
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 19786–19793
November 12-16, 2024 ©2024 Association for Computational Linguistics

Unsupervised Discrete Representations of American Sign Language

Artem Abzaliev and Rada Mihalcea
University of Michigan

{abzaliev, mihalcea}@umich.edu

Abstract
Many modalities are naturally repre-
sented as continuous signals, making it
difficult to use them with models that ex-
pect discrete units, such as LLMs. In
this paper, we explore the use of audio
compression techniques for the discrete
representation of the gestures used in
sign language. We train a tokenizer for
American Sign Language (ASL) finger-
spelling, which discretizes sequences of
fingerspelling signs into tokens. We also
propose a loss function to improve the
interpretability of these tokens such that
they preserve both the semantic and the
visual information of the signal. We show
that the proposed method improves the
performance of the discretized sequence
on downstream tasks.

1 Introduction

Modern NLP models operate on a set of discrete
tokens from a fixed vocabulary, which is the most
common way to represent textual data. How-
ever, integrating modalities that are continuous into
LLMs, such as videos, audio, or gestures, remains
an open research question. In recent years a new
paradigm has emerged, where an underlying se-
quence is first discretized ("tokenized"), and then
provided to the LLM decoder (Borsos et al., 2023;
Copet et al., 2024; Wang et al., 2023; Zhan et al.,
2024; Jiang et al., 2023). While this is an intuitive
way to incorporate more modalities into LLMs, it is
not well understood how comparable these tokens
are with respect to the ones used in text. In this
work, with a specific focus on American Sign Lan-
guage (ASL) fingerspelling, we investigate what
kind of information is contained in these tokens,
how this information is represented, and whether
their intuitive meaning is similar to the subword
tokens used for textual data.

We focus on fingerspelling ASL for several rea-
sons. First, each visual sign in a fingerspelling
video corresponds to a single text character and

Figure 1: A fingerspelling sign sequence together with
the corresponding phrase. Some characters (e.g., "T"
and "E" here) can be visually similar, which makes the
task challenging.

there is a many-to-one correspondence between
the ground truth text and the sign sequence (e.g.,
the first N frames in the video represent character
"x"). This is unlike audios or co-speech gestures,
which usually do not have this property: for in-
stance, a textual description of the audio (’Berlin
techno’) can refer to various time intervals in a clip,
and many various descriptions can be generated
for similar audio (many-to-many). This property
allows us to get the correspondence between the
discretized gestures and ground-truth characters.
Additionally, fingerspelling has a relatively small
character vocabulary size (63 different characters
in our case), whereas full word vocabularies are
much larger and harder to interpret. This allows
us to visually inspect the similarities and differ-
ences in the tokens because each character has a
corresponding sequence of frames.

"Sign language models that use have a history
of underperforming those that operate on learned
video embeddings; it is unclear to what extent this
is due to the information bottleneck in the (imper-
fectly predicted) pose representation, vs. availabil-
ity of higher quality pretrained video encoders than
pretrained pose encoders. Pose inputs offer some
benefits like computational efficiency and privacy."

We focus on pose-based inputs as a representa-
tion of ASL, as opposed to learned video embed-
dings, for two main reasons. First, it is a compu-
tationally faster method than processing the entire
video, and because of this it can also be effectively
run on a CPU. Second, flattening pose-based (x,y)
coordinates allows us to apply techniques from the

19786

audio domain, such as neural compression, to the
ASL domain.

The paper makes the following main contribu-
tions. First, we develop and train a Residual Vec-
tor Quantized (RVQ) hand fingerspelling tokenizer.
Tokenization applied to this particular modality
has not been explored before. We show that such
tokenization opens possibilities for a range of appli-
cations, such as using a plain seq2seq transformer
model for machine translation between sign lan-
guage and written language, without convolutional
architecture. Second, given our finding that these
RVQ tokens are hard to interpret with information
spread across several tokens, we propose an addi-
tional training objective that stabilizes the training
and improves the interpretability of the resulting
tokens. Specifically, we add during training a Con-
nectionist Temporal Classification (CTC) loss be-
tween the predicted characters for each frame and
ground truth fingerspelled character phrase, and
show that this loss function improves the quality
of the tokenizer on downstream tasks. Finally, we
provide an in-depth analysis of the learned tokens
and show that the residual quantizers encode infor-
mation hierarchically from coarser to finer details.

2 Related Work

Audio Tokenization. A recent paradigm in audio
processing is to map continuous audio signals into
discrete tokens via self-supervised learning. This is
typically done by imposing constraints on a latent
space being discrete (van den Oord et al., 2018) and
pre-training on a large amount of unlabeled data.
For example, Baevski et al. (2020); Chung et al.
(2021); Hsu et al. (2021) formulate self-supervised
tasks as Masked Language Modelling similar to
BERT (Devlin et al., 2019). Zeghidour et al. (2021)
and Défossez et al. (2022) utilize adversarial train-
ing and RVQ to learn the discrete codes.

Language Modeling on Discrete Tokens. Dis-
cretizing audio allows us to apply the Next Token
Prediction objective to the audio domain. Previous
work has explored this direction, for instance Au-
dioLM (Borsos et al., 2023), Vall-E (Wang et al.,
2023; Chen et al., 2024), AudioGen (Kreuk et al.,
2023), MusicGen (Copet et al., 2024). They show
that language modeling is a meaningful task on au-
dio tokens and, combined with powerful vocoders,
can lead to state-of-the-art audio generation.

Latent Space Discretization for Other Modali-
ties. In computer vision, Stable Diffusion (Rom-
bach et al., 2022) and DALLE-E (Ramesh et al.,

2021) both discretize and downsample the image
space with discrete VAE (Kingma and Welling,
2022), and run the generation tasks in this latent
space. Jiang et al. (2023) trains a tokenizer of
the human poses and adds those tokens to the vo-
cabulary of a language model. Zhao et al. (2023)
uses BERT-like training on the word-level sign lan-
guage. Different from those works, we operate on
a character-level sign language.

3 Dataset

We perform all of the experiments using the Amer-
ican Sign Language Fingerspelling dataset (Ash-
ley Chow, 2023). This is the same dataset used in
a Kaggle competition for ASL fingerspelling. The
dataset contains signs for randomly generated ad-
dresses, phone numbers, and URLs, in total more
than more than three million fingerspelled char-
acters produced by over 100 deaf signers. The
keypoints were extracted from raw videos with
the MediaPipe holistic model, 543 different land-
marks with (x, y) coordinates. There are total of 63
unique characters in the dataset. We follow the offi-
cial competition vocabulary, which includes many
more characters that do not have phonologically
distinct handshapes, for example "!", "&", or "@".
The motivation to include those characters is to
include URLs in the list of fingerspelled phrases.

characters 3M+
signers 100+
keypoints 543
videos total 64,000

Table 1: Dataset statistics

We only use hand
landmarks, 21 for
each hand, so 42 (x,
y) points for each
video frame in total.
We only use (x, y)
coordinates since the z coordinates are noisy ac-
cording to the dataset description webpage. We dis-
card frames that do not have any hand coordinates
on them, normalized the coordinates per video, and
filled nans with zeros. We split the dataset into
training, validation, and test sets, a total of 38,000
sign sequences for training and 13,000 for valida-
tion and test.

4 Discrete Tokenization of ASL
Fingerspelling

To create a discrete representation of the continu-
ous signal of ASL fingerspelling, we first start by
discretizing the individual video frames in the input
sequence using an autoencoder with the discrete
latent space induced by a Residual Vector Quan-
tizer (RVQ) (Zeghidour et al., 2021). Our method
builds upon Défossez et al. (2022), but without

19787

adversarial training and without time-domain com-
pression. We do not compress along the time di-
mension since the sign language domain is different
from the audio signal. For instance,Encodec com-
presses 16kHz audio into 50 integers, resulting in
320x compression. However, mono audios include
only one channel, while in the ASL fingerspelling
dataset, we use 42*2 channels, but relatively short
duration (97% of videos are less than 262 frames
in the video). Additionally, omitting compression
along the time domain allows for easier visual in-
spection of individual tokens. Therefore we opt out
for a 1:1 time mapping between continuous and
discrete input and only compress along the chan-
nel dimension, so 42 (x, y) float coordinates are
encoded into a single integer.

Autoencoder architecture. We use the modified
Squeezeformer (Kim et al., 2022) adapted for ges-
ture recognition from the first place of the ASL
Kaggle competition 1 as an encoder. Squeeze-
former is a hybrid architecture that combines con-
volutional and self-attention blocks. It is a small-
sized model with a total of 1.329M parameters. A
decoder is a mirrored version of the encoder with
the same number of parameters.

RVQ utilizes several codebooks Nq to compress
the signal hierarchically. The first codebook re-
ceives the embeddings from the encoder and com-
presses embedding for each frame into a single
integer. Each subsequent codebook operates on the
difference between the actual and quantized em-
beddings from the previous codebook. Addition-
ally, Défossez et al. (2022) uses quantizer dropout
(QDrop), where during the training all codebooks
after random value 1 < k ≤ Nq are not used, so
the model learns to compress the signal hierarchi-
cally. We present all our results with 1024 discrete
codes and 4 codebooks, with quantizer dropout.
We ran preliminary experiments with fewer dis-
crete codes/codebooks, but we found that the re-
construction quality was worse. This is in line with
previous findings on video and audio tokenization
(Yu et al., 2024; Ji et al., 2024), where researchers
found that a large vocabulary size is beneficial for
reconstruction.

Training. We train for 100 epochs in total and
select the model with the lowest validation loss.
We flip between right-hand and left-hand with 25%
probability for each video. We use an AdamW
schedule-free optimizer with a learning rate of 1e-

1https://github.com/ChristofHenkel/kaggle-asl-
fingerspelling-1st-place-solution

Figure 2: Cosine similarities between sign token em-
beddings that represent the characters. We define a sign
language token to be representative for specific char-
acter by calculating the mutual information between
the character and all sign tokens, and selecting the one
with the highest mutual information. The tokenization
model learns to group similar gestures together in the
embeddings space, for example sign token embeddings
"i" and "j", or "h" and "g".

3. 2. We use 3 different loss functions: 1) Smooth
L1 Loss between the original and reconstructed
sign gestures similar to Jiang et al. (2023) 2) com-
mitment loss from the quantizer to ensure that the
codebook is utilized efficiently 3) CTC loss be-
tween the predicted character for each video/sign
frame and the ground truth characters.

4.1 CTC Loss on the Discrete Representations
A plain autoencoder using RVQ does not utilize any
additional information from the input sequence, the
training objective is simply to reconstruct the origi-
nal signal as well as possible. However, such infor-
mation is often available and can be used to boost
the quality of the model. We propose to utilize
signed phrases during the training: we add a small
LM-like head on top of the quantized embeddings
to classify each discretized frame into one of 63
characters. The motivation for this strategy is that
we force the model to predict the same token for
the same sign like "a" for a token "123", even if the
visual information is different, i.e. different angle
or different camera centering. During the training,
after the RVQ but before the decoder, we add a
small linear layer that for each video frame pre-
dicts a character it corresponds to. Since we know
a ground truth phrase, we have all the necessary
components for the CTC loss - it handles the many-
to-one correspondence between the video phrases

2https://github.com/facebookresearch/schedule_free

19788

and the characters, nudging the model to predict
similar tokens for visually different sign gestures.
Quantized video sequences are much longer than
character sequences (262 frames vs 18 characters
on average), but CTC loss is specifically designed
for this scenario.

5 Interpreting Discrete Representations

5.1 Visualizing the Representations
After we train the tokenizer, we fully tokenize our
training, validation, and test data, i.e. transform it
from the set of (x, y) continuous coordinates into
sequences of discrete values. We visualize learned
tokens in Appendix A. Additionally, we investigate
the sign token embedding space for the first quan-
tizer. For each character "a"-"z", we can calculate
the mutual information between the presence of
a character in a fingerspelled phrase and a pres-
ence of a token in a discrete sign sequence. We
select the tokens with the highest mutual informa-
tion, and take the corresponding vector from the
RVQ first quantizer, 128-dimensional in our case.
We then can calculate cosine similarity between all
"character-specific" sign token embedding vectors.
The results of this analysis are presented in Figure
2. We show a heatmap with the cosine similarity
values, and visualize the fingerspelled signs on the
main diagonal. Similarly looking signs, like "i"
and "j", or "h" and "g" are closer together in the
embeddings space.

5.2 Information Preserved by the Tokenizer

CTC Levenshtein
Representation loss Qdrop distance
Discrete ✗ ✗ 0.648
Discrete ✗ ✓ 0.652
Discrete ✓ ✗ 0.665
Discrete ✓ ✓ 0.690
Continuous n/a n/a 0.684

Table 2: Levenshtein distance for seq2seq translation
from sign language tokens to characters

RVQ discretization compresses (42*2) float co-
ordinates into four integers for each time step t,
where four is the number of quantizers and each
quantizer has a cardinality of 1024. We want to
evaluate how much information the tokenizer pre-
serves. We run a series of downstream tasks, where
we probe discrete gesture sequences for the ground
truth text phrase. The first experiment we consid-
ered is a seq2seq translation from the sign language
tokens to the text tokens. Both the encoder and the
decoder operate on the set of discrete tokens, so
we can apply standard seq2seq architecture from

the machine translation where the decoder attends
to the hidden states from the encoder. The only
difference is that we have four integers instead of
one, so we sum up all the embeddings from them,
similar to Parallel Pattern in Copet et al. (2024).

We compare our seq2seq results with the con-
volutional approach where the encoder operates
on the set of (x,y) coordinates. We use simpler
architecture from the first-place solution from the
Kaggle competition, Squeezeformer, but with only
42 keypoints.3 We tokenize the text by a charac-
ter with a total vocabulary size of 63 characters.
We use normalized total Levenshtein distance as a
metric for our comparisons since this is the metric
that was used in the competition4. It is defined
as (N − D)/N , where N is the total number of
characters in all of the labels and D is the total
Levenshtein distance for all the examples.

The results of this comparison are presented in
the Table 2. During the experiments we noticed that
quantizer dropout plays an important role, so we
added quantizer dropout as an additional ablation
variable. Without CTC loss and Quantizer dropout,
tokenization results in small information loss - total
Levenshtein distance is worse than the baseline con-
tinuous model, suggesting that tokenization deletes
some details. Adding CTC loss mitigates the loss
of information for this particular task and provides
a small increase in the Levenshtein distance.

CTC loss Qdrop Avg. MI score
✗ ✗ 0.090
✗ ✓ 0.089
✓ ✗ 0.185
✓ ✓ 0.455

Table 3: Comparison of average mutual information
scores for RVQ and our proposed approach with inte-
grated CTC loss. The mutual information scores are
calculated between the presence of a token/bigram to-
ken in a discretized sign sequence and the presence of
a character in a fingerspelled phrase. The scores are
averaged across all characters "a"-"z".

5.3 Token-based Predictions
Another question we investigate is how exactly sign
language tokens interact with the final prediction:
is a single token triggering a prediction (e.g., a to-
ken 42 is in the input, so the output must contain the
letter "a"), or is it a more complex interaction, e.g.,

3First place winners used a two-step approach and a lot of
data augmentations, while we only use a one-step approach
and the only data augmentation we use is flipping the hand

4The best performing public model has a score of 0.836.
This is not directly comparable to our method, since we trying
to keep things simple to study discretization and not how to
get the best possible performance

19789

several tokens "1, 2, ..., 3" indicate the presence of
the letter "a"? To check the single token hypothesis,
we analyze the mutual information between two
binary variables: the presence of a token from the
first quantizer in a sequence and the presence of a
character in a phrase, both just a binary label. Ta-
ble 3 shows the results. For each character "a"-"z"
we select a sign language token with the highest
adjusted mutual information averaged, and average
across all characters. Incorporating CTC loss (our
method) significantly enhances the mutual infor-
mation scores for individual tokens compared to
those without CTC loss, demonstrating that a single
sign language token largely influences a model’s
prediction of specific characters.

6 Conclusion

In this work, we developed a tokenizer for sign
language, and used several strategies to probe the
sign tokens for various properties. We showed that
an RVQ quantizer can result in minor loss of infor-
mation, and proposed a method to improve learned
representations. Our results indicate that these to-
kens can be used as a drop-in replacement for their
continuous counterpart, and they can be useful for
architectures that assume discrete representations
on continuous multimodal signals. Our code is
available at https://github.com/MichiganNLP/
discrete_asl.

7 Limitations

We focus on American Sign Language, although
there are many other sign languages, such as the
Australian Aboriginal Sign Language. Further ex-
ploration is needed to model and understand these
sign languages.

Our approach relies on a hand landmarks detec-
tion model, and the results of our experiment may
be influenced by the underlying keypoint extraction
system. However, we anticipate any impact (after
re-training) to be minimal. Additionally, CTC loss
between the predicted characters and the ground
truth characters requires additional annotations for
the video, which may not always be available.

8 Ethics Statement

While our approach is trained on a large sample
of signers, left-handed users represent a smaller
fraction (10% of all the videos). Although we at-
tempted to offset this issue with data augmenta-
tions, the smaller amount of data available for this
group may still result in lower performance. A sim-

ilar issue may be observed for users with physical
impairments.

References
Manfred Georg Mark Sherwood Phil Culliton Sam

Sepah Sohier Dane Thad Starner Ashley Chow,
Glenn Cameron. 2023. Google - american sign lan-
guage fingerspelling recognition.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A frame-
work for self-supervised learning of speech represen-
tations.

Zalán Borsos, Raphaël Marinier, Damien Vincent, Eu-
gene Kharitonov, Olivier Pietquin, Matt Sharifi,
Dominik Roblek, Olivier Teboul, David Grangier,
Marco Tagliasacchi, and Neil Zeghidour. 2023. Au-
diolm: a language modeling approach to audio gen-
eration.

Sanyuan Chen, Shujie Liu, Long Zhou, Yanqing Liu,
Xu Tan, Jinyu Li, Sheng Zhao, Yao Qian, and Furu
Wei. 2024. Vall-e 2: Neural codec language models
are human parity zero-shot text to speech synthesiz-
ers.

Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng
Chiu, James Qin, Ruoming Pang, and Yonghui Wu.
2021. W2v-bert: Combining contrastive learning
and masked language modeling for self-supervised
speech pre-training.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David
Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre
Défossez. 2024. Simple and controllable music gen-
eration.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and
Yossi Adi. 2022. High fidelity neural audio compres-
sion.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units.

Shengpeng Ji, Ziyue Jiang, Xize Cheng, Yifu Chen,
Minghui Fang, Jialong Zuo, Qian Yang, Ruiqi Li,
Ziang Zhang, Xiaoda Yang, Rongjie Huang, Yidi
Jiang, Qian Chen, Siqi Zheng, Wen Wang, and Zhou
Zhao. 2024. Wavtokenizer: an efficient acoustic dis-
crete codec tokenizer for audio language modeling.

Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu,
and Tao Chen. 2023. Motiongpt: Human motion as a
foreign language.

19790

https://github.com/MichiganNLP/discrete_asl
https://github.com/MichiganNLP/discrete_asl
https://kaggle.com/competitions/asl-fingerspelling
https://kaggle.com/competitions/asl-fingerspelling
http://arxiv.org/abs/2006.11477
http://arxiv.org/abs/2006.11477
http://arxiv.org/abs/2006.11477
http://arxiv.org/abs/2209.03143
http://arxiv.org/abs/2209.03143
http://arxiv.org/abs/2209.03143
http://arxiv.org/abs/2406.05370
http://arxiv.org/abs/2406.05370
http://arxiv.org/abs/2406.05370
http://arxiv.org/abs/2108.06209
http://arxiv.org/abs/2108.06209
http://arxiv.org/abs/2108.06209
http://arxiv.org/abs/2306.05284
http://arxiv.org/abs/2306.05284
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2210.13438
http://arxiv.org/abs/2210.13438
http://arxiv.org/abs/2106.07447
http://arxiv.org/abs/2106.07447
http://arxiv.org/abs/2106.07447
http://arxiv.org/abs/2408.16532
http://arxiv.org/abs/2408.16532
http://arxiv.org/abs/2306.14795
http://arxiv.org/abs/2306.14795

Sehoon Kim, Amir Gholami, Albert Shaw, Nicholas
Lee, Karttikeya Mangalam, Jitendra Malik,
Michael W. Mahoney, and Kurt Keutzer. 2022.
Squeezeformer: An efficient transformer for
automatic speech recognition.

Diederik P Kingma and Max Welling. 2022. Auto-
encoding variational bayes.

Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel
Singer, Alexandre Défossez, Jade Copet, Devi Parikh,
Yaniv Taigman, and Yossi Adi. 2023. Audiogen:
Textually guided audio generation.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. 2021. Zero-shot text-to-image gener-
ation.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els.

Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. 2018. Neural discrete representation
learning.

Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang,
Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu,
Huaming Wang, Jinyu Li, Lei He, Sheng Zhao, and
Furu Wei. 2023. Neural codec language models are
zero-shot text to speech synthesizers.

Lijun Yu, José Lezama, Nitesh B. Gundavarapu, Luca
Versari, Kihyuk Sohn, David Minnen, Yong Cheng,
Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, Alexan-
der G. Hauptmann, Boqing Gong, Ming-Hsuan Yang,
Irfan Essa, David A. Ross, and Lu Jiang. 2024. Lan-
guage model beats diffusion – tokenizer is key to
visual generation.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan
Skoglund, and Marco Tagliasacchi. 2021. Sound-
stream: An end-to-end neural audio codec.

Jun Zhan, Junqi Dai, Jiasheng Ye, Yunhua Zhou,
Dong Zhang, Zhigeng Liu, Xin Zhang, Ruibin Yuan,
Ge Zhang, Linyang Li, Hang Yan, Jie Fu, Tao Gui,
Tianxiang Sun, Yugang Jiang, and Xipeng Qiu. 2024.
Anygpt: Unified multimodal llm with discrete se-
quence modeling.

Weichao Zhao, Hezhen Hu, Wengang Zhou, Jiaxin Shi,
and Houqiang Li. 2023. Best: Bert pre-training for
sign language recognition with coupling tokeniza-
tion.

A Visualizing learned tokens

Given the discrete representations, we can visually
inspect what individual tokens look like. We show
an example of a learned token in Figure 4. It can
be seen that the model learned to group visually
similar gestures together; in this case, this sign rep-
resents the number ’8’ in ASL. More examples and
an illustration of how the hierarchical quantization
affects the codes are included in Appendix A.

We visually investigate how several quantizers
affect learned representation. We represent the hi-
erarchical token structure as a tree in Figure 2. For
this figure, we sample random signs from different
videos for a specific token, for instance starting
with (98, ...). We observed that the tokens from the
first quantizer can be easily visually distinguished
from each other (i.e. token 218 from Figure 4 vs
token 98 from Figure 2), while it is much harder
to distinguish other quantizers (i.e. see token (98,
264...) and token (98, 777...) on the Figure 2 This
is expected and this result is an effect of quantizer
dropout since we force the model to put as much
information as possible into the first quantizer. We
hypothesize that each subsequent quantizer after
the first one grasps more and more fine-grained
details. As an example, we calculate the average
angle of the ring finger for the 4 bottom leaf to-
kens in Figure 2. The results in Table 4 confirm
the hypothesis from the visual inspection: cluster
(98, 624, 608, ...) indicates a very narrow-angle
of the ring finger. Other tokens might specialize
in similar fine-grained details, but this hypothesis
requires further investigation.

Token Average angle
(98, 624, 235) 71.4°
(98, 624, 608) 34.6°
(98, 777, 865) 68.7°
(98, 777, 888) 64.1°

Table 4: The angle between two joints for the ring finger
for different tokens.

B Probing the Tokenizer

We also construct a simple probing task to predict
whether a single character occurs in the text, for
instance, whether we can predict an occurrence
of character "a" in the phrase "vanilla" from the
discrete sequence of gesture tokens. We train a
small transformer encoder (6 layers, hidden dimen-
sion 128, 8 heads) with the classification head for
2 classes from scratch for this experiment. The
vocabulary size of the model is 1027 (1024 discrete

19791

http://arxiv.org/abs/2206.00888
http://arxiv.org/abs/2206.00888
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2209.15352
http://arxiv.org/abs/2209.15352
http://arxiv.org/abs/2102.12092
http://arxiv.org/abs/2102.12092
http://arxiv.org/abs/2112.10752
http://arxiv.org/abs/2112.10752
http://arxiv.org/abs/2112.10752
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/2301.02111
http://arxiv.org/abs/2301.02111
http://arxiv.org/abs/2310.05737
http://arxiv.org/abs/2310.05737
http://arxiv.org/abs/2310.05737
http://arxiv.org/abs/2107.03312
http://arxiv.org/abs/2107.03312
http://arxiv.org/abs/2402.12226
http://arxiv.org/abs/2402.12226
http://arxiv.org/abs/2302.05075
http://arxiv.org/abs/2302.05075
http://arxiv.org/abs/2302.05075

Figure 3: Hierarchical representation of token 98. Each sign token consists of 4 integers which we can represent as
a tree. The root of the tree (98, ...) image shows randomly selected video frames that had 98 as a first integer. The
second row is a subset of video frames that had 98 as a first integer, but split into 2 subgroups: (98, 624...) and (98,
777...). The third row is even further split by the results from the third codebook. We do not show the results from
the 4th codebook, because it it hard to fit on the page and the differences are barely visible.

Figure 4: Example of a token (218, 89, ...) selected from
random frames from our validation data. The integer
value below the gesture indicates a unique video id,
showing that the model learned to group similar gestures
both within a single video and across the videos.

tokens from the tokenizer plus <BOS>, <EOS>,
and <PAD> tokens). Since the quantizer returns
4 different integer sequences, we have 4 different
embedding for each codebook and we sum them

before passing to the transformer. We initialize
each embedding layer in the transformer from the
quantizer since it helps the model to converge faster.
For the continuous architecture, we use a Squeeze-
former encoder with the classification head for the
two classes.

We run all the probing experiments on the test
data, so the model does not see phrases during
the training either directly or indirectly. The plain
RVQ models without any additional modification
perform slightly worse than a continuous model,
with less than a 1% difference (0.11% on average
across all alphabetic characters "a"-"z"). Our pro-
posed RVQ model with CTC loss and Quantizer
Dropout performs 4% better than the continuous
model. Table 5 shows the results for each individ-
ual letter.

19792

Continuous Discrete, no CTC Discrete, with CTC
a 0.852 0.867 0.908
b 0.937 0.923 0.948
c 0.857 0.848 0.896
d 0.861 0.842 0.888
e 0.862 0.866 0.919
f 0.936 0.919 0.962
g 0.901 0.905 0.925
h 0.896 0.912 0.926
i 0.871 0.883 0.915
j 0.962 0.955 0.978
k 0.916 0.923 0.932
l 0.856 0.860 0.881

m 0.895 0.867 0.913
n 0.840 0.852 0.898
o 0.783 0.762 0.887
p 0.858 0.855 0.905
q 0.983 0.987 0.990
r 0.830 0.835 0.907
s 0.858 0.860 0.915
t 0.789 0.821 0.887
u 0.838 0.818 0.886
v 0.910 0.897 0.944
w 0.912 0.895 0.944
x 0.979 0.985 0.989
y 0.901 0.919 0.924
z 0.955 0.953 0.974

Table 5: Accuracies for a probing task "predict whether individual character is in a sequence". We compare
continuous method, discrete RVQ without CTC loss and our proposed method with CTC loss.

C Language Modeling on Discrete Sign
Representations

As a final downstream application, we train a
phrase-conditional LLM on discrete sign represen-
tations, identical to MusicGen (Copet et al., 2024).
The model accepts four sequences of integers from
a quantizer together with the phrases to be signed
and generates four parallel sequences of tokens.
Those tokens can be decoded into the signs by us-
ing a decoder from the discretization model.

While MusicGen conditions audio generation on
the description in natural language, we condition
on the sequence of characters, where each charac-
ter should represent several frames in the generated
video. We use an embedding layer with a vocabu-
lary size of 63 (63 characters in total in our dataset,
although some appear very rare) and a projection
layer on top. We train a decoder-only transformer
with causal attention that attends to embedded char-
acters and autoregressively predicts the next sign
token given all previous sign tokens and all the
characters in the phrase.

We train the model for 100 epochs, with AdamW

optimizer and learning rate 3e-4. The accuracy of
the next token prediction is 43% for the first quan-
tizer, 26% for the second, 15% for the third, and
7% for the fourth. Lower accuracy for each sub-
sequent quantizer is expected, given that we train
the discretization model with the quantizer dropout,
where we randomly drop different codebooks ex-
cept the first one.

We use the model trained on continuous gestures
to predict the phrase from the LLM-based gener-
ation. We generate 100 different samples for the
random phrases in the test dataset. The resulting
Normalized Levenshtein Distance is 0.278. Al-
though some signs can be recognizable, this is a
relatively low performance, which indicates that
our method is promising but also leaves room for
improvement in future work.

19793

