propose a novel tagging scheme for this
representation together with a linear-time tag-
ging algorithm that ensures well-formedness
of predictions;

• We explain how labels in the inner structures
can be inferred during training when the infor-
mation is not available in the data;

• We experiment on three English datasets and
report competitive results while having a
much faster model.

Our implementation is publicly available.3 Impor-
tantly, our decoding algorithm and all our loss func-
tions can be used as a drop-in replacements in any
BIO tagger. As such, any future research in the
BIO tagging field may also be evaluated on discon-
tinuous NER at no extra cost.

2 Reduction to Word Tagging

In this section, we explain how we map discon-
tinuous mentions into a two-layer representation
that allows us to derive a new tagging scheme. Al-
though this transformation is generic, for ease of
exposition we illustrate it on the particular case of
adverse drug reactions.

2.1 Inner Structure of Mentions
Discontinuous mentions of adverse drug reactions
(ADR) and disorders in biomedical NER mainly
result from two linguistic phenomena. Firstly,
mentions may be expressed as the combination
of two non-contiguous syntactic constituents,
due to linguistic word order rules. In the fol-
lowing example of an ADR, the discontinuity

3https://github.com/FilippoC/disc-ner-tagging

is caused by the verb position constraint in English:

(1)
toes are painful

ADR

Secondly, many languages allow alternative sen-
tential structures for coordinations, including
construction based on deletion operations. For
example, consider the two following sentences:

(2)
pain in arms and pain in shoulders

ADR ADR

(3) pain in arms and shoulders

ADR

ADR
The repeated element is eliminated in the second
one, leading to the presence of a discontinuous
mention, a phenomenon called coordination
reduction (Lakoff and Peters, 1969). Although the
underlying linguistic structures are different, we
will treat both cases in the same way.

Change of representation. In practice, discon-
tinuous mentions exhibit an inner structure. For
example, a discontinuous ADR can be decomposed
into a body part and an event. As such, we pro-
pose to transform discontinuous mentions into a
two-layer representation:

• Upper layers identify sets of mentions;

• Lower layers identify typed components.

We restrict the number of types for components to
be equal to two. The previous example is converted
as follows:

(4)
pain in arms and shoulders

EVENT PART PART

ADR(S)

Note that the two mentions do not explicitly appear
in this new representation. Nevertheless, the
opposite transformation is trivial: to rebuild all
discontinuous mention in a discontinuous set, we
simply take the Cartesian product between the two
sets of typed components, e.g.

{pain in}
︸ ︷︷ ︸

Components
typed EVENT

×
{
arms,
shoulders

}

︸ ︷︷ ︸
Components
typed PART

7→
{
pain in arms,
pain in shoulders

}

︸ ︷︷ ︸
Reconstructed

discontinuous mentions

.

Note that this can result in some of the mentions
being continuous, as in Example (4).

One obvious issue is that component types
are not annotated in datasets. We consider two
solutions to tackle this challenge. First, we can
use unsupervised and weakly-supervised learning
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methods to infer component types during training,
as explained in Section 4. Second, we can use
component types to mark if they share the same
type as the leftmost one, no matter whether
they refer to a body part of an event. In this set-
ting, Examples (1) and (3) are annotated as follows:

(5)
toes are painful

FIRST OTHER

ADR(S)

(6)
pain in arms and shoulders

FIRST OTHER OTHER

ADR(S)

In other words, component types do not convey
semantic information, only structural information.

Continuous mentions. There exists two forms
of continuous mentions. First, continuous mentions
that share one or more words with at least one other
mention. In this case, we split the mention and we
process it as described above. Second, there are
continuous mentions that do no share any word
with other mentions, see Example (2). In principle,
we could also transform these mentions in the two
layers representation. However, not only we lack
information about component types but we do not
even know where to split them! In Example (3),
we know that “pain in arms” should be splitted
into “pain in” and “arms” as the first two words
are shared with another mention. But for the two
continuous mentions in Example (2), we do not
have such information. Therefore, in this case, we
treat them as standard continuous ones.

Nested NER. Although Dai et al. (2020) sug-
gested the use of nested NER models for discontin-
uous NER using a similar yet different representa-
tion, we argue that the two problems are different:

• The structures that we consider are not recur-
sive, contrary to nested mentions, e.g. “[The
president of [the United States of
[America]]]”;

• The components are highly constrained, e.g.
a set of ADRs must contain at least one body
part and one event;

• The span of a set of mentions is fixed by its
components: it begins (resp. ends) at the same
word as its leftmost (resp. rightmost) compo-
nent.

Therefore, we instead propose a tagging scheme
tailored to discontinuous NER.

Beyond the biomedical domain. Our approach
can be applied to other domains, e.g. we can
transform the following mentions into our repre-
sentation by differentiating first and last names:

(7) Meg and Jack White

PER

PER

Unfortunately, these discontinuities have not been
annotated in standard datasets.4

2.2 Tagging Scheme
We now explain how we transform the two-layer
structure into a sequence of tags. Without loss of
generality, we assume that mentions are untyped
in the original corpus, as practical datasets for dis-
continuous NER contain a single mention type.5

Moreover, we define the component types as X and
Y (e.g. body part and event in previous examples)
to simplify notation and treat in a similar way se-
mantic and structural component types.

Our approach requires 10 tags. First, the 3 tags
CB, CI and O are used in a similar way to BIO tags.
CB and CI are used to identify first and following
words in a continuous mention, respectively. The
tag O is used to mark words that are neither part
of a continuous mention or in the span of a set of
mentions. In Example (2), word “and” is tagged
with O whereas in Example (3) it is not tagged
with O. This is due to the fact that in the second
example, after transformation into the two layers
representation, the word “and” will appear inside a
set of mentions, see Example (4).

Second, tags to identify set of mentions and their
components are of the form *-* where:

• the left-hand side is used to identify the span
of the set of mentions, and can therefore take
values DB (first word of the span) and DI
(other words of the span);

• the right-hand side is used to identify typed
components, and can take values BX, IX, BY,
IY and O.

The 7 tags used for discontinuous mentions are
DB-BX, DB-BY, IB-BX, IB-BY, IB-IX, IB-IY

4Wang et al. (2023) automatically extracted coordination
structures from syntactic structures. However, note that (1) the
resulting dataset does not contains discontinuous mentions
that we are interested in and (2) conjunction reduction cannot
always be inferred from the syntactic structure (Lakoff and
Peters, 1969; Lechner, 2000; Wilder, 2018).

5It is trivial to augment the set of tags with types if neces-
sary, as done for standard BIO tagging.
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Chronic fatigue together with swollen and stiff knees and left elbows.

ADR ADR

ADR

ADR

ADR

Chronic fatigue together with swollen and stiff knees and left elbows.

ADR EVENT EVENT PART PART

ADR(S)

CB CI O O DB-BX DI-O DI-BX DI-BY DI-O DI-BY DI-IY

Figure 1: (Top) Sentence with its original annotation. It contains two continuous mentions (“Chronic fatigue”
and “stiff knees”) and three discontinuous mentions (“swollen knees”, “swollen left elbows” and “stiff
left elbows”). (Bottom) Sentence annotated with our two-layer representation and the associated tag sequence.

and IB-O. Note that the leftmost word in a set of
mentions must also be the beginning of a compo-
nent, so the following combinations are not part
of the tagset: DB-IX, DB-IY and DB-O. Figure 1
shows an example of tag conversion.

Importantly, any sequence of tags is well-formed
if and only if:

1. All CI tags are preceded by either BI or CI,
as standard in BIO tagging;

2. All DI-* tags must be preceded by either
DB-* or DI-*;

3. All *-IX tags must be preceded by either
*-BX or *-IX (and similarly for the Y type);

4. A set of mentions must contain at least one
component typed X and one typed Y, that is
it must contain at least one word tagged with
*-BX and one with *-BY.

5. A set of mentions must not yield a single
continuous mention after reconstruction, i.e.
the following sequence of tags is forbidden:

(8)
some pain in arms and

O DB-BX DI-IX DI-IY O
as it would introduce ambiguity in the encod-
ing of continuous mentions;

6. A discontinuous mention cannot end with tag
DI-O, as this would results in the span of a
set of mentions that do not end with the same
word as its rightmost component.6

6The analogous constraint on the first word is implicitly
enforced by the absence of a DB-O tag in the tagging scheme.

3 Decoding Algorithm

Without loss of generality, we assume all sentences
have n words. Let T be the tagset, X be the
set of sentences and Y the set of well-formed
tag sequences. We represent a sequence of tags
y ∈ Y as a binary vector with n|T | entries, where
each entry is associated with a tag and a word,
i.e. y ∈ {0, 1}n|T |. If the value of an entry is
1 (resp. 0), the associated tag is assigned to the
associated word (resp. not assigned). Note that
Y ⊂ {0, 1}n|T | is a strict subset of all such vec-
tors, as each word must be assigned exactly one tag
and that the resulting tag sequence must satisfy the
constraints described in Section 2.2.

Let fθ : X → Rn|T | be a neural network param-
eterized by θ. We define the probability of a tag
sequence y ∈ Y given the input x as a Boltzmann-
Gibbs distribution (or softmax over structures):

pθ(y|x) = exp
(
⟨y, fθ(x)⟩ −AY (fθ(x))

)
,

where ⟨·, ·⟩ denotes the dot product and AY is the
log-partition function ensuring that the distribution
is correctly normalized:

AY (w) = log
∑

y∈Y
exp ⟨y,w⟩ . (1)

Computing AY (w) is called marginal inference
due to its link with marginal probabilities (Wain-
wright et al., 2008). Computing the most probable
output is reduced to computing:

ŷθ(x) = argmax
y∈Y

⟨y, fθ(x)⟩ , (2)
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called maximum a posteriori (MAP) inference.
In practice, we need to compute the term in

Equation (1) for training the model and the term in
Equation (2) for prediction. The difficulty stems
from the restriction (in the sum and in the argmax
search space) to the set of well-formed outputs
Y . We follow a long tradition in NLP (Kosken-
niemi, 1990; Mohri et al., 1996; Karttuten et al.,
1996; Kanthak and Ney, 2004; Tromble and Eisner,
2006; Rastogi et al., 2016; Lin et al., 2019; Papay
et al., 2022, inter alia) and rely on a finite-state
automaton to solve these inference problems.

3.1 Finite-State Automata

Definitions. Weighted Finite State Automata
(WFSA) are generalization of FSA (Eilenberg,
1974) that include weights on their transitions. For-
mally, a WFSA over R is a 5-tuple (Σ, Q,E, i, F )
where:

• Σ is a finite alphabet with ϵ /∈ Σ;

• Q is the set of states;

• E ⊆ Q× Σ∗ × R×Q is the set of weighted
transitions, where (q, σ, w, r) ∈ E is a transi-
tion from state q to state r emitting symbol(s)
σ with weight w;

• i ∈ Q is an initial state and F ⊆ Q are final
states.

Symbol ϵ is used for transitions that emit nothing.
A WFSA is ϵ-free if there is no ϵ-transition. A valid
path is a path starting at i and ending at any state
in F . A path emits a sequence of symbols, and has
a weight equal to the sum of the transition weights
it contains. The language of a WFSA is the set of
emissions along all possible valid paths.

Algorithms. Given an acyclic WFSA, the path
of maximum weight, Equation (2), and the log-
sum-exp of all valid paths, Equation (1), can
be computed using variants of the Viterbi algo-
rithm (Forney, 1973) and the Forward algorithm
(Baum, 1972), respectively. These algorithms are
in fact identical, but defined over different semir-
ings (Goodman, 1999): the tropical semiring for
the Viterbi and the thermodynamic semiring (Mar-
colli and Thorngren, 2014) for the Forward. We
refer to (Mohri, 2009, Section 3) for an in-depth
introduction. The time complexity of both algo-
rithms is O(|E|) if a topological ordering of states
is known.

Application to sequence tagging. We follow
previous work and use the intersection of two WF-
SAs to constraint tag sequences (Koskenniemi,
1990; Koskenniemi et al., 1992). The grammar
automaton G ≜ (T,Q,E, i, F ) is a cyclic WFSA
whose language is the set of all well-formed tag
sequences (of any length). We assume G is ϵ-free
and deterministic.7 Without loss of generality, we
fix all transition weights to 0. The sentence au-
tomaton S ≜ (T,Q′, E′, i′, F ′) is an acyclic FSA
that represents all possible (not necessarily valid)
analyses for a given sentence of n words. States
are Q′ ≜ {0, ..., n} and transitions are:

E′ ≜
{
(i− 1, t, w(i,t), i) | i ∈ {1...n} ∧ t ∈ T

}

where w(i,t) is the weight associated with tagging
word at position i with tag t. Initial and final states
are i′ ≜ 0 and F ′ ≜ {n}. This WFSA contains
n|T | transitions, and each transition correspond to
tagging a given word with a given tag. By construc-
tion, it is always deterministic and ϵ-free.

We denote G ∩ S the intersection of G and S
(Hopcroft et al., 2001, Section 4.2.1) composed of
states Q′′ ≜ Q×Q′, transitions

E′′≜
{
((i−1, p), t, w(i,t), (i, q))

∣∣∣∣
i ∈ {1...n}∧
(p, t, 0, q)∈E

}
,

initial state i′′ ≜ (i, i′) and final states F ′′ ≜ F ×
F ′. Then, all valid paths in G ∩ S are well-formed
sequences of tags for the input sentence of length n.
We can then simply run the Viterbi or the Forward
algorithm on G ∩ S to compute Equartions (1)
and (2). Note that |E′′| ∝ n, therefore the time-
complexity is linear in the number of words.

We refer the reader to (Tapanainen, 1997) for an
introduction to this sequence tagging approach.

3.2 Grammar Automaton

The grammar automaton used to constraint predic-
tion to well-formed sequences of tags is shown
in Figure 2. We present the automaton with ϵ-
transition for the sake of clarity, but they can be
removed. We omit weights as they are null. States
1 and 2 recognize valid sequences of CB, CI and
O tags. Moreover, the structure of the WFSA states
recognizing discontinuous mentions is symmetric:
the left-hand (resp. right-hand) side recognizes dis-
continuous mentions whose leftmost component is

7Procedures to determinize and remove ϵ-transitions can
be found in Hopcroft et al. (2001, Section 2.3.5 and 2.5.5).
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1

2

3

CB ϵ

CI

O

DI-O

4

5

6

7 8

DB-BX

DI-O

DI-IX

DB-IX

DI-BXϵ

DI-O

DI-IX

DI-B
Y

DI-IY ϵ

DI-O

DI-BY

DI-BY

ϵ

DI-IY

9

10

11

1213

DB-BY

DI-O

DI-BY

DI-IY

DI-BY ϵ

DI-O

DI-IY

DI-BX

DI-IXϵ

DI-O

DI-B
X

DI-BX

ϵ

DI-IX

Figure 2: The grammar automaton we propose for discontinuous named-entity recognition.

typed X (resp. Y). Therefore we present only the
left-hand side.

Transition (1, DB-BX, 7) starts the recognition
of a set of mentions whose leftmost component is
typed X. The self-loop in state 7 recognizes follow-
ing words of the first component. Next we need
to check that the inner structure of the set of men-
tions is well-formed. On the one hand, states 5
and 6 allows to recognize following X components
and DI-O tags, until recognition of the first Y com-
ponent via transition (5, DI-BY, 4). On the other
hand, transition (7, DB-BX, 8) starts the recogni-
tion of an component typed Y that directly follows
the first component. Therefore, we need to check
that there is “something else” in the set of men-
tions, otherwise the sequence of tags could lead to
an ambiguity in the encoding of continuous men-
tions. We ensure this via transition (8, ϵ, 3), that
requires the generation of another component be-
fore reaching the final state. Finally, states 3, 4 and
9 recognizes extra X and Y in the set of mentions.

As such, the language of our grammar automaton
is the set of well-formed tag sequences as described
in Section 2.2. To use our grammar automaton,
we need to remove ϵ-transitions. The resulting
WFSA has 22 states.8 In the case of structural
component types, we can simply remove transition
(1, DB-BY, 12) to constrain the leftmost mention
to be labeled X.

Practical implementation. The intersection of

8Altough 22 states is small and allows very fast compu-
tation, it is already too large for drawing a comprehensive
figure.

the grammar and the sentence automata does not
result in a homogeneous Markov chain as transi-
tion weights correspond to tag weights for the next
word, and are therefore different at each step. How-
ever, the resulting automaton has always a simple
time-invariant structure. In term of implementation,
this reduces to applying a mask at each step, and
both Viterbi and forward algorithms can be imple-
mented using basic differentiable tensor operations.
For MAP inference, we compute the path of maxi-
mum weight and then rely on backpropagation to
retrieve the sequence of tags (Mensch and Blondel,
2018, Section 2.1).

4 Weakly-Supervised Learning

The negative log-likelihood (NLL) loss,

ℓ(w;y) = −⟨y,w⟩+AY (w) ,

requires knowledge of the gold output y. Unfortu-
nately, NER datasets only contains annotated men-
tions, but not their component types (e.g. we do not
know which components are body parts and events).
Therefore, we need to resort on weakly-supervised
learning to infer this information.

4.1 Learning with Partial Labels
Learning with partial labels refers to the case where
the gold output is unknown but there is access
to a subset of labels that includes the gold one
(Grandvalet and Bengio, 2004; Nguyen and Caru-
ana, 2008; Cour et al., 2011). Let Ỹ ⊆ Y be the
set of tag sequences that recovers the gold discon-
tinuous mentions. For the example in Figure 1, Ỹ
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contain two sequences, one where components of
the set of mentions are labeled X/X/Y/Y and the
other Y/Y/X/X. For a sentence containing k sets
of mentions, we have |Ỹ | = 2k.

Following Jin and Ghahramani (2002), we mini-
mize the NLL after marginalizing over Ỹ :

ℓ̃(w; Ỹ ) = − log pθ(Ỹ |x) = − log
∑

y∈Ỹ

pθ(y|x)

= AY (fθ(x))− log
∑

y∈Ỹ

exp⟨y, fθ(x)⟩

︸ ︷︷ ︸
=A

Ỹ
(fθ(x))

, (3)

where A
Ỹ

is the clamped log-partition, which can
be efficiently computed via a dynamic program-
ming algorithm. In speech processing, A

Ỹ
is called

the alignment model and the associated FSA the
numerator graph (Povey et al., 2016; Hadian et al.,
2018).

Relation with EM. We can interpret minimizing
ℓ̃ as an Expectation-Maximization (EM) procedure
(Neal and Hinton, 1998). Indeed, the variational
formulation of the clamped log-partition is:

A
Ỹ
(w) = sup

µ∈conv Ỹ

⟨µ,w⟩ − Ω
Ỹ
(µ) ,

where conv denotes the convex hull and Ω
Ỹ

is a
structured entropy term as described by Blondel
et al. (2020, Section 7.1). Setting w = fθ(x),
by Danskin’s theorem (Danskin, 1966; Bertsekas,
1999), the gradient of the A is:

µ̂
Ỹ
(w) = ∇A

Ỹ
(w) = argmax

µ∈conv Ỹ

⟨µ,w⟩ − Ω
Ỹ
(µ) .

We rewrite the minimization of ℓ̃ as a two-step
procedure:

1. E step: compute µ̂
Ỹ
(w);

2. M step: take one gradient step over the net-
work parameters using the marginal distribu-
tion computed in E step, yielding the loss:

ℓ(w; µ̂
Ỹ
(w)) = −⟨y, µ̂(w)⟩+AY (w) .

It is important to note that µ̂
Ỹ
(w) is considered as

a constant in the M step, i.e. the gradient is:

∇ℓ(w; µ̂
Ỹ
(w))=−µ̂(w)+∇AY (w)=∇ℓ̃(w; Ỹ ) ,

meaning that this EM procedure is equivalent to
minimizing the loss in Equation (3).

This suggests a “Hard EM” alternative, where
the E step computes the unregularized maximum:

ŷ
Ỹ
(w) = argmax

y∈conv Ȳ

⟨y,w⟩ ,

and then apply one step of gradient descent using
the loss ℓ(w; ŷ

Ỹ
(w)) in the M step.

4.2 Silver Annotation of Components
In order to automatically annotate components, we
collect names of body parts from the metathesaurus
MRCONSO.RRF of the Unified Medical Language
System (UMLS, version 2023ab).9 We select
English entries corresponding to semantic types
“Body Location or Region”, “Body Part, Organ, or
Organ Component” and “Body Space or Junction”,
via the annotation in the lexicon MRSTY.RRF, which
corresponds to identifiers T029, T023 and T030,
respectively.10 However, we remove all acronyms
(indicated via the marker ABR) as they would in-
troduce too many false positives in the annotation
process (e.g. “in” and “am” are acronyms of body
parts). This leads to 218 134 names of body parts.

Then, we try to match words of components with
these entries. If at least one word of a component
match an entry, we consider it as a body part. Note
that a single match fully disambiguate a set of men-
tions.

5 Related Work

Tagging methods. Tang et al. (2013) proposed the
BIOHD tagging scheme for discontinuous NER.
A major issue of their approach is its structural
ambiguity: several tag sequences can encode the
same discontinuous mention, and different discon-
tinuous mentions have the same associated tag se-
quence, see (Muis and Lu, 2016, Section 3.1). A
choice to resolve ambiguity has to be made when
making a prediction, meaning that there are struc-
tures that cannot be predicted. Moreover, this ap-
proach does not constrain the output tag sequence
to be well-formed, i.e. it may not be possible to re-
construct mentions from a predicted tag sequence.
The tagging scheme used by Metke-Jimenez and
Karimi (2016) and Dai et al. (2017) has the same
limitation. Muis and Lu (2016) proposed a graph-
based method that ensures that predictions are well-
formed, but their approach still exhibits structural
ambiguity.

9https://www.ncbi.nlm.nih.gov/books/NBK9685/
table/ch03.T.concept_names_and_sources_file_mr/

10https://www.ncbi.nlm.nih.gov/books/NBK9685/
table/ch03.Tf/
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Other methods. Wang and Lu (2019) rely on a
two-step model that first predicts continuous spans
(i.e. components) and then uses a separate classifier
that combines them together. Dai et al. (2020) pro-
posed a novel transition-based model. These two
approaches are based on sequential predictions that
are trained using gold intermediate outputs, which
can lead to error propagation once a single mistake
is made at test time. To resolve this problem, Wang
et al. (2021) proposed a method that jointly predicts
spans and their combination based on the maximal
clique problem. A downside of these approaches
is that they are more computationally costly (and
therefore slower) than tagging methods.

6 Experiments

We evaluate our approach on three standard English
datasets for discontinuous named-entity recogni-
tion in the biomedical domain: CADEC (Karimi
et al., 2015), SHARE2013 (Pradhan et al.) and
SHARE2014 (Mowery et al.). We pre-process the
data using the script of Dai et al. (2020). Note that
our tagging scheme cannot predict all discontinu-
ous mentions in the data, i.e. there are sentences
that we cannot convert to our representation. There-
fore, we remove these sentences from the training
set.11 Data statistics are given in Table 2.

6.1 Discontinuity Analysis

We conduct a qualitative analysis of the search
space of our algorithm on the full CADEC dataset.
There are 26 discontinuous NER structures incom-
patible with our approach.12

There are discontinuous mentions where there
is a partially shared component. This is due
to shared negation (1 case), shared adjective (5
cases) and shared prepositional phrase (PP, 1 case):

Couldn’t walk or even sleep comfortably

ADR

ADR

severe colon and uterine cramping

ADR

ADR

11Obviously, we do not remove anything from the test set.
12We do not count single mentions: we count full sets of

mentions that cannot be recognized by our algorithm.

muscle fatigue / soreness in my forearms

ADR

ADR

Although we cannot recognize these structures,
we could extend our automaton to recognize
the shared part as a continuous chunk (negation,
adjective or PP), and the rest using our two layer
representation.

There are also discontinuous mentions that
are composed of three components (16 cases),
which we cannot recognize. This can happens
because there is a coordination in both subject
and PP positions as in the following example:13

muscle and joint aches in arms and elbows

ADR

ADR

ADR

ADR

The mention “muscle aches in elbows” is
composed of three components.

Finally, the last three incompatibilities are
due to a convolated syntactic structure and an-
notation errors (2 cases). Interestingly, some
annotation errors can be detected thanks to
our new annotation schema. For example, in
CADEC the sequence “renal and respiratory
failure” as been incorrectly annotated as con-
taining renal respiratory failure instead of
renal failure. In SHARE2014, the sequence
“pleural / abdominal effusions” as been in-
correctly annotated as containing effusions in-
stead of abdominal effusions. Note that in this
paper we used the datasets as such and did not
fix any error so that results are comparable with
previous work.

6.2 Results

Our neural network is excessively simple: we use
the DEBERTA-V3 pretrained self-attentive network
(He et al., 2021a,b) followed by a single linear
projection that maps context-sensitive embeddings
to tag weights. All training details are given in
Appendix A. For each loss function, we train six
models with six different seeds and we select the
best model using the development set.

Results. We report the F-measure on all men-
tions and on discontinuous mentions only in Ta-

13This example has been slightly changed for formatting.
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CADEC SHARE2013 SHARE2014

F1 Disc. F1 F1 Disc. F1 F1 Disc. F1

Previous work

Tang et al. (2013) 75.0
Tang et al. (2018) 66.3
Metke-Jimenez and Karimi (2016) 64.4 56.5 60.2
Metke-Jimenez and Karimi (2016)† 67.4 1.8 74.9 18.8 76.6 6.0
Muis and Lu (2016)† 58.0 23.9 70.3 50.0 74.7 41.1
Dai et al. (2020) 69.0 37.9 77.7 52.5 79.6 49.2
Wang et al. (2021) 71.5 44.4 81.2 55.9 81.3 54.1

This work

Soft EM 71.1 38.1 80.7 49.2 81.5 51.9
Hard EM 71.9 35.9 82.0 51.9 81.6 54.1
Weakly soft EM 71.8 37.6 82.0 52.0 81.4 46.2
Weakly hard EM 70.4 33.6 82.0 52.1 81.8 49.8
Structural labels 72.9 41.5 82.1 53.3 80.9 53.7

Table 1: Results on on three different datasets. Results marked with † are reproductions by Wang et al. (2021).

Split CADEC SHARE2013 SHARE2014

Train 5340 (306) 8508 (477) 17407 (777)
- filtered 5322 (288) 8432 (401) 17294 (667)
Dev. 1097 (59) 1250 (58) 1361 (59)
Test 1160 (74) 9009 (301) 15850 (411)

Table 2: Number of sentences in each split. The number
in parentheses corresponds to the number of sentences
with at least one discontinuous mention.

Model CADEC S2013 S2014

Dai et al. (2020) 36 41 40
Wang et al. (2021) 193 200 198
This work 8286 10216 10206

Table 3: Speed comparison in terms of sentence per
seconds. Numbers for Dai et al. (2020) are BERT-based
models, as reproduced by Wang et al. (2021).

ble 1. The evaluation is conducted on the the origi-
nal representation so results are comparable with
previous work. Our approach leads to similar re-
sults to previous work. We do not observe signifi-
cant differences between different loss functions.

Speed. All numbers are reported for compu-
tation on NVIDIA V100 GPUs. Training takes
approximately 40, 60 and 80 minutes on CADEC,
SHARE2013 and SHARE2014, respectively. Ta-
ble 3 compares decoding with previous work of Dai
et al. (2020) and Wang et al. (2021). The transition-
based model of Dai et al. (2020) is particularly slow
as their approach cannot fully exploit GPU paral-
lelization. Our approach is ∼40-50 times faster
that the method of Wang et al. (2021). This is due
to two reasons: (1) they use a complex neural net-

work architecture on top of a BERT-like model and
(2) for each input they must solve a NP-hard prob-
lem (maximum clique) to make the prediction.

7 Conclusion

In this work, we propose a novel tagging scheme
for discontinuous NER based on a two-layer repre-
sentation of discontinuous mentions. Our approach
leads to result on par with state-of-the-art using a
very simple neural network architecture. Impor-
tantly, decoding with our model is very fast com-
pared to previous work.

Our main objective with this work is to propose
a simple plug-in method for discontinuous NER:
any future work on models for BIO tagging can
now also be trivially evaluated on discontinuous
NER. Moreover, our approach is also fast to train,
meaning that there is no significant cost overhead.
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Limitations

The approach proposed in this paper cannot cover
all form of discontinuities observed in the three
datasets. Indeed, some discontinuous mentions are
composed of three parts or more. However, they are
rare so our results are still competitive. Moreover,
our contribution is focused on the general decoding
approach that can be extended by future work.

Discontinuous NER datasets are scarce, there-
fore we are only able to experiment on three
datasets in the biomedical domain in English. We
suspect this is due to a chicken or the egg dilemma:
discontinuity are often not annotated as there are
no easy plug-and-easy approach to predict them,
and there is little NLP work in the domain as there
are only a few datasets available for experiments.

During the evaluation of our approach, we ob-
served that many mentions are missing in the gold
annotation. As such, all results reported on these
datasets (including previous works) should be taken
with a pinch of salt.
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A Training details

The model is trained for 20 epochs using the cosine
learning rate scheduler as implemented in the Hug-
gingFace library. The maximum learning rate is
fixed to 10−5. The warmup ratio is 10%. We apply
dropout with a probability of 0.5 to BERT’s output.
The gradient norm is clipped to 1. All parameters
have a weight decay of 0.01. We use the Adam
variant proposed by Mosbach et al. (2021).
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