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Abstract

Image-text contrastive models such as CLIP
learn transferable and robust representations for
zero-shot transfer to a variety of downstream
tasks. However, to obtain strong downstream
performances, prompts need to be carefully cu-
rated, which can be a tedious engineering task.
To address the issue of manual prompt engi-
neering, prompt-tuning is used where a set of
contextual vectors are learned by leveraging in-
formation from the training data. Despite their
effectiveness, existing prompt-tuning frame-
works often lack interpretability, thus limiting
their ability to understand the compositional
nature of images. In this work, we first iden-
tify that incorporating compositional attributes
(e.g., a “green” tree frog) in the design of man-
ual prompts can significantly enhance image-
text alignment scores. Building upon this ob-
servation, we propose a novel and interpretable
prompt-tuning method named IntCoOp, which
learns to jointly align attribute-level inductive
biases and class embeddings during prompt-
tuning. To assess the effectiveness of our ap-
proach, we evaluate IntCoOp across two rep-
resentative tasks in a few-shot learning setup:
generalization to novel classes, and unseen do-
main shifts. Through extensive experiments
across 10 downstream datasets on CLIP, we
find that introducing attribute-level inductive
biases leads to superior performance against
state-of-the-art prompt tuning frameworks. No-
tably, in a 16-shot setup, IntCoOp improves
CoOp by 7.35% in average performance across
10 diverse datasets.1

1 Introduction

Recently, significant advancements have been
achieved in the field of vision-language models,
with notable examples like CLIP (Radford et al.,
2021), Flamingo (Alayrac et al., 2022), ALIGN (Jia
et al., 2021a), and CoCa (Yu et al., 2022). These

1The code is available at https://github.com/
Soumya1612-Rasha/IntCoOp

models have excelled in acquiring transferable and
robust image representations, a feat accomplished
through a combination of two fundamental com-
ponents: (i) Large-scale paired image-text datasets
ranging from 400M to 2B image-text pairs; (ii) A
contrastive objective that aligns the image and text
embeddings into a common subspace. Leverag-
ing these ingredients, vision-language models have
obtained strong performances in zero-shot classifi-
cation, image-text retrieval, and robustness to distri-
bution shifts. For all these tasks, contrastive models
such as CLIP enable zero-shot inference: Given an
image I and a set of text prompts {ti}Ni=1, the most
relevant text-prompt t ∈ {ti}Ni=1 is identified by
maximizing the image-text similarity between I
and t.

Adapting image-text contrastive models for
downstream tasks is a complex undertaking.
Achieving optimal performance with image-text
contrastive models necessitates the manual cre-
ation of domain-specific prompts, a process that
demands extensive domain knowledge and is ex-
ceptionally challenging and time-consuming. Even
with considerable prompt engineering, there is lim-
ited assurance that the designed prompt is truly op-
timal. To address this issue, recent research (Zhou
et al., 2022a; Lee et al., 2023; Khattak et al., 2023;
Ouali et al., 2023) has turned to prompt-tuning tech-
niques, borrowing concepts from the field of NLP
and applying them to vision-language models like
CLIP to achieve good image recognition perfor-
mance on downstream tasks. However these frame-
works often lack interpretability and as a result the
model struggles to understand the composition of
the images.

In this study, we address this challenge by learn-
ing a method to extract and embed attribute-level
information into the prompt-tuning framework dur-
ing training. We define an attribute as an inter-
pretable concept that is relevant to the image and
encapsulates its semantic essence. Although man-
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(a) (b)

Figure 1: (a) Importance of learning interpretable concepts in prompts. Left: For each image, we design two prompt
templates: (1) Without any compositional attribute “A photo of a [cls]” and (2) With compositional information “A photo of a [a]
[cls]” where [cls] represents the classname and [a] represents an attribute obtained using a BLIP-2 based VQA model. Right:
The distribution plot highlights the importance of baking attribute information into the prompts. For this analysis, we used a
CLIP model with a ViT-B/16 image encoder and a dataset consisting of 50 images selected randomly from each of 1000 classes
in ImageNet-1k. The x-axis indicates the predicted CLIP score. Clearly, the CLIP model is more confident when the prompts
include information related to the compositionality of the image. (b) Framework for obtaining attribute-level supervision.
We present the overarching architecture for generating attribute labels a for a given training image using BLIP-2 VQA model.

ually crafted prompts can vary in their character-
istics based on the specific downstream domain,
our analysis has revealed a noteworthy trend. We
have observed that prompts containing attribute in-
formation that describes the objects in the images
lead to enhanced image-text alignment scores in
contrastive models such as CLIP. For instance, as
depicted in Figure 1, we can see that prompts incor-
porating compositional attributes such as “green”
tree frog yield higher image-text alignment scores
than those lacking such descriptors.

Based on these findings, we present an in-
terpretable prompt-tuning approach known as
IntCoOp, which incorporates attribute informa-
tion into the prompt-tuning procedure thereby gen-
erating more interpretable prompts. While one
might initially consider leveraging off-the-shelf
image captioning models to generate attribute la-
bels, this approach becomes infeasible during in-
ference when class labels are unavailable. Conse-
quently, generating attribute descriptions for im-
ages emerges as a non-trivial task. To mitigate
this challenge, we train a compact hypernetwork re-
sponsible for predicting embeddings corresponding
to attribute descriptors.

We test our prompt-tuning method IntCoOp on
a range of diverse downstream datasets to test for
generalization to novel classes, and robustness to
distribution shifts. In Section 5, we show that our
method IntCoOp has improved robustness to dis-
tribution shifts, domain generalization, and few-
shot learning. Notably, in domain generalization
setup, IntCoOp outperforms PLOT (Chen et al.,
2023) by 19.32% in average performance across
4 diverse domains. In summary, our research pro-
vides compelling empirical support for the substan-

tial advantages of integrating attribute-level induc-
tive biases into the prompt-tuning process.

Overall, our paper makes the following key con-
tributions:

• We introduce a novel prompt-tuning method,
named IntCoOp, which concurrently aligns
attribute-level inductive biases and class em-
beddings during training, thus facilitating the
generation of interpretable prompts.

• We devise an efficient cross-attention mecha-
nism to integrate image information with the
learnable prompt tokens seamlessly.

• We present comprehensive experiments across
a range of tasks, including generalization to
unseen classes, and distribution shifts show-
ing the efficacy of IntCoOp. Notably, in
a 16−shot setup, IntCoOp outperforms the
state-of-art framework LFA (Ouali et al.,
2023) by 1.27% improvement in average per-
formance across 10 diverse datasets.

2 Related Works

Pretrained Vision-Language Models. Recent
research (Radford et al., 2021; Yu et al., 2022)
has shown that leveraging language to train im-
age encoders can result in strong downstream per-
formances especially for robustness and few-shot
learning. These vision-language models are usu-
ally pre-trained on large corpuses of image-text
pairs using contrastive objectives that align image
and text representations into a common subspace.
CLIP (Radford et al., 2021) and ALIGN (Jia et al.,
2021b) use only the contrastive objective to align
image-text embeddings. CoCa (Yu et al., 2022)
uses a captioning loss in conjunction with con-
trastive objectives to further improve image rep-
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resentations. For example, CLIP is pre-trained on
∼400M image-text pairs whereas ALIGN is pre-
trained on a much larger set of ∼1B image-text
pairs. In recent times, masked vision-language ob-
jectives (Kwon et al., 2023) have also resulted in
strong image-text representations. However, in all
these vision-language models, inference requires
manually curated prompts to extract the best per-
formance, which can be a tedious engineering task.
To mitigate this issue, recent research has turned
to prompt-tuning techniques to automatically learn
domain specific prompts.

Prompt Tuning. Given a set of text-instructions
and an image, existing vision-language mod-
els make their decisions by selecting the text-
instruction which has the maximum similarity
between the image and text-embeddings. Re-
cent advances in this field, such as methods
like CoOp (Zhou et al., 2022b), CoCoOp (Zhou
et al., 2022a), ProDA (Lu et al., 2022), VPT (Jia
et al., 2022), MaPLe (Khattak et al., 2023), Kg-
CoOp (Yao et al., 2023), ProGrad (Zhu et al., 2022),
LASP (Bulat and Tzimiropoulos, 2023), RPO (Lee
et al., 2023), DAPT (Cho et al., 2023), PLOT (Chen
et al., 2023), and LFA (Ouali et al., 2023) have
shifted from manually designed prompts to au-
tomatically learning prompts through fine-tuning
learnable vectors with image-text pairs from the
target domain. CoOp fine-tunes CLIP to optimize
a set of learnable tokens in the input layer of the
text-encoder. CoCoOp enhances CoOp by incorpo-
rating conditional image information in the prompt-
learning process. VPT learns tokens in each layer
of a given encoder through a fine-tuning objective.
KgCoOp introduces a regularizer to constrain the
prompt tuning process such that the representa-
tions of the learned prompts do not deviate signif-
icantly from the manually crafted prompts. Pro-
Grad leverages the prompt gradients to fine-tune
the learnable tokens such that the prior knowledge
in the vision-language model is preserved. PLOT
applies optimal transport to match the vision and
text modalities for generating the discriminative
and visual-aligned local textual prompt tokens. Re-
fer Liu et al. (2024) for a comprehensive survey
on prompt-tuning frameworks. Overall, none of
the existing works aim to understand if augmenting
certain inductive biases in the prompt-tuning pro-
cess is beneficial. Our work IntCoOp specifically
addresses this issue and shows that incorporating
compositional attributes in the prompt-tuning pro-

cess can indeed be beneficial for downstream tasks.

Attribute-based visual recognition. The concept
of attribute learning arises from the idea of describ-
ing objects through their attributes rather than their
class labels (Farhadi et al., 2009; Ferrari and Zis-
serman, 2007; Farhadi et al., 2010). In the past,
Pham et al. (Pham et al., 2021) explored the con-
cept of attribute learning for multi-label classifi-
cation. Studies on compositional zero-shot learn-
ing (Wang et al., 2019b; Nayak et al., 2022; Saini
et al., 2022) have also focused on learning object
attributes for improved performance. Various stud-
ies have extensively studied attribute learning for
specific domains such as animals, scenes, clothing,
pedestrians, human facial and emotional attributes
(Xian et al., 2018; Guo et al., 2019; Liu et al.,
2016; Li et al., 2016). Learning attributes have
also been leveraged to enhance performance on
novel classes in zero-shot classification (Lampert
et al., 2013; Xu et al., 2020) and in open-vocabulary
detection (Bravo et al., 2023). In the context of
vision-language models, Buettner et al. (Buettner
and Kovashka, 2024) proposed contrastive training
with adjective-based negative captions to enhance
attribute learning, and Shen et al. (Shen et al.,
2023) introduced a CLIP-guided, text-driven face
attribute framework for improved face clustering.
Our work, IntCoOp, distinguishes itself by incor-
porating compositional attributes into the prompt-
tuning process, thereby enhancing performance on
downstream tasks.

3 Preliminaries

Contrastive Language-Image Pre-training
(CLIP) (Radford et al., 2021) is a vision-
language model trained on a large dataset of
400 million image-text caption pairs using a
contrastive loss. CLIP primarily consists of two
major components:
(1) Vision Encoder V(·) consists of a ViT (Doso-
vitskiy et al., 2020) model, which takes an image
I ∈ RH×W×3 as input and outputs a visual embed-
ding in the latent space. The vision encoder V con-
sists of L transformer blocks {Vi}Li=1. First, the in-
put image I is split into R fixed-size patches which
are projected into patch embeddings E0 ∈ RR×Dv ,
where Dv is the constant latent vector size of the
image encoder. Patch embeddings Ei are input
to the (i + 1)th transformer block (Vi+1) along
with a learnable class token xi and is sequentially

19586



processed through L transformer blocks:

[xi, Ei] = Vi ([xi−1, Ei−1]) i = 1, 2, · · · , L.

To obtain the final image representation, the
class token xL of the last transformer layer (VL)
is projected to a common image-text latent embed-
ding space via a linear projection layer.

V(I) = Proj (xL) xL ∈ RDvl .

where Dvl is the constant vector size of the
image-text latent embedding space.
(2) Text Encoder T (·) is a transformer-based
model that maps the input text captions into text
embeddings.

For zero-shot inference on a downstream
dataset consisting of C classes with class names
{[cls]c}Cc=1, CLIP uses hand-crafted prompts to
generate the textual class embeddings. Specifically,
given a hand-crafted prompt template “A photo of a
[cls]”, let sc represent the sequence embedding for
the prompt “A photo of a [cls]c” corresponding to
the c-th class. Given an input image I, the output
probability is given by:

P(ŷ = c|I) = exp(cos(V(I), T (sc))/τ)∑C
j=1 exp(cos(V(I), T (sj))/τ)

(1)
where cos(·, ·) represents the cosine similarity and
τ is the temperature coefficient.

Context Optimization (CoOp) (Zhou et al.,
2022b). Designing hand-crafted prompts in CLIP
for every downstream data set is a tedious and
time-consuming task. To mitigate this issue of
prompt engineering, CoOp (Zhou et al., 2022b)
proposed to learn the prompts directly from the
data by replacing the hand-crafted prompt with
a context vector comprising of M tunable vec-
tors. Let the context vector be represented as
u = {u1,u2, · · · ,uM}, where ui represents a
512-dimensional vector2. Unlike the hand-crafted
prompt template, the tunable prompts are now de-
signed as p = {[u1,u2, · · · ,uM , [cls]c]}Cc=1. To
allow the exchange of information learned from
the data, the context vector u is common across
all the class categories. Finally, the context vector
u is learned by minimizing the cross-entropy loss

2The vector ui is of same dimension as the word-
embedding of class names [cls]c. In this study, we primarily
use CLIP-ViTB/16 model where text embeddings are pro-
jected in a 512-dimensional space.

Figure 2: Framework for learning compositional at-
tributes. The figure elucidates the training framework of
the attribute extractor network A.

between the ground-truth and predicted label as
follows:
P(ŷ = c|I) = exp(cos(V(I), T (pc))/τ)∑C

j=1 exp(cos(V(I), T (pj))/τ)

(2)

LCE = −log P(ŷ = y|I) (3)

where, y represents the true label for image I and
pc represents the tunable prompt for class c. Note
that during training IntCoOp, the vision and text
encoder in CLIP are completely frozen and the
optimization framework only updates the context
vector u.

4 IntCoOp: Interpretability-Aware
Prompt Tuning

In this section, we provide a detailed overview of
our proposed prompt-tuning approach IntCoOp.
In Section 4.1, we detail the process of extracting
attribute information from a given image. Next,
in Section 4.2, we delve deeper to understand the
process of generating image-conditioned prompts.
Finally, we outline our entire training framework
in Section 4.4, demonstrating the integration of all
components into the training pipeline. Similar to
past context optimization approaches (Zhou et al.,
2022b), IntCoOp can also be easily applied to a
broad family of CLIP-like vision-language models.

4.1 Learning Interpretable Image Concepts

Obtaining Attribute-level Supervision. Given
an input image I, our goal is to extract an inter-
pretable attribute (denoted by a) that provides an
accurate characterization of the image. For exam-
ple, given the image of “Tree Frog” in Figure 1(b),
we can define the attribute a as “Green”. However,
standard image-recognition datasets such as Ima-
genet (Deng et al., 2009) only provide true labels

19587



for object categories and do not consist of attribute-
level supervision. We overcome this problem by
using a BLIP-2 (Li et al., 2023) ViT-G FlanT5XXL
based VQA model to generate an attribute label
(aI) for each image I in the train set. The entire
framework is visually represented in Figure 1(b).
We refer the reader to the Appendix B for a detailed
description and visualization of more representa-
tive examples.

Learning to extract attribute information dur-
ing training. During inference, as class labels are
unavailable for test images, direct utilization of off-
the-shelf captioning models (Li et al., 2023) is in-
feasible. To circumvent this limitation, we propose
training a network to learn contextually relevant
attributes (see Figure 2). Specifically, we design an
attribute extractor network A, which takes as input
the image embedding from CLIP’s vision encoder
and outputs a 512-dimensional vector representing
the embedding of the attribute. This network is
trained using supervised attribute labels obtained
from the framework in Figure 1(b).

Designing the attribute extractor. It is important
to note that the attribute extractor network A learns
the interpretable concepts directly from the image
embedding. Therefore, the embedding vector must
effectively encode information regarding the com-
positionality of the image to enable proper training
of the network. In Table 6, we show that the em-
beddings from CLIP’s frozen vision encoder are
not expressive enough to essentially capture the at-
tribute information. This challenge is compounded
by the fact that, in a few-shot setup, there are a
limited number of samples available for each class,
leading to suboptimal training of the attribute ex-
tractor. To generate richer and more informative vi-
sual representations, we append a set of n learnable
parameters {Zj

i ∈ RDv}nj=1 to each transformer
layer Vi of the image encoder up to depth K (Jia
et al., 2022; Khattak et al., 2023).

[xi, Ei, _] = Vi ([xi−1, Ei−1, Zi−1])

∀i = 1, 2, · · · ,K.

[xj , Ej , Zj ] = Vi ([xj−1, Ej−1, Zj−1])

∀j = K + 1, · · · , L.

V(I) = Proj (xL)

In Section 7, we show that this improved design
choice leads to better performance on downstream
tasks. Finally, the generated attribute labels can

be used to train the network A by minimizing the
following loss:

Lattr = ||A(V(I))− T (aI)||ff (4)

where || · ||ff indicates the f -th norm, T (aI) rep-
resents the 512-dimensional token embedding of
the attribute aI . In Appendix F, based on ablations
we find setting f = 2 gives the best performance.
In this paper, we instantiate the network A with a
two-layer neural net with ReLU activations.

4.2 Instance-Conditional Prompts
In this section, we delve deeper into understand-
ing how the prompts are generated. Recall from
Section 3, that for CoOp (Zhou et al., 2022b), the
context vector u = {u1,u2, · · · ,uM} is shared
across all classes, and the tunable prompts are de-
signed as p = {[u1,u2, · · · ,uM , [cls]c]}Cc=1. In
Table 6, we show that sharing the context vectors
across all images leads to sub-optimal generaliza-
tion to novel classes. To address this concern, we
opt for a strategy that involves generating instance-
conditional context tokens. However, rather than a
straightforward addition of the image embedding
to the context tokens (Zhou et al., 2022a), we em-
ploy a Multi-head Attention module. This module
generates context tokens by attending to the image
embedding. Given an input image I, the image
attended context vector h(I) is given by:

h(I) = MultiHead(Query=u,Key=V(I),
Value=V(I))

where u represents the context vector, and
MultiHead indicates a Multi-head attention mod-
ule. Note that the instance-conditioned context
vector h(I) has the same shape as u.

Finally, we can generate the prompts for each
class by embedding the output of the attribute ex-
tractor into the instance-conditioned context vector
h(I). Let p+(I) represent the attribute incorpo-
rated prompts and is defined as:

p+(I) = {[h1, · · · ,hM ,A(V(I)), [cls]c]}Cc=1

(5)
Unlike prior works (Zhou et al., 2022a), our cross-
attention based image-conditioning mechanism
incorporates a learned weighted sum of various
points in the image embedding for a single position
in the context vector, thereby providing a stronger
conditioning signal. In Section 7, we empirically
show that our conditioning mechanism is better
suited for few-shot fine-tuning in CLIP.
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4.3 Regularizing the Prompts
Analysis by Yao et al. (2023) reveal that without
any regularization, the context vectors may heav-
ily overfit the training data. This can lead to poor
performance on unseen classes during inference.
To mitigate this, they propose adding a knowledge-
guided loss that aims to minimize the discrepancy
between the learned prompts and the handcrafted
template “A photo of a [cls]”. In this paper, we
also add an additional loss term to regularize the
learned prompts. However, instead of simply using
the hand-crafted templates, we generate a set of
textual prompts incorporating the compositional
information for each image. Given an image I,
let {pgen

i (I)}Ni=1 represent the pool of N syntheti-
cally generated prompt templates embedded with
interpretable concepts aI in image I . In this study,
we select N = 80 diverse textual prompts as sug-
gested in Radford et al. (2021). Based on this, we
define the regularization loss as:

Lreg =
1

N

N∑

i=1

||T (p+(I)y)−T (p
gen
i (I))||gg (6)

where y represents the true label for the image
I, T (·) is the CLIP text encoder and p+(I)y =
[h1, · · · ,hM ,A(V(I)), [cls]y] is the learnable
prompt for the true class y. Based on ablations
in Appendix F, we set g = 1.

4.4 Putting it together
Let Dtrain = {Ij , yj}Jj=1 represent a training
dataset consisting of J samples, where Ij is an
image and yj ∈ {1, · · · , C} represents the corre-
sponding label. Given the dataset, we first generate
the attribute labels (aI) for each image as defined
in Section 4.1. Note, to avoid any computational
overhead during training, we perform this opera-
tion offline. Based on the previous discussions, the
training loss is formulated as:

L = LCE + λ1Lattr + λ2Lreg (7)
where LCE =

− 1

J

J∑

j=1

log
exp(cos(V(Ij), T (p+(Ij)yj ))/τ)∑C
c=1 exp(cos(V(Ij), T (p+(Ij)c))/τ)

where yj represents the true label for the image
Ij and C represents the number of seen classes.
The optimization framework aims to learn the op-
timal parameters by minimizing the training loss
as min E(I,y)∼Dtrain [L]. Based on ablations in Ap-
pendix F, we set λ1 = 4 and λ2 = 4.

5 Experiments

Implementation Details: In this study, for all ex-
perimentation, we use a pretrained CLIP (Radford
et al., 2021) model with a ViT-B/16 image encoder.
We train the model for 50 epochs using a batch
size of 4 and SGD optimizer with a learning rate of
0.0025. We set the context length M = 4. Further,
for training IntCoOp, we append n = 4 learn-
able visual tokens in each transformer layer upto a
depth of K = 9. We report results averaged over
3 random seeds. All experiments are run using the
configurations listed in Appendix A.

Computational Efficiency: In Table 4 (Appendix),
we compare the computational cost of training
and inference for IntCoOp compared to baseline
framework such as CoOp (Zhou et al., 2022b). We
observe that, due to instance-conditional prompt
generation, IntCoOp’s per-epoch training time is
slightly higher compared to CoOp. However, we
believe this minor increase in training time is justi-
fied by the significant performance improvements
shown in Table 1. During inference, as presented
in Table 4, IntCoOp does not incur any significant
additional overhead compared to CoOp.

5.1 Base-to-Novel Class Generalization

Following existing literature (Zhou et al., 2022b,a;
Yao et al., 2023), to assess the generalization capa-
bility of IntCoOp, we employ a zero-shot setting
that involves partitioning datasets into base and
novel classes. Our model is exclusively trained on
the base classes within a few-shot framework, and
its performance is evaluated across both the base
and novel categories.

Datasets: To evaluate on generalization from
base-to-novel classes, in line with past stud-
ies (Zhou et al., 2022b), we used 10 diverse im-
age classification datasets: ImageNet (Deng et al.,
2009), Caltech101 (Fei-Fei et al., 2004), Oxford-
Pets (Parkhi et al., 2012), StanfordCars (Krause
et al., 2013), Flowers102 (Nilsback and Zisserman,
2008), Food101 (Bossard et al., 2014), FGVCAir-
craft (Maji et al., 2013), SUN397 (Xiao et al.,
2010), UCF101 (Soomro et al., 2012), and Eu-
roSAT (Helber et al., 2019). We refer the reader to
Table 10 (Appendix) for a detailed description of
the datasets used in this study.

IntCoOp outperforms the state-of-art. In Ta-
ble 1, we compare the base-to-new generalization
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Dataset Set CLIP CoOp Co-CoOp MaPLe KgCoOp ProGrad LASP RPO DAPT PLOT LFA IntCoOp
(IJCV22) (CVPR22) (CVPR23) (CVPR23) (ICCV23) (ICCV23) (ICCV23) (ICCV23) (ICLR23) (ICCV23) (Ours)

ImageNet
Base 72.43 76.47 75.98 76.66 75.83 77.02 76.20 76.60 76.83 77.30 76.89 75.99
Novel 68.14 67.88 70.43 70.54 69.96 66.66 70.95 71.57 69.27 69.87 69.36 72.67
HM 70.22 71.92 73.10 73.47 72.78 71.46 73.48 74.00 72.85 73.40 72.93 74.29

Caltech101
Base 96.84 98.00 97.96 97.74 97.72 98.02 98.10 96.03 97.83 98.53 98.41 97.80
Novel 94.00 89.91 93.81 94.36 94.39 93.89 94.24 94.37 93.81 92.80 93.93 94.76
HM 95.40 93.73 95.84 96.02 96.03 95.91 96.16 96.03 95.39 95.58 96.13 96.25

OxfordPets
Base 91.17 93.67 95.20 95.43 94.65 95.07 95.90 94.63 95.00 94.50 95.13 95.92
Novel 97.26 95.29 97.69 97.76 94.65 95.07 97.93 97.50 95.83 96.83 96.23 98.20
HM 94.12 94.47 96.43 96.58 96.18 96.33 96.90 96.05 95.41 95.65 95.68 97.04

Stanford Cars
Base 63.37 78.12 70.49 72.94 71.76 77.68 75.17 74.69 75.80 78.57 76.32 77.04
Novel 74.89 60.40 73.59 74.00 75.04 68.63 71.60 75.53 63.93 74.80 74.88 76.32
HM 68.65 68.13 72.01 73.47 73.36 72.88 73.34 74.69 69.36 76.63 75.59 76.67

Flowers102
Base 72.08 97.60 94.87 95.92 95.00 95.54 97.00 94.13 96.97 97.93 97.34 97.82
Novel 77.80 59.67 71.75 72.46 74.73 71.87 73.53 76.67 60.90 74.00 75.44 75.54
HM 74.83 74.06 81.71 82.56 83.65 82.03 83.95 84.50 74.81 83.99 85.00 85.24

Food101
Base 90.10 88.33 90.70 90.71 90.50 90.37 91.20 90.33 90.37 89.80 90.52 91.45
Novel 91.22 82.26 91.29 92.05 91.70 89.59 91.70 90.33 91.30 91.37 91.48 91.99
HM 90.66 85.19 90.99 91.38 91.09 89.98 91.44 90.58 90.83 90.58 91.00 91.72

FGVC Aircraft
Base 27.19 40.44 33.41 37.44 36.21 40.54 34.53 37.33 39.97 42.13 41.48 38.55
Novel 36.29 22.30 23.71 35.61 33.55 27.57 30.57 34.20 29.80 33.73 32.29 35.90
HM 31.09 28.75 27.74 36.50 34.83 32.82 32.43 35.70 34.14 37.46 36.31 37.17

SUN397
Base 69.36 80.60 79.74 79.75 80.29 81.26 80.70 80.60 78.92 77.68 79.59 81.63
Novel 75.35 65.89 76.86 78.70 76.53 74.17 78.60 77.80 76.97 73.63 77.20 79.33
HM 72.23 72.51 78.27 79.75 78.36 77.55 79.63 79.18 78.92 77.68 79.59 80.46

EuroSAT
Base 56.48 92.19 87.49 94.07 85.64 90.11 94.60 86.63 94.73 93.70 93.40 95.26
Novel 64.05 54.74 60.04 73.23 64.34 60.89 77.78 76.79 50.33 62.67 71.24 78.01
HM 60.03 68.69 71.21 82.30 73.48 72.67 85.36 76.79 65.74 75.11 80.83 85.77

UCF101
Base 70.53 84.69 82.33 83.00 82.89 84.33 84.77 83.67 84.30 86.60 86.97 86.76
Novel 77.50 56.05 73.45 78.66 76.67 74.94 78.03 79.34 76.33 75.90 77.48 79.42
HM 73.85 67.46 77.64 80.77 79.65 79.35 81.26 79.34 80.12 80.90 81.95 82.92

Average HM 73.23 73.40 77.98 79.28 78.27 77.53 79.35 78.69 75.75 78.69 79.48 80.75

Table 1: Comparison with state-of-art on base-to-novel generalization. We observe that IntCoOp consistently demonstrates
superior performance over existing prompt-tuning methods. HM represents the harmonic mean of the base and novel accuracies.
We train all methods with 16-shots samples from the base classes.

ability of IntCoOp with baselines such as zero-
shot CLIP and competitive prompt tuning frame-
works such as CoOp (Zhou et al., 2022b), Co-
CoOp (Zhou et al., 2022a), MaPLe (Khattak et al.,
2023), KgCoOp (Yao et al., 2023), ProGrad (Zhu
et al., 2022), LASP (Bulat and Tzimiropoulos,
2023), RPO (Lee et al., 2023), DAPT (Cho et al.,
2023), PLOT (Chen et al., 2023), and LFA (Ouali
et al., 2023) on a set of 10 diverse datasets. We
implemented all methods using a few-shot train-
ing approach involving 16 randomly sampled shots
for each base class. Recall that for this task, eval-
uation involves training the model solely on the
base classes and assessing its performance on both
base and novel classes, a challenging scenario
that tests the model’s generalizability. We em-
ploy the harmonic mean (HM) of the base and
novel accuracies as the metric for comparison. Our
empirical findings reveal two key insights: (1)
IntCoOp consistently demonstrates superior few-
shot performance in comparison to the state-of-
the-art prompt tuning techniques. Moreover, when

considering the average mean performance across
all 10 datasets, IntCoOp outperforms the current
state-of-art (Ouali et al., 2023) by 1.27%. Fur-
ther, it also surpasses CoOp (Jia et al., 2022), a
baseline prompt tuning framework, by 7.52%. (2)
IntCoOp’s strong performance is particularly evi-
dent in datasets featuring images with well-defined
attributes, such as ImageNet, Flowers102, Oxford-
Pets, StanfordCars and Caltech-101. For instance,
on the OxfordPets dataset, IntCoOp enhances the
novel accuracy by 1.97% and 3.55% compared to
LFA and KgCoOp respectively.

5.2 Domain Generalization

To evaluate domain generalization, we utilized Im-
ageNet (Deng et al., 2009) as the source dataset
and four of its variants as target datasets. These
variants included ImageNetV2 (Recht et al., 2019),
ImageNetSketch (Wang et al., 2019a), ImageNet-
A (Hendrycks et al., 2021b), and ImageNet-
R (Hendrycks et al., 2021a), contributing to a com-
prehensive examination of domain shift scenarios.
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Source Target

ImageNet -V2 -Sketch -A -R Avg.

CLIP 66.73 60.83 46.15 47.77 73.96 57.18
CoOp 71.51 64.20 47.99 49.71 75.21 59.27
CoCoOp 71.02 64.07 48.75 50.63 76.18 59.90
MaPLe 70.72 64.07 49.15 50.90 76.98 60.28
KgCoOp 71.20 64.10 48.97 50.69 76.70 60.11
ProGrad 72.24 64.73 47.61 49.39 74.58 59.08
LASP 71.10 63.96 49.01 50.70 77.07 60.19
RPO 71.76 65.13 49.27 50.13 76.57 60.27
DAPT 72.20 64.93 48.30 48.74 75.75 59.43
PLOT 63.01 55.11 33.00 21.86 55.61 41.39
LFA 72.65 64.72 48.01 51.50 76.09 60.08

IntCoOp (Ours) 71.85 65.21 49.20 51.55 76.88 60.71

Table 2: IntCoOp leads to improved performances on
domain generalization tasks. The model is trained on Im-
ageNet (Deng et al., 2009) dataset in a few-shot setup with
16 samples per class and evaluated on four domain-shifted
ImageNet datasets.

Our findings in Table 2 indicate that IntCoOp
demonstrates superior performance across all tar-
get datasets. Notably, IntCoOp improves the aver-
age accuracy by 1.41% and 19.32% compared to
ProGrad and PLOT respectively. These results un-
derscore the significance of learning interpretable
attributes within the prompts.

In Table 9 (Appendix), we also evaluate the gen-
eralizability of our proposed method on a 4-shot set-
ting. Across all datasets considered, IntCoOp out-
performs all compared methods on average. Over-
all, we find that IntCoOp leads to strong and im-
proved performances on a range of downstream
tasks including novel class generalization, robust-
ness to distribution shifts and few-shot learning,
while being more interpretable than other prompt-
tuning methods.

6 Discussion

For additional discussion, we refer the reader to
Appendix E.

IntCoOp learns interpretable prompts. In this
section, we delve deeper into understanding the
quality of the attributes generated by IntCoOp
during inference. Given a test image I with true
label y, we first extract its corresponding learned at-
tribute embedding A(V(I)). To evaluate the qual-
ity of this embedding, we utilize the BLIP-2 model
to produce an attribute label aI . We evaluate two
setups: (1) Firstly, to validate the quality of the
attributes generated by IntCoOp, in Figure 3, we
visualize the cosine similarity of the learned at-
tribute embedding A(V(I)) and the BLIP-2 gen-
erated label aI . Across all datasets, we observe
a high similarity between the generated attribute

Figure 3: We measure the cosine similarity between the
learned attribute embedding A(V(I)) and the BLIP-2
generated label aI . A high cosine similarity indicates
that IntCoOp effectively learns contextually relevant
attributes.

embedding and the BLIP-2-generated label. This
confirms that IntCoOp effectively learns contextu-
ally relevant and correct attribute information. (2)
Secondly, as illustrated in Figure 4 (Appendix), we
observe that the prompts crafted using the learned
attribute embedding A(V(I)) closely align with
the original prompt format “A photo of [a] [cls]”,
as evidenced by high cosine similarity. On the
other side, prompts lacking the attribute informa-
tion exhibit reduced similarity. This analysis high-
lights that during inference, IntCoOp generates
prompts with interpretable compositional informa-
tion, thereby explaining the improved performance.

Importance of learning meaningful attributes.
In this section, we further validate the importance
of learning contextually meaningful attributes dur-
ing training. To illustrate this, we experiment by
substituting the original attribute labels generated
by the BLIP-2 model for each image in the training
set with irrelevant adjectives. Specifically, we ex-
change the attribute labels among different classes,
ensuring each image is paired with an unrelated
adjective through careful human supervision. For
instance, in the altered setup, the image labeled as a
“cheese pizza” in Figure 2 is mislabeled as a “green
pizza”, where the attribute “green” bears no rele-
vance to the image. Employing the experimental
framework as described in Section 5.1, this alter-
ation results in an HM accuracy of 63.27% on the
ImageNet-1k dataset— a decline of 11.02% com-
pared to the performance achieved with IntCoOp.
This significant drop in accuracy highlights the crit-
ical role of learning accurate and relevant attributes
in training.
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7 Ablations on Design Choice

In this section, we delve into a comprehensive ex-
ploration of the design choices made in our pro-
posed framework.

Ablations on Visual Prompting. As illustrated
in Section 4.1, to enhance image representa-
tions IntCoOp effectively utilizes the deep visual
prompting approach. To substantiate our design
rationale, we conduct ablation experiments as out-
lined in Table 6 (Appendix). From our empirical
analysis, we make two key observations: (1) Visual
prompting plays a crucial role in training IntCoOp.
Specifically, training without any visual prompting,
where the frozen CLIP embeddings are used to
train the attribute network A, leads to notably in-
ferior performance. (2) Appending visual tokens
to deeper transformer layers provides a substantial
performance boost in average performance com-
pared to a shallow prompting strategy.

Ablations on Instance Conditioning. To condi-
tion the prompts on the input image, prior stud-
ies (Zhou et al., 2022a) have proposed the direct
addition of the image embedding to the context
vector. However, as elaborated in Section 4.2, we
employ a multi-head attention module for gener-
ating image-conditioned prompts in the training
of IntCoOp. In Table 6 (Appendix), we present
empirical results that bolster the importance of uti-
lizing an attention-based conditioning approach in
contrast to additive conditioning. Specifically, we
observe a 1.58% improvement in average perfor-
mance when using a Multihead attention based
conditioning.

8 Conclusion

In our paper, we initially observe that incorporating
relevant attributes into prompts significantly im-
proves image-text alignment in CLIP. To achieve
this enhancement, we present a novel technique
called IntCoOp, which integrates these attributes
into learned prompts. This integration is made pos-
sible by leveraging a BLIP-2 (Li et al., 2023) model
to annotate attributes in few-shot datasets. With the
image as a conditioning factor, we devise a hyper-
network responsible for predicting embeddings cor-
responding to attribute descriptors. Simultaneously,
we optimize the other context vectors using CLIP’s
contrastive objective. Our comprehensive testing
across diverse datasets underscores the significant
improvement in zero-shot performance achieved

by IntCoOp.

9 Limitations

Our study, through its extensive evaluation across
multiple datasets, demonstrates that augmenting
prompts with attribute information can substan-
tially enhance CLIP’s effectiveness in various
downstream applications. However, our approach
has certain limitations: (1) A notable constraint of
our approach is that its effectiveness may diminish
in scenarios where images are devoid of specific
attribute-level details such as textures. Despite this,
it is noteworthy that in practical, real-world con-
texts, such as with the ImageNet dataset, IntCoOp
consistently outperforms its counterparts. (2) The
performance of IntCoOp is contingent upon the
quality of attributes generated for images in the
training set. Poorly generated attributes can detri-
mentally affect downstream performance.

For future work, we plan to investigate improved
attribute extraction techniques to handle images
with less discernible attribute-level details and to
generate attributes with greater diversity.
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A Software and Hardware

We run all experiments with Python 3.7.4 and Py-
Torch 1.9.0. For all experimentation, we use two
Nvidia RTX 2080-Ti and a single A5000 GPU.

B Extension: Obtaining Attribute-level
Supervision

In Section 3.2.1 of the main paper, we demon-
strated how the generated attribute labels can be
used for training IntCoOp. In this section, we
will provide a more detailed explanation of the
procedure for extracting attribute labels for an im-
age. In this paper, we leverage a BLIP-2 ViT-
G FlanT5XXL visual question-answering (VQA)
model for zero-shot generation of attribute labels.
Specifically, given an image I with class label
[cls], we employ the templates shown in Table 5
to prompt the VQA model to generate 3 captions
corresponding to each image. To improve caption
variety, we generate these captions under varying
random seeds and set repetition_penalty= 100
to discourage repetitive outputs. Note that the
prompt templates for each dataset have been man-
ually tuned with some domain information to im-
prove performance. Subsequently, we select the
most suitable caption based on the CLIP score. In
Figure 5 and Figure 6, we show some representative
images from various datasets and the correspond-
ing generated attributes.

C Note on Attributes Generated by
BLIP-2

To understand the effectiveness of BLIP-2 in cor-
rectly annotating few-shot tasks with their adjec-
tives - we designed a proxy task with 215 im-
ages, where each image is labeled with its attribute.
Given that it is difficult to perform a scalable man-
ual annotation of attributes, we take advantage of
first pre-defining captions which contain an adjec-
tive describing an object, and then generating cor-
responding images from them. The object list is a
subset from MS-COCO – namely O ={handbag,
pizza, suitcase, bottle, firehydrant, cup,
cake, book, vase, cat }. The attribute list for each
object o ∈ O is created by prompting ChatGPT
with prompts such as: ’Describe some of the possi-
ble shapes of object o in one word’, ’Describe some
of the possible colors of object o in one word’.....
These attributes from ChatGPT are then filtered
and quality-controlled by our team to make sure
that the attributes from ChatGPT are relevant to the

Datasets Oracle IntCoOp
ImageNet 74.37 74.29
Caltech101 96.00 96.25
OxfordPets 97.13 97.04
StanfordCars 76.67 76.67
Flowers102 85.32 85.24
Food101 91.66 91.72
FGVCAircraft 36.99 37.17
SUN397 80.50 80.46
EuroSAT 85.80 85.77
UCF101 82.96 82.92
Avg. 80.74 80.75

Table 3: Comparing IntCoOp’s average performance
with oracle setup as described in Appendix E across 10
datasets.

object o ∈ O. Leveraging prompts in the template
of “A photo of a [a] [o]”, we then generate 215 im-
ages from Stable-Diffusion-v2 (Rombach et al.,
2022) in total across all the classes, where [a] rep-
resents the attribute label and [o] is the object name.
Across these generated images, we then prompt
BLIP-2 with prompts such as: ’Describe the shape
of the object in one word’, ’Describe the color of
the object in one word’ .... to predict the attribute.
Subsequently, we measured the cosine similarity
between BLIP-2’s predictions and the ground truth
attribute labels a. Given that there are only 215
images in our validation set, in addition to the qual-
itative analysis, we also manually compared the
BLIP-2 predicted attributes and the ground truth to
check the effectiveness of BLIP-2. Our investiga-
tion revealed a compelling 85% similarity between
BLIP-2 predictions and the ground truth. This high-
lights that BLIP-2 is a suitable candidate to gener-
ate attributes for annotation of few-shot datasets.

D Extension: Results on Few-shot
Learning

To further evaluate the generalizability of our pro-
posed method, we conducted experiments on a
4-shot setting. In this case, the model is trained
on only 4 samples from each base class. We re-
port the average accuracy over base and novel
classes in Table 9. We observe that under a 4-shot
setup, IntCoOp consistently outperforms state-
of-art prompt tuning approaches across multiple
datasets. Notably, on OxfordPets, IntCoOp en-
hances the average performance by 3.45% and
3.83% compared to PLOT (Chen et al., 2023) and
DAPT (Cho et al., 2023). Across all datasets con-
sidered, IntCoOp outperforms all compared meth-
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Methods Train Time (in mins) Inference Time (in mins) HM

CoOp (Zhou et al., 2022b) 1.03 0.032 94.47
IntCoOp 2.15 0.041 97.04 (+2.57)

Table 4: Computational Efficiency of IntCoOp. We compare the training and inference time of IntCoOp with
CoOp (Zhou et al., 2022b). For training time, we report the duration taken to train for one epoch on the Oxford Pets
dataset (Parkhi et al., 2012). Similarly, for inference time, we report the duration taken to infer on a test image from
the Oxford Pets dataset. The numbers reported are averaged for 3 different runs.

Dataset Prompt Template

ImageNet “Describe the appearance of the [cls] image using a one-word adjective.”
Caltech-101 “Describe the appearance of the [cls] image using a one-word adjective.”
OxfordPets “Describe a one-word adjective such as color for the [cls] image”.
Flowers102 “Describe the color of the [cls] flower in one word.”
FGVCAircraft “Describe a one-word adjective for the aircraft image.”
StanfordCars “Describe a one-word adjective for the [cls] car image.”
Food101 “Describe a one-word adjective for the [cls] food image.”
SUN397 "Describe a one-word adjective summarizing the appearance of the [cls] image.”
EuroSAT “Describe a one-word adjective that best describes the natural surroundings in this satellite image of [cls].”
UCF101 “Describe a one-word adjective describing the action of the person in this [cls] image.”

Table 5: Templates used for prompting the BLIP-2 model for different datasets. [cls] represents the class name for
the given image.

ods on average.

E Extension: Additional Discussion

To further understand the efficiency of the attribute
extractor, we compare IntCoOp’s performance
with the following setup: we directly use the
BLIP-2 embedding T (aI) in Equation 5 to train
our framework, keeping all other losses the same.
Specifically, during training, the BLIP-2 generated
attribute embeddings are directly integrated into
the prompts instead of using the output from the
attribute extractor A. However, during inference,
since the class labels are unavailable, we utilize
the trained attribute extractor to generate descrip-
tions for test images. We refer to this setup as
the oracle setting, as it uses the true labels during
training. The results for this setup are reported in
Table 3. Notably, the performance obtained using
the oracle setting is almost identical to IntCoOp’s
performance. This indicates that using the true
attribute labels during training provides no addi-
tional advantage. Therefore, we can conclude that
during training, the attribute extractor network A
successfully learns to mimic the BLIP-2 embed-
dings, thereby generating interpretable prompts.

F Extension: Ablation on design choices

In Table 7, we perform an ablation study on the
choice of loss functions for training IntCoOp. We

Visual Prompting Instance Conditioning
HM

Shallow (K=1) Deep (K=9) Additive (Zhou et al., 2022a) Multihead

✓ ✗ ✗ ✗ 75.01
✗ ✓ ✗ ✗ 76.90

✗ ✗ ✓ ✗ 74.31
✗ ✗ ✗ ✓ 75.89

IntCoOp (Ours) ✗ ✓ ✗ ✓ 80.75

Table 6: Ablation on design choices. We perform ablation
experiments to delineate the importance of each component in
our proposed approach.

Lattr

g = 1 g = 2

Lreg
f = 1 79.30/ 70.78/ 74.79 78.25/ 67.90/ 72.70
f = 2 83.82/ 78.21/ 80.75 81.05/ 72.14/ 76.33

Table 7: Ablation on loss functions. We show that setting
f = 2 and g = 1 provides the best performance. We report
the Base/ Novel/ HM accuracies for each setting. Best results
based on HM performance are marked in bold.

find that using a ℓ2 loss (f = 2) for the attribute
network and a ℓ1 (g = 1) regularization loss pro-
vides the best performance. Further, in Table 8, we
show ablation results for λ1 and λ2. Clearly setting
λ1 = λ2 = 4 gives the best performance.
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Figure 4: IntCoOp generates relevant attributes dur-
ing inference. We measure the cosine similarity between
the prompt embeddings with the attribute information from
IntCoOp and the prompt template “A photo of [a] [cls]”. We
find that prompt embeddings from IntCoOp result in a higher
cosine similarity with hand-crafted prompt template.

λ2 = 1 λ2 = 2 λ2 = 4 λ2 = 8

λ1 = 1 75.79 75.92 76.90 76.92

λ1 = 2 75.12 75.39 76.80 76.78

λ1 = 4 75.56 76.88 80.75 77.29

λ1 = 8 75.97 76.11 77.31 77.30

Table 8: Ablation results on λ1 and λ2. Setting λ1 = 4
and λ2 = 4 gives the best results. We report the HM
accuracies averaged across 10 datasets for each setting.
Best results based on HM performance are marked in
bold.

19598



Datasets CoOp CoCoOp ProGrad KgCoOp MaPLe DAPT PLOT IntCoOp
ImageNet 69.38 70.55 70.21 70.19 70.67 70.80 70.40 70.81
Caltech101 94.44 94.98 94.93 94.65 94.30 94.23 95.13 95.59
OxfordPets 91.30 93.01 93.21 93.20 92.05 92.17 92.55 96.00
StanfordCars 72.73 69.10 71.75 71.98 68.70 74.40 74.93 74.93
Flowers102 91.14 82.56 89.98 90.69 80.80 92.37 91.31 92.54
Food101 82.58 86.64 85.77 86.59 86.90 83.60 86.46 90.60
FGVCAircraft 33.18 30.87 32.93 32.47 29.03 32.47 35.29 33.50
SUN397 70.13 70.5 71.17 71.79 71.47 72.20 70.42 76.95
EuroSAT 68.62 63.83 70.84 71.06 54.87 72.73 80.70 81.21
UCF101 77.41 74.99 77.82 78.40 73.70 79.40 79.76 78.05
Avg. 75.09 73.69 75.86 76.10 72.25 76.38 77.68 79.01 (+1.34)

Table 9: IntCoOp leads to strong few-shot classification performance. We compare IntCoOp with competitive
prompt tuning approaches on a few shot learning task with 4 samples from each class. The reported values are
average performance over base and novel classes as reported by harmonic mean. We observe a 1.34% improvement
in average performance across 10 datasets compared to state-of-art framework PLOT (Chen et al., 2023). Best
results are marked in bold.

Dataset Classes Train Val Test Description

ImageNet-1k 1000 1.28M N/A 50,000 Contains images covering a wide range of diverse objects, scenes, and concepts.
Caltech-101 101 4,128 1,649 2,465 Consists of images of everyday objects commonly found in indoor and outdoor environments.
OxfordPets 37 2,944 736 3,669 Comprises images of pets covering various breeds of cats and dogs in different poses.
StanfordCars 196 6,509 1,635 8,041 Contains images of cars from various viewpoints, brands, and models.
Flowers102 102 4,093 1,633 2,463 Consists of images of flowers belonging captured under varying lighting conditions and backgrounds.
Food101 101 50,500 20,200 30,300 Consists of images depicting different types of food items from various cuisines.
FGVCAircraft 100 3,334 3,333 3,333 Contains images of different airplane models captured from various viewpoints.
SUN397 397 15,880 3,970 19,850 Includes images depicting various indoor and outdoor scenes such as bedrooms, beaches, forests, and more.
UCF101 101 7,639 1,898 3,783 Contains images of human actions, categorized into 101 action classes.
EuroSAT 10 13,500 5,400 8,100 Contains satellite images capturing various land cover types including urban areas, forests, farmland, and more.

Table 10: Detailed description of datasets used for this study.
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Class: Abyssinian

Attr Label: Tan

Class: Morning Glory

Attr Label: Purple

Class: Ant

Attr Label: Black

Class: Abbey

Attr Label: Ruined
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Class: Athletic Field
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Class: Cannon

Attr Label: Old-fashioned

Class: Chair

Attr Label: Antique

Class: Geranium

Attr Label: Red

Class: Moon Orchid

Attr Label: White

Class: Egyptian Mau

Attr Label: Spotted

Class: Newfoundland

Attr Label: Fluffy
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Figure 5: We visualize BLIP-2 generated attribute labels for few representative images from OxfordPets, Flowers102,
Caltech-101 and SUN397 dataset.
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Figure 6: We visualize BLIP-2 generated attribute labels for few representative images from EuroSAT, FGVC
Aircraft, Food-101 and Stanford Cars dataset.
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