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Abstract

Simultaneous Machine Translation (SiMT) re-
quires target tokens to be generated in real-
time as streaming source tokens are consumed.
Traditional approaches to SiMT typically re-
quire sophisticated architectures and extensive
parameter configurations for training adaptive
read/write policies, which in turn demand con-
siderable computational power and memory.
We propose PsFuture, the first zero-shot adap-
tive read/write policy for SiMT, enabling the
translation model to independently determine
read/write actions without the necessity for ad-
ditional training. Furthermore, we introduce
a novel training strategy, Prefix-to-Full (P2F),
specifically tailored to adjust offline translation
models for SiMT applications, exploiting the
advantages of the bidirectional attention mech-
anism inherent in offline models. Experiments
across multiple benchmarks demonstrate that
our zero-shot policy attains performance on par
with strong baselines and the P2F method can
further enhance performance, achieving an out-
standing trade-off between translation quality
and latency.1

1 Introduction

Simultaneous Machine Translation (SiMT) (Gu
et al., 2017) is required to generate target tokens
concurrently as it processes incoming source to-
kens. Differing from traditional machine transla-
tion (MT) methods (Bahdanau et al., 2015; Vaswani
et al., 2017; Pang et al., 2024) that access the full
source text, SiMT necessitates a read/write (R/W)
policy to decide between emitting target tokens
or awaiting more source input, coupled with the
ability to translate from source prefixes to target
prefixes (P2P) (Ma et al., 2018). Typically, the
read/write policy is integrated with the translation

* Corresponding author.
1The code is available at https://github.com/

lbzhao970/PsFuture

mechanism: either employing a fixed wait-k pol-
icy alongside a corresponding translation model
(Ma et al., 2018; Elbayad et al., 2020; Zhang et al.,
2021b), or utilizing an adaptive policy (Gu et al.,
2017; Dalvi et al., 2018; Zheng et al., 2019, 2020;
Ma et al., 2020; Zhang and Feng, 2022b; Guo et al.,
2023a; Zhao and Zeng, 2024; Chen et al., 2024)
that dynamically adjusts read/write decisions based
on the context, in conjunction with a model trained
to translate policy-defined prefixes. This adaptive
method has led to superior performance (Zhang
and Feng, 2022a, 2023), yet it demands special-
ized architectural solutions and multitask learning
frameworks for concurrent training of the closely
linked adaptive policy and translation model, com-
plicating component optimization and increasing
computational demands.

On the other hand, DaP-SiMT (Zhao et al., 2023)
introduces a novel framework that separates the
adaptive read/write policies from the translation
model, offering greater versatility in simultaneous
translation. This approach demonstrates that trans-
lation models, when directed by an effective adap-
tive read/write policy, even if initially trained on
fixed policies, can balance quality and latency well,
achieving state-of-the-art (SOTA) outcomes. How-
ever, akin to other adaptive policies, it requires
intricate designs and a significant parameter set for
training the adaptive read/write policy, often de-
manding substantial computational resources and
memory.

We introduce PsFuture, a zero-shot adaptive
read/write policy based on pseudo-future informa-
tion. This policy utilizes the inherent capabilities
of the translation model itself to make read/write
decisions without additional training. Similar to the
policy in DaP-SiMT (Zhao et al., 2023), we draw
inspiration from human simultaneous translation
(Al-Khanji et al., 2000; Liu, 2008), where inter-
preters shift from listening to translating upon antic-
ipating that further future words would not impact
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Figure 1: An Zh→En example demonstrating an ideal timing for predicting the next token "to". Even when provided
with additional possible future information, the probability distribution of the predicted next token does not change
significantly, remaining dominated by the token "to". Therefore, based on the current source prefix "我想吃" and
the current target prefix "I want," a write operation can be executed to predict the next token as "to".

their current decisions. As illustrated in Figure 1,
this behavior implies a minor divergence between
translation predictions based on partial versus more
complete source context. However, in simultaneous
translation tasks, previewing future source informa-
tion is not feasible. Our method, PsFuture, over-
comes this by utilizing pseudo-future information,
which is a token suffix in the source language that
can be fixed or dynamically predicted by language
models. By quantifying the divergence between
the predicted next target token distributions with or
without pseudo-future information, and comparing
it to a predefined threshold, a read/write decision
can be made.

The proposed PsFuture method can be directly
applied to most existing simultaneous translation
models, such as the multi-path wait-k model, which
demonstrates superior performance when directed
by effective adaptive policies (Zhao et al., 2023).
Additionally, we investigate the application of the
PsFuture method to offline translation models. Pre-
vious SiMT models (Elbayad et al., 2020; Zhang
and Feng, 2022a) conventionally employ a unidi-
rectional attention encoder with tailored masked-
cross-attention for prefix-to-prefix training. This
approach, while efficient, limits the model’s abil-
ity to extract features, making it less adept in
high-latency scenarios compared to offline mod-
els that utilize bidirectional attention mechanisms.
To leverage the benefits of bidirectional attention
in SiMT, we introduce a novel and effective train-
ing technique, Prefix-to-Full (P2F), designed to en-
hance the performance of offline translation models
under diverse latency conditions. Our main contri-
butions can be summarized as follows.

1. We propose the first zero-shot adaptive
read/write policy in SiMT, PsFuture, which
utilizes the inherent capabilities of the transla-
tion model to make read/write decisions with-
out any additional training. To our knowledge,
PsFuture is the only adaptive method in the
current SiMT field that offers such flexibility.

2. We present an effective training technique,
Prefix-to-Full (P2F) to enhance the perfor-
mance of offline translation models under di-
verse latency conditions.

3. Experiments across multiple benchmarks
demonstrate that our zero-shot policy attains
performance on par with strong baselines and
achieves an outstanding accuracy-latency bal-
ance.

2 Related Work

SiMT policies are broadly categorized into fixed
and adaptive schemes. Fixed policies (Ma et al.,
2018; Elbayad et al., 2020; Zhang et al., 2021b)
execute read/write actions following predefined
rules, such as the wait-k policy (Ma et al., 2018),
which after reading k source tokens, alternates be-
tween reading and writing one token. Conversely,
adaptive policies dynamically determine read/write
actions based on the evolving source and target
context, enhancing the balance between translation
accuracy and latency.

Adaptive approaches employ methods like re-
inforcement learning within a Neural Machine
Translation (NMT) framework (Gu et al., 2017),
incremental decoding for variable target token
output (Dalvi et al., 2018), and attention-based
methods (Arivazhagan et al., 2019; Ma et al.,
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Figure 2: An overall schematic of the PsFuture policy. Based on the current source prefixes (x1, x2), target prefixes
(y1, y2), and pseudo future information (x3, x4) (tokens highlighted in red), the simultaneous translation model can
directly perform adaptive read/write decisions.

2020). Additionally, the wait-info policy (Zhang
et al., 2022) and ITST (Zhang and Feng, 2022a)
quantify the waiting latency and information
weight respectively for adaptive policy formula-
tion. HMT (Zhang and Feng, 2023) optimizes
read/write decisions by enhancing the target se-
quence’s marginal likelihood across various transla-
tion initiation points. Kim and Cho (2023) employs
a word-level policy to enhance SiMT. Furthermore,
Ma et al. (2023) introduces a non-autoregressive
streaming Transformer (NAST) to mitigate the chal-
lenges of nonmonotonicity and source-information
leakage present in conventional autoregressive
SiMT frameworks. Guo et al. (2023b) propose
to provide a tailored reference for the improvement
of SiMT model training.

Sharing a similar inspiration with PsFuture, DaP-
SiMT (Zhao et al., 2023) autonomously generates
read/write supervisions by leveraging future infor-
mation divergence for training a decision-making
network. In contrast, our approach harnesses the
model’s inherent translation capability to attain an
immediate, zero-shot read/write policy.

3 Preliminary

3.1 Full-sentence MT and SiMT

In full sentence translation tasks, an encoder-
decoder architecture like the Transformer (Vaswani
et al., 2017) transforms a translation pair x =
(x1, x2, ..., xN ) and y = (y1, y2, ..., yT ) by encod-
ing x into latent representations, followed by the au-
toregressive generation of target tokens from these
representations. Generally, the model is optimized

by minimizing the cross-entropy loss.

Lmt = −
∑T

t=1
log p (yt | x,y<t) (1)

For Simultaneous Machine Translation (SiMT),
where g(t) denotes a monotonic non-decreasing
function indicating the end timestamp of the source
prefix required to produce the t-th target token,
the objective function for SiMT can be adapted as
follows,

Lsimt = −
∑T

t=1
log p

(
yt | x≤g(t),y<t

)
. (2)

3.2 Wait-k Policy and Multi-Path Wait-k

Wait-k policy (Ma et al., 2018), the most widely
used fixed policy, starts by reading k source tokens
and then alternates between WRITE and READ
action. The function g(t) for the wait-k policy can
be formally calculated as,

g(t; k) = min{t+ k − 1, N}. (3)

Multi-path Wait-k (Elbayad et al., 2020) is an ef-
ficient technique for wait-k training. It randomly
samples different k values between batches dur-
ing model optimization. By employing a unidi-
rectional attention encoder with a tailored upper
triangular masked cross-attention mechanism, the
multi-path wait-k model achieves efficient prefix-
to-prefix training. Zhao et al. (2023) demonstrates
that the multi-path wait-k model can attain SOTA
performance under the guidance of effective adap-
tive policies.
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4 Method

4.1 The Pseudo-Future-based Zero-Shot
Adaptive Policy

In simultaneous translation, skilled human transla-
tors execute read/write decisions grounded in the
evolving contexts of source and target texts. Con-
ceptualizing a well-trained translation model as an
intelligent agent like a human, our objective is to de-
lineate a zero-shot adaptive read/write policy. This
approach enables decision-making based purely on
the model’s inherent linguistic comprehension and
translation proficiency, facilitating adaptive poli-
cies without necessitating further training.

Zooming in on the details of the read/write
decision-making process, interpreters transition
from listening to translating when they have ac-
quired sufficient source context x≤g(t) to decide
on extending the partial translation y<t with the
next target word yt. This decision is based on the
anticipation that additional source information will
not alter their current translation choice, which im-
plies a slight divergence D

(
p

part
t ,pmore

t

)
between

the interpreters’ estimation of the translation dis-
tribution with partial source context ppart

t , and the
translation distribution considering the more com-
plete source context pmore

t . Interpreters opt to wait
for more source words if this divergence becomes
substantial.

p
part
t = p(yt = ·|x≤g(t),y<t) (4)

pmore
t = p(yt = ·|xmore,y<t), (5)

where xmore represents the more complete source
context by appending additional source tokens
(xg(t)+1, xg(t)+2, ...) to the current source texts
x≤g(t) and the distributions can be computed by
any SiMT translation models.

However, previewing future source information
is not feasible during inferring in simultaneous
translation. Our proposed PsFuture method, as the
name implies, overcomes this by utilizing pseudo-
future information xps-suffix, which is a token suffix
in the source language. It should be noted that
pseudo-future information here does not merely
refer to the predicted next few source tokens adher-
ing to human natural language patterns, but rather
a broader concept representing additional informa-
tion beyond current source input. When such infor-
mation minimally impacts the subsequent target to-
ken prediction of the translation agent, it indicates
low ambiguity in the translating process, which

suggests that the translation of the current source
prefix remains incomplete, thereby signaling an
appropriate moment for a WRITE operation. Con-
versely, it indicates an opportune moment for a
READ operation. In this work, we explore vari-
ous forms of pseudo-future information, including
both predefined fixed suffixes and adaptive ones
that are dynamically predicted by language models
(detailed in Section 5.2).

As shown in Equation 6 and 7, we utilize co-
sine distance, which has been validated as effec-
tive in DaP-SiMT (Zhao et al., 2023), to quantify
the divergence D

(
p

part
t ,p

pseudo
t

)
between the pre-

dicted next target token distributions with or with-
out pseudo-future information.

D
(
p

part
t ,p

pseudo
t

)
= 1− cos

(
p

part
t ,p

pseudo
t

)

(6)

p
pseudo
t = p(yt = ·|xpseudo,y<t), (7)

where xpseudo represents the fake complete source
context by appending pseudo future information
xps-suffix to the current source texts x≤g(t).

By comparing the divergence value to a pre-
defined threshold λ, a read/write decision can be
made as Equation 8. The overall schematic of the
PsFuture policy is illustrated in Figure 2.

write if Dt,g(t) < λ, else read (8)

Figure 3 shows an example divergence matrix
based on the PsFuture method and a highlighted
read/write path, in which we only employ a “<eos>”
token as the pseudo-future suffix. It can be ob-
served that comparing with a suitable threshold
allows for the easy identification of a potential
read/write path.

Following (Zhao et al., 2023), we also introduce
another hyperparameter in the read/write decision-
making process to limit the maximum number of
continuous READ operations for certain languages,
thereby enhancing their performance. The infer-
ence process is summarized in Algorithm 1.

4.2 The Prefix-to-Full Training Method
Adapting Offline Models to SiMT

The PsFuture approach is versatile, compatible
with most translation models, including the of-
fline ones2 (standard Transformer (Vaswani et al.,

2In this paper, we distinguish standard Transformer models,
which employ the bidirectional attention mechanism, as offline
translation models, to differentiate them easily from SiMT
models that utilize the unidirectional attention mechanism.
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Figure 3: Example of a Zh→En divergence matrix D,
where Dt,g(t) = D

(
ppart
t ,ppseudo

t

)
. The red elements

in the matrix denote a potential read/write path, deter-
mined by a predefined threshold λ (0.2 in this case).

2017)). Offline translation models have demon-
strated substantial potential for simultaneous trans-
lation, as evidenced by their efficacy in speech
translation (Papi et al., 2022). However, the lack
of Prefix-to-Prefix (P2P) training in offline models
leads to lower translation quality under low-latency
conditions compared to SiMT models (Ma et al.,
2018). On the other hand, the bidirectional atten-
tion mechanism of offline models significantly en-
hances feature extraction, surpassing the unidirec-
tional attention mechanism typically used in SiMT
models to facilitate P2P training. Thus, in high-
latency scenarios, offline models usually achieve
better translation quality, as shown in Table 1.

To harness the benefits of the bidirectional at-
tention mechanism in real-time contexts, we in-
troduces a simple yet effective training strategy
for offline translation models named Prefix-to-Full
(P2F). This method aims to preserve the model’s su-

Zh→En De→En
Standard Transformer 20.32 32.99
Multi-path Wait-k 19.45 31.81
ITST 19.15 31.26

Table 1: Comparison of case-insensitive BLEU
in offline scenario among the standard Transformer
model(Vaswani et al., 2017), multi-path wait-k
model(Elbayad et al., 2020) and ITST(Zhang and Feng,
2022a).

perior performance in high-latency scenarios while
improving its effectiveness in mid-to-low latency
situations. The training regimen not only utilizes
the conventional translation loss as Equation 1, but
also integrates an innovative loss function, Prefix-
to-Full (P2F) loss. P2F loss is designed to translate
a source prefix into a complete sentence, with the
prefix length l being uniformly distributed and ran-
domly chosen. The overall loss is computed as
follows.

Ltotal = (1− α)Lmt + αLp2f (9)

Lp2f = −
∑T

t=1
log p (yt | x≤l,y<t) (10)

l ∼ Uniform(L) (11)

α ∼ Bernoulli(r), (12)

where r is a hyperparamete to control the pro-
portion of the P2F loss. L is the candidate set
of the prefix length l, or more specifically, L =
{1, 2, ..., |x|}.

The P2F loss endows offline translation mod-
els with the capability to translate prefixes. Al-
though translating prefixes into full target sentences
increases the risk of hallucinations during the si-
multaneous translation process, we posit that an
effective read/write policy can mitigate such occur-
rences. For a detailed analysis of experiments on
this, please refer to Section 6.1.

5 Experiments

5.1 Datasets
WMT2022 Zh→En3. We use a subset with 25M
sentence pairs for training4, from which 1500
unique sentence pairs are extracted as the valida-
tion set. We first tokenize the Chinese and English
data using the Jieba Chinese Segmentation Tool5

and Moses6, respectively, and then apply BPE with
32000 merge operations. We employ the dev set
of 956 sentence pairs from BSTC (Zhang et al.,
2021a) as the test set.
WMT15 De→En7. All 4.5M sentence pairs from
this dataset are used for training, and are tok-
enized using 32K BPE merge operations. We use
newstest2013 (3000 sentence pairs) for validation
and report results on newstest2015 (2169 sentence
pairs).

3
www.statmt.org/wmt22

4The data sources include casia2015, casict2011, casict2015, datum2015,
datum2017, neu2017, News Commentary V16, ParaCrawl V9.

5
https://github.com/fxsjy/jieba

6
https://github.com/moses-smt

7
www.statmt.org/wmt15
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Zh→En De→En En→Vi
Fixed suffix1 “<eos>” “<eos>” “<eos>”
Fixed suffix2 “<unk> <eos>” “<unk> <eos>” “<unk> <eos>”
Fixed suffix3 “. . . <eos>” “... <eos>” “... <eos>”
Fixed suffix4 “. . .信息到此中

断。 <eos>”
“... Die Informationen
enden hier. <eos>”

“... Information inter-
rupted here. <eos>”

Random suffix ( Sampled Randomly Each Time A Read/Write Decision Occurs)
Adaptive suffix (Dynamically Generated by Language Models)

Table 2: The pseudo-future suffixes across various language pairs utilized in this paper.
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Figure 4: Comparison of BLUE vs. AL curves between multi-path (abbreviated as Mp) wait-k, ITST, DaP-SiMT,
and our proposed PsFuture approach on three language pairs. PsFuture-W and PsFuture-O denote the multi-path
wait-k model based PsFuture method and the offline model (P2F-enhanced) based PsFuture method, respectively.

IWSLT15 En→Vi8. All 133K sentence pairs from
this dataset (Luong and Manning, 2015) are used
for training. We use TED tst2012 (1553 sentence
pairs) for validation and TED tst2013 (1268 sen-
tence pairs) as the test set. Following the settings
in (Ma et al., 2020), we adopt word-level tokeniza-
tion and replace rare tokens (frequency < 5) with
<unk>. The vocabulary sizes are 17K for English
and 7.7K for Vietnamese, respectively.

5.2 Settings

The Pseudo-Future Suffix . In this study, we in-
vestigate various pseudo-future suffixes, denoted
as xps-suffix, as detailed in Table 2. These suffixes
can be divided into two categories: fixed and adap-
tive. A primary criterion for selecting a fixed suffix
is its richness in information. For instance, the
“<eos>” token, often encountered in training trans-
lation models, effectively indicates sentence termi-
nation. Consequently, all chosen suffixes conclude
with “<eos>” to guarantee an essential increment
of information.

Specifically, the fixed suffixes range from the ba-

8
nlp.stanford.edu/projects/nmt

sic “<eos>” token (suffix 1) to more complex struc-
tures involving special tokens (“<unk> <eos>”, suf-
fix 2) and natural sentence extensions (suffixes 3
and 4), which simulate ellipsis and ellipsis with sig-
nals of information discontinuity. We also conduct
an experiment with random suffixes to investigate
the sensitivity of the PsFuture method to suffix con-
tent. These random suffixes consist of four tokens,
each randomly selected from the top 200 most fre-
quent tokens in the vocabulary, ensuring adequate
information. Furthermore, the suffix is resampled
randomly each time a read/write decision occurs.

The adaptive suffix is dynamically generated
by large language models, based on the current
source prefix for pseudo-future information predic-
tion. For Zh→En, we employ the Chinese-Llama-
2-7b model9, while the Llama-2-7b-chat (Touvron
et al., 2023) is used for De→En and En→Vi exper-
iments. In the main results (5.3), we empirically
determine the optimal suffix through performance
evaluation. Section 6.1 delves into the effects of
various suffixes on the experimental outcomes, pro-
viding a thorough assessment.

9
https://github.com/LinkSoul-AI/Chinese-Llama-2-7b
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The Prefix-to-Full Loss Ratio. The hyperparame-
ter P2F ratio r is employed to control the propor-
tion of the P2F loss. The most effective configura-
tions are identified as 0.5, 0.8, and 0.5 for Zh→En,
De→En, and En→Vi, respectively. Detailed infor-
mation on the ablation studies concerning hyperpa-
rameter r is referred to Section 6.1.
Other Settings. The proposed PsFuture policy un-
dergoes empirical experiments based on the multi-
path wait-k model and the P2F-enhanced offline
model as mentioned in Section 4.2, comparing its
performance with two leading models in the SiMT
domain, ITST (Zhang and Feng, 2022a) and DaP-
SiMT (Zhao et al., 2023). All our implementations
are based on the Transformer (Vaswani et al., 2017)
architecture and adapted from the Fairseq Library
(Ott et al., 2019). For the Zh→En experiments, we
utilize the transformer big architecture, while the
base and small architectures are used for De→En
and En→Vi experiments respectively.

For evaluation, following ITST and DaP-SiMT,
we report case-insensitive BLEU (Papineni et al.,
2002) scores to assess translation quality and Av-
erage Lagging (AL/token) (Ma et al., 2018) to
measure latency. Regarding the maximum num-
ber of continuous read actions in our method, we
empirically select the best-performing configura-
tions, which are no constraint, 4, no constraint for
Zh→En, De→En, En→Vi respectively. Further-
more, to achieve more robust inference results, the
initial length of the source prefix during the real-
time translation process is set to 2.

5.3 Main Results

We compare the proposed PsFuture method against
previous approaches for three language pairs in

Figure 4. PsFuture-W and PsFuture-O refer to the
multi-path wait-k model-based PsFuture approach
and the offline model (P2F enhanced) based PsFu-
ture method, respectively.

Firstly, the PsFuture-W experiment significantly
surpasses traditional multi-path wait-k models, ben-
efiting from the proposed PsFuture policy over the
fixed wait-k policy. Notably, the performance of
PsFuture-W often matches or exceeds the SiMT
leading model ITST, which is specifically trained
with a complicated adaptive read/write policy. This
highlights the capability of SiMT translation mod-
els to make adaptive decisions themselves. Al-
though trained with a fixed strategy, the multi-path
wait-k model, when coupled with the zero-shot
PsFuture policy, significantly outperforms its coun-
terparts and rivals strong SiMT baselines.

Secondly, the performance of PsFuture-O
demonstrates improvements over PsFuture-W to
varying extents across all language pairs, especially
in the Zh→En experiment where it outdoes the for-
mer SiMT SOTA method, DaP-SiMT. As antici-
pated, the offline translation model, endowed with
superior feature extraction capabilities, achieves
better performance at moderate to high latencies,
while the introduction of the Prefix-to-Full loss
ensures the model maintains comparable effective-
ness at lower latencies.

6 Analysis

In this scetion, we aim to provide a detailed exami-
nation of the proposed method. Unless otherwise
noted, the PsFuture-related experiments are based
on the multi-path wait-k model, and the results
stem from the Zh→En Transformer-Big model.
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Figure 5: Effect of the pseudo-future suffix

1875



6.1 Effect of the pseudo-future suffix

This part investigates the influence of various
pseudo-future suffixes (Table 2) on the experiment
results. As shown in Figure 5, the majority of suf-
fixes tested can achieve a desirable equilibrium be-
tween translation quality and latency, which show-
cases the tolerance of the proposed method to the
choice of suffixes. Through the comparison of vari-
ous experimental results, it is also feasible to iden-
tify specific suffixes for particular language pairs
to optimize performance. Adaptive suffixes, gen-
erated by large language models, consistently per-
form well across various corpora. However, due to
a lack of extensive experimentation with different
adaptive suffixes, their effectiveness does not sur-
pass that of the best fixed suffixes. We believe that
a large-scale exploration of adaptive suffix experi-
ments could potentially yield superior outcomes.

Additionally, it is surprising that the random suf-
fix experiment exhibits unexpectedly strong perfor-
mance. Although there are fluctuations in specific
areas, the overall result is comparable to that of
other meticulously crafted suffixes. This indicates
that PsFuture’s effectiveness is not significantly af-
fected by suffix content. This finding indicates that
the proposed method possesses a substantial lower
bound, emphasizing its robustness and straightfor-
ward applicability. These qualities align with the
method’s key features: simple yet effective.

Furthermore, experiments with ground truth suf-
fixes are conducted to ascertain the upper bound of
the PsFuture method. The results indicate that there
remains potential for enhancement. Future efforts
will focus on incrementally approaching this upper
limit by exploring and refining suffixes.

6.2 Effect of the P2F loss

Figure 6 illustrates the impact of different Prefix-
to-Full (P2F) loss ratios on the performance of our
experiments. Setting the P2F ratio r to 0 corre-
sponds to conventional offline translation model
training. This configuration, when applied directly
to SiMT tasks, yields less than ideal results, espe-
cially at lower to medium latencies. Incorporating
any level of P2F loss markedly improves perfor-
mance, effectively tailoring the offline model for
SiMT applications. Moreover, the experimental re-
sults reveal a noticeable sensitivity to the P2F ratio
r, indicating that an optimal r can enhance the bal-
ance between translation accuracy and latency.
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Figure 6: BLEU vs. AL curves comparing among
PsFuture-O experiments with varying P2F ratios.

6.3 Concerns on Hallucination
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Figure 7: Hallucination Rate (HR) vs. Average Lagging
(AL) curves comparing PsFuture-O with other methods.

In the PsFuture-O experiment, the additional in-
troduction of the Prefix-to-Full (P2F) loss aims
to enhance the model’s capability to translate a
source prefix into a full target sentence, thereby
adapting it for SiMT tasks. However, this approach
may increase the risk of hallucinations during the
translation process. A hallucination is defined as
a generated token that cannot be aligned with any
source word. To illustrate this potential issue, we
compare the hallucination rate (Chen et al., 2021)
of hypotheses generated by PsFuture-O with those
produced by other methods. The comparative re-
sults are depicted in Figure 7.

It is evident that, overall, the PsFuture-O ex-
periment achieves the lowest hallucination rate,
surpassing not only the DaP-SiMT and PsFuture-
W methods, which rely on the multi-path wait-k
model, but also outperforming the meticulously
trained ITST model. This indicates that the pro-
posed PsFuture policy effectively mitigates the oc-
currence of hallucinations during the simultaneous
translation inference process.
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7 Conclusion

In this paper, we propose the first zero-shot adap-
tive read/write policy for SiMT, PsFuture. It em-
powers the translation model to autonomously de-
cide on read/write actions without requiring ad-
ditional training and can attain effectiveness on
par with previously meticulously trained adaptive
policies. Moreover, we introduce a novel training
strategy, Prefix-to-Full (P2F), specifically tailored
to adjust offline translation models for SiMT appli-
cations, exploiting the benefits of the bidirectional
attention mechanism inherent in offline models.

Limitations

In this work, the proposed PsFuture policy con-
ducts two forward computations for each read/write
decision-making, which may increase the total
computational load when inferring. However, it’s
important to note that while other adaptive pol-
icy methods may require only one forward com-
putation for each decision, they also necessitate
additional computations, which are also not neg-
ligible when compared to single forward comput-
ing. Overall, despite the increased computational
requirement for inference, the PsFuture method
eliminates the need for additional learnable param-
eters and training to obtain a read/write decision
maker, which also significantly reduces computa-
tional demands during training.
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A Effect of The Max Continuous READ
Constraint

Following DaP-SiMT (Zhao et al., 2023), we set
a constraint on the maximum consecutive reads al-
lowed during inference, necessitating a write action
once this limit is reached. Figure 8 demonstrates
the influence of this hyperparameter on various lan-
guage pairings. Consistent with DaP-SiMT, we
note that this parameter exerts little or even neg-
ative impact on the Zh→En and En→Vi experi-
ments, yet it proves substantially advantageous for
the De→En pair. Thus, it is advisable to identify
the optimal maximum number of continuous reads
on the validation set before the practical implemen-
tation of this approach.

B Case Study

Here, we present specific cases to demonstrate the
effectiveness of the proposed method, as illustrated
in Figure 9 and Figure 10. It is evident that the Ps-
Future policy can effectively align the source and
target tokens. Even in instances where there is a
significant difference in word order between source
and target, the PsFuture method can still make cor-
rect decisions, waiting for more source information
to proceed with the accurate translation.

C Discussion on The Extra Cost Caused
by Bi-directional Encoders

During the decoding process, the use of a unidi-
rectional encoder allows for incremental decoding,
which reduces computational requirements. How-
ever, this is not feasible with bidirectional encoders.
Compared to unidirectional encoders, predicting
each target token necessitates the additional com-
putation of g(t) − 1 encoder hidden states (g(t)
represents the current number of source tokens).
While the extra computational load is affordable for
shorter texts, it becomes considerably burdensome
for longer texts, potentially imposing untenable
cost. If users cannot accommodate the substantial
computational demand, they can opt for a unidi-
rectional encoder with the PsFuture method, akin
to the PsFuture-W experiment mentioned in this
paper which also demonstrates performance com-
parable to previous top non-zero-shot read/write
policies.

D Algorithm

The inference process of PsFuture policy is sum-
marized in Algorithm 1.

E Numerical Results

The numerical main results are presented in Table 3.

Algorithm 1: SiMT inference with PsFu-
ture policy

Input: streaming source tokens: X≤j ,
threshold: δ,
target idx: i← 1,
source idx: j ← 2,
max continuous READ constraint:
rmax,
current number of continuous
READ: rc ← 1

Output: target tokens: Y ← {<BOS>}
1 while Yi−1 ̸= <EOS> do
2 calculate R/W confidence (cosine

distance) c with Yi−1 using the
PsFuture policy mentioned in 4.1;

3 if c ≤ δ or rc ≥ rmax then
4 translate yi with X≤j ,Y≤i−1;
5 if yi ̸= <EOS> or j ≥ |X| then
6 // execute WRITE action

7 Y.Append(yi);
8 rc ← 0;
9 i← i+ 1;

10 else
11 // execute READ action

12 j ← j + 1;
13 rc ← rc + 1;
14 else
15 // execute READ action

16 j ← j + 1;
17 rc ← rc + 1;
18 return Y
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Figure 8: Effect of the constraint on the maximum number of continuous read

Figure 9: Case No.226 in BSTC Zh→En test set, evaluated with λ = 0.08.

Figure 10: Case No.85 in BSTC Zh→En test set, evaluated with λ = 0.08. While there is a significant difference in
word order between source and target, the PsFuture method can still make correct decisions. Specifically, at step 9,
the PsFuture Policy reads an additional six tokens in sequence to ensure the accuracy of the translation.
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Main Results (Figure 4)
Mp Wait-k ITST DaP-SiMT PsFuture-W PsFuture-O

Zh→En

AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU
1.31 11.7 0.7 8.91 1.18 13.07 0.06 10.99 0.31 12.12
2.23 13.46 1.46 11.92 1.85 14.67 0.77 12.62 0.92 13.49
2.96 14.37 2.16 14.35 2.8 16.7 1.52 14.06 2.08 15.26
3.87 15.15 2.76 15.55 3.72 17.25 2.03 14.78 3.2 17.1
4.76 16.34 3.5 17.06 4.54 17.73 2.98 15.76 4.31 17.88
5.63 16.98 4.27 17.72 5.06 18.14 3.88 16.77 5.22 18.5
6.45 17.61 4.79 17.95 5.85 18.19 4.72 17.69 6.48 19.22
7.27 17.87 5.74 18.07 6.83 18.76 5.83 18.17 7.59 19.45
8.09 18.05 6.82 18.63 8.36 18.88 6.38 18.42 9.16 19.93
8.82 18.54 7.66 18.58 10.71 18.9 7.21 18.59 10.1 20.13
9.56 18.45 8.74 18.61 8.08 18.92 12.29 20.1
10.26 18.55 9.96 18.75 9.18 18.71
10.9 18.55 13.68 19.15 11.9 19.28
11.46 18.76

De→En

AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU
0.47 21.08 1.57 19.2 0.49 21.65 1.06 23.41 1.49 25.3
1.45 23.97 2.17 24.71 1.3 24.51 1.76 25.88 2.24 27.76
2.12 26.21 2.77 28.26 2.17 27.12 2.36 27.24 2.95 28.83
3.12 27.15 3.31 28.85 3.25 29.19 2.99 28.26 3.74 29.62
4.1 28.53 4.01 29.55 4.31 29.97 3.73 29.03 4.52 30.54

5.05 29.16 4.82 30.35 5.87 30.84 4.57 29.94 5.54 31.27
6.03 29.72 5.66 30.52 7.65 31.29 5.55 30.53 6.59 31.68
6.97 30.16 6.65 30.91 8.98 31.52 7.69 31.02 7.34 31.78
7.9 30.69 7.7 31.05 10.53 31.6 8.27 31.18 9.11 32.12

8.78 30.86 8.73 31.08 12.53 31.79 8.97 31.25 12.27 32.51
9.7 31.11 9.79 31.2 9.91 31.45

10.57 31.2 12.6 31.32 10.65 31.52
11.42 31.41 12.18 31.75
12.24 31.41

En→Vi

AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU
3.21 27.87 1.29 23.06 0.89 21.89 0.84 21.16 0.21 18.08
3.93 29.4 1.85 26.33 1.41 27.11 1.65 27.26 0.86 21.96
4.73 30.11 2.44 28.7 1.99 29.31 2.19 28.99 1.41 25.86
5.57 30.14 3.23 29.37 3.06 29.63 2.9 29.29 2 28.34
6.43 30.08 3.76 29.5 4.6 30.15 3.45 29.66 2.63 29.21
7.28 30.13 4.42 29.48 5.44 30.09 4.54 29.86 3.7 29.92
8.12 30.14 5.15 29.79 6.25 30.13 5.42 29.9 5.67 30.08
8.93 30.11 5.91 29.83 7.49 30.15 6.61 29.91 7.82 30.2
9.7 30.1 6.7 29.94 8.08 30.2 7.56 29.95 9.91 30.14

10.43 30.2 7.69 29.95 8.74 30.17 9.1 29.96
11.13 30.16 8.67 29.84 9.61 30.01
11.79 30.13 9.93 29.95 10.67 30.11
12.41 30.16 12.58 30.01 11.69 30.1
13.01 30.18

Table 3: Numerical results in Figure 4.
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