
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 19916–19939
November 12-16, 2024 ©2024 Association for Computational Linguistics

Reasoning in Token Economies: Budget-Aware Evaluation of
LLM Reasoning Strategies

Junlin Wang1* , Siddhartha Jain 3† , Ben Athiwaratkun 4 , Dejiao Zhang 2 , Baishakhi Ray 2,
Varun Kumar 2

1Duke University 2AWS AI Labs 3Nvidia 4Together AI

Abstract

A diverse array of reasoning strategies has been
proposed to elicit the capabilities of large lan-
guage models. However, in this paper, we
point out that traditional evaluations which fo-
cus solely on performance metrics miss a key
factor: the increased effectiveness due to addi-
tional compute. By overlooking this aspect, a
skewed view of strategy efficiency is often pre-
sented. This paper introduces a framework that
incorporates the compute budget into the eval-
uation, providing a more informative compar-
ison that takes into account both performance
metrics and computational cost. In this budget-
aware perspective, we find that complex reason-
ing strategies often don’t surpass simpler base-
lines purely due to algorithmic ingenuity, but
rather due to the larger computational resources
allocated. When we provide a simple base-
line like chain-of-thought self-consistency with
comparable compute resources, it frequently
outperforms reasoning strategies proposed in
the literature. In this scale-aware perspective,
we find that unlike self-consistency, certain
strategies such as multi-agent debate or Reflex-
ion can become worse if more compute budget
is utilized.

1 Introduction

The arena of large language models (LLMs) such
as GPT-4 (OpenAI, 2023; Touvron et al., 2023;
Team, 2023; Jiang et al., 2023a) has seen a prolif-
eration of diverse reasoning strategies. However,
comparing these strategies fairly and comprehen-
sively has proven to be a challenging task due to
their varied computational requirements. For in-
stance, strategies like tree of thoughts (ToT) neces-
sitate branching out into multiple sequences and
incorporating self-evaluation, making them more

*Work conducted during an internship at Amazon
†Work conducted while at Amazon

compute-intensive than others. Therefore, an eval-
uation framework that only accounts for perfor-
mance metrics may miss crucial practical factors
such as computational cost.

In this paper, we propose the inclusion of the
compute budget into the performance measurement
of different reasoning strategies. This budget-aware
comparison yields a more balanced perspective on
the effectiveness of reasoning strategies, account-
ing for both the quality of the output and the com-
putational resources expended.

Our empirical research uncovers a significant
correlation between the performance and the com-
pute budget. We find that a straightforward baseline
strategy, chain-of-thought reasoning coupled with
self-consistency, can be remarkably competitive.
When scaled to match the compute resources of
more sophisticated methods such as Multi-Agent
Debate (MAD) (Liang et al., 2023), Reflexion
(Shinn et al., 2023), Plan and Solve (Wang et al.,
2023), Least to Most Prompting (Zhou et al., 2022),
Progressive Hint Prompting (Zheng et al., 2023),
this baseline strategy often outperforms them in
achieving the best trade-off between performance
and budget. We further investigate the reasons
behind the gap from simple CoT SC and other rea-
soning strategies by providing both empirical and
theoretical evidence.

Then we scrutinize the influence of two spe-
cific types of budgets on performance: (1) the an-
swer generation budget, and (2) the evaluation bud-
get. The success of reasoning strategies that lever-
age self-evaluation is model/dataset-dependent and
strongly correlated with calibration.

This work provides a robust framework for com-
paring a wide array of reasoning strategies and
illuminates the significance of self-evaluation in
these models. We hope this sets the stage for more
focused research on efficient budget utilization and
paves the way for the development of even more
effective reasoning strategies.

19916

GSM8K

Scale-agnos�c
performance

Scale-aware
performance

Self Consistency with
the same inference budget

Mul�-agent debate

Self Consistency
(intermediate budget,
reported baseline)

Single agent

MATH

Reflexion

Figure 1: (1) Comparison of reasoning approaches multi-agent debate (MAD) against the SC baseline, considering
both scale-agnostic and scale-aware evaluation, with published scores and our reproductions on the GSM8K and
MATH dataset. The scale-aware evaluation furnishes more comprehensive insights into the influence of scale on
reasoning strategies and offers a fairer method of comparison. (2) The scale-aware comparison between Reflexion
and SC also illustrates the artifact of scale on performance. For both datasets, we show both budgets, the number of
total tokens, and the number of queries. All results were obtained from GPT-3.5.

Concretely, our contributions are

• We introduce a budget-aware evaluation
framework spanning three dimensions:
queries, tokens, and monetary cost, advocat-
ing for the token-based metric as the most
holistic. This metric adeptly captures both
the latency and financial implications of
computational tasks.

• We present a comprehensive evaluation of
seven LLM reasoning strategies across five
datasets using five models including GPT-4.
Our analysis reveals that traditional evaluation
metrics often overlook a critical aspect: the
performance gains achievable through addi-
tional computational resources. This observa-
tion is strongly supported by CoT SC matches
or even exceeds more complex strategies in
effectiveness.

• We explore the dynamics of reasoning strate-
gies, highlighting that MAD underperforms
as diversity diminishes with each round. Con-
versely, Self-Consistency excels due to the
independence of samples boosting diversity
and its effectiveness in scenarios where the
likelihood of being correct exceeds 50%.

• We conduct ablation studies on ToT and Re-
flexion by segregating the budget into answer

generation and evaluation budgets. We found
that self-evaluation is promising at increasing
performance while being cost-effective but
currently LLM can’t self-evaluate well.

2 Related Work

2.1 Reasoning strategies for LLMs

An early work in the area was to prompt the lan-
guage model to generate its Chain-of-Thought
(CoT) (Wei et al., 2022) which led to significant
improvements in the model’s problem-solving abil-
ities. Later work has involved prompting the lan-
guage model to come up with plans for solving
problems (Jiang et al., 2023b), using CoT and ask
the model to critique and revise its solution (feed-
back) (Madaan et al., 2023; Scheurer et al., 2023;
Chen et al., 2023a; Bai et al., 2022; Kim et al.,
2023), generating multiple chain-of-thoughts and
combining them using LLM (Yoran et al., 2023),
setting up a tree search for chain-of-thought (Tree
of Thoughts - ToT) (Yao et al., 2023), aggregating
LLM generated feedback into guidelines that can
improve future generation (Chen et al., 2023b), and
using multiple LLMs as debating agents to refine
a solution (Du et al., 2023). However, they are all
evaluated on different datasets, and whether the
baselines are computed or cost-matched is rarely
considered. Notable exception is Huang et al.

19917

A

B

C

...

Chain of Thought Reflexion

Multi-Agent Debate

...

...

Tree of Thought

...

...

...

Question, including system prompt or few-shot prompting.

Answer, including intermediate reasoning.

Candidate step leading up to the final answer

Self-evaluation or critique (e.g., yes/no, or sure/likely/impossible)

Calculate
score s

...

Progressive Hints

Plan and Solve

Least to Most

Parallel Generations + Self-Consistency

Multi Agents

Reflect/Feedback Decomposition + Reflect/Feedback

Sample multiple answers.
Thens elect the answer with
the most occurrences.

Self-Consistency

Each agent provides critique
based on history of debate
with other agents. Optionally,
we use summarization
between rounds.

Alternate generating answer and
re�ecting on the answer. In re�exion,
green = diagnose reason for failture and
provide high level plan.

Generating answer given previous
generated answers as hints.

At each depth,
pick top K

branches to
continue and
stop the rest.

Figure 2: Overview of reasoning strategies. Green cell indicates question prompt, including system prompt and
few-shot prompting. The orange cell indicates the answer. Blue cell indicates evaluation or critique.

(2023) where they found MAD is doing an unfair
comparison to SC.

2.2 LLM output evaluation

There has been considerable work on evaluating
the output of LLMs via ranker or self-evaluation.
In Uesato et al. (2022); Yang et al. (2022), they
train an evaluator for each step in a reasoning
chain and rerank using the combined score. In Li
et al. (2023), they weight the self-consistency by
the trained verifier confidence. There has also
been work recently on LLM to self-evaluate its
own generations. In Bai et al. (2022), they use
LLMs to do pairwise comparisons between gen-
erations achieving high accuracy. In Ling et al.
(2023), self-consistency for every step is used to
evaluate how to correct a deductive step is, but
they failed at improving performance using that
signal. Tian et al. (2023) examine multiple strate-
gies for eliciting calibrated LLM self-evaluation.
The self-refine (Madaan et al., 2023) approach uses
LLMs to get detailed self-evaluation to improve
the next generation. The Tree-of-Thoughts (Yao
et al., 2023) paper uses LLM self-evaluation to
rank which node to explore next. Our work con-
ducts analysis on self-evaluation budget and access
whether it is worth it to do self-evaluation.

3 Inference Budget of Reasoning
Strategies

While the raw performance of different prompt-
ing or reasoning strategies for LLMs is a com-
mon topic, how different strategies perform when
budget-aware is less well-studied. However, tak-
ing budget into account can be critical when using
LLMs. In this section, we describe different us-
age scenarios that a user could be interested in and

what budgetary metrics would be relevant to those
scenarios.

3.1 Budget
We examine various budgetary metrics for LLMs.
Given that the number of input and output tokens
often feature prominently across these metrics, we
designate them as nI and nO respectively.

API monetary cost is generally represented as
c = α1 ·nI +α2 ·nO. Here, nI and nO correspond
to the number of input and output tokens. The co-
efficients α1 and α2 are specific to the LLM API
in use. It’s worth noting that in scenarios involv-
ing parallel sampling of multiple outputs with a
singular input, nI is counted once.

Total number of tokens a straightforward met-
ric, is described by t = nI + nO. This becomes
pertinent when α1 = α2, which is true for many
LLM APIs and is also reflective of the compute
cost. Its simplicity ensures it doesn’t inherently
favor any specific model or API provider.

Number of queries of planned API calls can be
a rough proxy for the budget. Such numbers can
be determined before inference, which gives us
rough guidance before action. Note that in case we
want to sample multiple outputs from the LLM, we
count those as separate queries.

4 A Critical Evaluation in Budget-Aware
Environments

This section explores key components that can
make reasoning strategies successful from the
budget-aware perspective. First, we show that the
inference budget is often overlooked but is one of
the primary indicators of the success of a reason-
ing strategy. We show that from the budget-aware

19918

0 10 20

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

gsm8k

0 10 20

0.40

0.50

MATH

0 10 20
Number of Queries

0.20

0.23

0.25

0.28

0.30

TheoremQA

0 10 20

0.50

0.55

0.60
HotpotQA

0 10 20
0.74

0.76

0.78

0.80
CSQA

GPT-3.5-Turbo-0301:

0 5k 10k

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

0 5k 10k

0.40

0.50

0 5k 10k
Number of Tokens

0.20

0.23

0.25

0.28

0.30

0 5k 10k

0.50

0.55

0.60

0 5k 10k
0.74

0.76

0.78

0.80

CoT SC MAD 6agents SC Reflexion SC

0 10 20

0.40

0.50

0.60

0.70

Ac
cu

ra
cy

gsm8k

0 10 20

0.10

0.15

0.20

MATH

0 10 20
Number of Queries

0.05

0.08

0.10

0.12

0.15
TheoremQA

0 10 20
0.10

0.20

0.30

0.40

0.50
HotpotQA

0 10 20
0.65

0.68

0.70

0.72

0.75
CSQA

Mistral-7B-Instruct-v0.2:

0 5k 10k

0.40

0.50

0.60

0.70

Ac
cu

ra
cy

0 5k 10k

0.10

0.15

0.20

0 5k 10k
Number of Tokens

0.05

0.08

0.10

0.12

0.15

0 5k 10k
0.10

0.20

0.30

0.40

0.50

0 5k 10k
0.65

0.68

0.70

0.72

0.75

Figure 3: Performance@Number of Queries and Performance@Number of Tokens Plots for all 5 datasets. All three
methods CoT SC, MAD, and Reflexion are plotted on two models (more models in Appendix G). All experiments
here are run until at least 10k tokens or 20 queries. CoT with SC consistently beat other reasoning strategies across
all 5 datasets with significantly less budget. The budget difference is even more drastic when counting the number
of tokens. The MAD result is shown non-round-wise.

evaluation perspective, CoT (or variants of it like
Plan and Solve, Least to Most) self-consistency, for
instance, is a strong baseline that can outperform
or match many proposed reasoning strategies in the
literature given the same level of budget.

Experiement Setup We use existing reasoning
strategies in literature to perform this study, namely
Multi-Agent Debate (MAD) (Liang et al., 2023),
Reflexion (Shinn et al., 2023), Plan and Solve
(Wang et al., 2023), Least to Most Prompting (Zhou
et al., 2022), Progressive Hint Prompting (Zheng
et al., 2023), and Tree-of-Thoughts (Yao et al.,
2023). We conducted our experiments across a
diverse range of reasoning tasks, utilizing math
reasoning datasets such as GSM8k (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021), and Theo-

remQA (Chen et al., 2023c), along with the com-
monsense reasoning task CSQA (Talmor et al.,
2019), and multi-hop reasoning task HotpotQA
(Yang et al., 2018) (see Appendix A.1). Addition-
ally, we performed an in-depth analysis of the puz-
zle game Game24 (Yao et al., 2023). For models,
we use Mistral-7B-Instruct, LLaMA-2-70b-chat,
Mixtral-8x7B-Instruct, GPT-3.5, and GPT-4. (See
Appendix A.1 for more details about model hyper-
parameters)

Metrics To provide a fair comparison, we control
for the cost/budget of each reasoning strategy to
have the same level of budget. Specifically, We
demonstrate two budgetary metrics which built on
what was discussed in Section 3.1:

1. Performance@Number of Queries: This

19919

metric assesses accuracy across datasets for
each reasoning strategy, controlling for the
total number of queries allowed per sample
question. Regardless of the specific actions
taken within each query, all queries are treated
equally. The performance is plotted as accu-
racy versus the number of queries, ranging
from 1 to 20, allowing for a comparative anal-
ysis of how different strategies scale with ad-
ditional computational steps.

2. Performance@Number of Tokens: This
metric evaluates accuracy across datasets for
each reasoning strategy, based on the total
number of tokens allowed per sample ques-
tion. We plot accuracy against the number
of tokens, ranging from 0 to 10,000, for each
query sample. This approach ensures the met-
ric is not biased towards strategies with fewer
but longer queries, providing a fair compari-
son of performance relative to computational
resources used.

Each reasoning strategy may have different ways
of increasing the budget depending on its design.
For CoT SC, we increase the number of sampled
CoT paths to increase queries/tokens. For MAD,
we set the number of agents to six and increased
the number of rounds up to three, maxing at 18
queries. For Reflxion, we increase the number of
proposals of answers and reflections to increase the
budget.

4.1 Inference budget unveils superiority of
self-consistency baseline over MAD &
Reflexion

We present that the observed improvements in per-
formance for various reasoning methods may be
strongly influenced by the use of a higher infer-
ence budget, rather than the intrinsic merit of the
techniques themselves.

Results in Figure 3 elucidate the efficacy of rea-
soning techniques, including MAD and Reflex-
ion, in contrast with the SC baseline. As illus-
trated in Figure 1 and 3, aligning the inference bud-
gets reveals that the perceived advantages of novel
strategies diminish. The SC baseline generally sur-
passes more complex methods with equal budgets
on all datasets, except HotpotQA where it remains
competitive. Reflexion consistently underperforms
the other strategies, which we will explore further.
Solely depending on scale-independent evaluations,

as seen in previous studies, can yield incomplete or
misleading results.

4.2 Plan and Solve, Least to Most, Progressive
Hints performance gain primarily from
increased budget

In this study, we assess the efficacy of the pro-
posed budget-aware metrics across three additional
reasoning strategies: Plan and Solve, Least to
Most, and Progressive Hints, as depicted in Fig-
ure 4. Among these strategies, chain-of-thought
self-consistency (CoT SC) emerges as a competi-
tive approach in most scenarios. Plan and Solve,
when coupled with self-consistency, surpasses CoT
SC on HotpotQA. It’s pertinent to recognize Plan
and Solve and Least to Most as specialized itera-
tions of the CoT approach. Specifically, Plan and
Solve directs the LMs to strategize prior to resolv-
ing the query, whereas Least to Most deconstructs
the question before answering. Thus, both strate-
gies with SC can be conceptualized as nuanced
versions of CoT SC. Conversely, Progressive Hints,
which leverages sequential answers as cues for sub-
sequent questions, exhibit the least effective perfor-
mance. This comparative analysis underscores that
the observed improvements in performance are pri-
marily attributable to increased budget allocations
rather than the inherent advantages of the method-
ologies. Evaluations on more datasets and types of
budget as well as details about each strategy can be
found in Appendix G.2.

4.3 Tree-of-Thoughts is competitive with a
caveat

We evaluated the Tree-of-Thoughts strategy in a
budget-aware manner on the logical game Game
of 24. Notable discrepancies emerged in the behav-
ior of the model when transitioning to GPT-4 and
we modified our budget-aware metric slightly to
further scrutinize GPT-4.

A strong model is needed to perform better than
baseline In Figure 5, we show the performance
of GPT-3.5 with the Tree-of-Thoughts reasoning
strategy on Game of 241. The performance of Tree-
of-Thoughts lags that of a simple SC by a con-
siderable margin. This is in stark contrast to the
GPT-4 results with Tree-of-thoughts where CoT SC
plateau very early and Tree-of-Thoughts beats it by
a big margin, even when we account for the budget

1We used a modified thought evaluation prompt for GPT-
3.5 that gave much better results than the default one

19920

0 5k 10k

0.80

0.90

Ac
cu

ra
cy

gsm8k

0 5k 10k

0.40

0.50

MATH

0 5k 10k
Number of Tokens

0.20

0.25

0.30
TheoremQA

0 5k 10k

0.56

0.58

0.60

HotpotQA

0 5k 10k

0.76

0.78

CSQA

CoT SC Plan and Solve SC Least to Most SC Progressive Hints SC

Figure 4: GPT-3.5-0301 Performance@Number of Tokens for all 5 datasets using three other strategies: Plan and
Solve, Least to Most, Progressive Hints. More details at Appendix G.2.

0 100 200 300
(a) Queries/Nodes Visisted

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

0 10000 20000 30000 40000
(b) Total Tokens

GPT4 CoT 100
GPT4 ToT 3Shot b=1,3,5

GPT3.5 CoT 100
GPT3.5 ToT 3Shot b=1,3,5

Figure 5: ToT vs. CoT SC for both GPT-3.5 and GPT-4
on Game of 24. The dotted lines represent the perfor-
mance of ToT. For ToT, results for three settings are
included. CoT SC results are on 100 samples.

(query or token). However, Tree-of-Thoughts re-
quires a significant budget commitment to deliver
such a performance. On weaker models than GPT-
4, it is still better to use CoT SC which outperforms
ToT by a considerable margin (Figure 5).

5 What Makes Reasoning Strategies
Work

We provide a detailed analysis of reasoning strate-
gies. Specifically, we examine the causes of the
performance gaps identified in our budget-aware
evaluations among strategies such as MAD, Re-
flexion, and self-consistency in Section 5.1. In
Section 5.2, we analyze the components of tree-of-
thoughts. Finally Section 5.4 assesses the role of
self-evaluation in the reasoning loop.

5.1 Reasoning strategies do not benefit
equally from higher inference budget

The budget-aware perspective clearly guides which
reasoning strategies are viable. A strategy is
deemed effective only if it outperforms a baseline
with an equivalent budget; otherwise, the additional
cost isn’t justified if the baseline achieves better re-
sults considering FLOPs, latency, monetary cost,

6 12 18
Number of Queries

0.0

0.2

0.4

0.6

0.8

1.0

1.2

En
tro

py

GSM8k
MATH
TheoremQA
HotpotQA
CSQA

Figure 6: The diversity of the answers proposed by
GPT-3.5 of MAD for each round goes down.

or other relevant metrics. This raises the question
of whether continuously increasing the budget can
maximize capabilities.

As seen in Figure 3, we find that the CoT SC
exhibits a smooth increase in scores with budget.
However, such a trend does not always hold. For
instance, with MAD, an augmented inference bud-
get eventually experiences a performance plateau.
For the MAD setting with 6 agents, the graph for
MAD and CoT SC overlaps up to six queries. Af-
ter six queries, the MAD strategy switches to the
second round where the performance gain notice-
ably lessens compared to self-consistency. But,
the amount of tokens required for each subsequent
round increases drastically since previous conversa-
tions are encoded. The lowered performance may
arise because subsequent rounds of MAD may in-
cite a cascading effect of cumulative mistakes, or
snowballed hallucinations Zhang et al. (2023).

5.1.1 Dependent sampling can hurt response
diversity

Multi-agent debate conditions on the previous
round’s answers to sample new answers. We posit
another reason MAD performs worse is due to re-
duced response diversity, hence more likely to tun-
nel on the wrong answer. To show this, we com-
pared the entropy of the solutions generated at each

19921

0 20 40
(a) Proposer Cost ($)

0.0

0.2

0.4

0.6

0.8
A

cc
ur

ac
y

GPT4 ToT b=1,3,5
GPT4 CoT b=100

GPT3.5 ToT b=1,3,5
GPT3.5 CoT b=100

GPT4 ToT b=5 Eval Once
GPT4 ToT b=5 Random Evaluator

GPT4 ToT b=5 (GPT3.5 Evaluator)

0 50 100
(b) Evaluator Cost ($)

0 50 100 150
(c) Total Cost ($)

Figure 7: Thought proposer and thought evaluator budget on Game of 24.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Answer Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

GSM8k
MATH
TheoremQA
HotpotQA
CSQA

Figure 8: Calibration result binned by answer percent-
ages. If an answer appears more times within all the
samples, that answer is more likely to be correct.

round for MAD vs. SC. As shown in Figure 6,
the entropy consistently declines for MAD as each
round suggesting exactly the kind of cascading ef-
fect we hypothesized. By contrast, CoT SC does
not suffer such negative consequences and even
increases its solution diversity since the responses
are generated independently.

5.1.2 Effectiveness of independent sampling
with chain-of-thought prompting

Next, we outline a framework that helps explain
what makes self-consistency successful. We first
empirically verified that the higher the occurrence
of an answer, the more likely it is the correct answer
(Figure 8). Self-consistency can capitalize on this
and improve performance with more budget.

We model the answer generation process by LMs
as a binomial distribution where each problem has
an inherent probability pi of being answered cor-
rectly. This analysis reveals several insights:

1. Convergence: The probability of a correct
majority vote converges to 0 or 1 as the num-
ber of trials increases, depending on whether
the probability of a correct answer pi is less

0 10 20 30 40 50
Number of Samples

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ac
cu

ra
cy

HotpotQA
CSQA

Figure 9: SC making things worse on QA problems. We
selected a subset of problems where the correct answer
is not the majority. For this subset, the performance
decreases with more samples.

or greater than 0.5.

2. Speed of Convergence: Convergence is fast
for extreme values of pi (closer to 1 or 0), but
slow if pi is near 0.5.

3. Distribution of Correctness: By placing a
prior on pi (for instance, with a beta distri-
bution), the aggregate score over the entire
dataset converge to non-extreme values, re-
sembling the behavior observed in our results.

That is, self-consistency performance increases
smoothly over time is due to the artifact of a model
consistently answering plausible answers that tend
to be more correct than not. The alternative can
happen otherwise (Figure 9). In Appendix C, we
detail the analysis with extension to a multinomial
setting with Dirichlet priors.

5.2 Complex strategies like Tree-of-thoughts
scale with inference with caveats

In this section, we investigate the factors that con-
tribute to the enhanced performance of the tree-
of-thoughts strategy compared to CoT SC. ToT

19922

1 2 3 4 5 6 7 8 9
Number of Queries

0.45

0.50

0.55

0.60

0.65

0.70
A

cc
ur

ac
y

MATH

GPT4 Reflexion SC
GPT4 Reflexion Oracle
Random Stops
GPT4 Evaluator Stops

Figure 10: Ablation Study of the effect of evaluator on
Reflexion with GPT-4.

mainly has two components: a proposer and a
self-evaluator. The proposer proposes intermediate
steps or answers and the evaluator decides whether
to prune or continue on current branches. Hence
we further divide the budget into the proposer bud-
get and the evaluator budget. We aim to answer
questions like how much of the performance can
be attributed to self-evaluation ability.

For the ablation study, we compare four setups
for tree-of-thoughts on the Game of 24: 1) The stan-
dard ToT where we use GPT-4 to evaluate the new
thoughts; 2) The standard tree-of-thoughts strat-
egy except we now do an evaluation only once as
opposed to three times; 3) Using a weaker model
(GPT-3.5) as the evaluator while using GPT-4 as
the proposer; 4) Random evaluator, where we ran-
domly select the subset of thoughts to prune.

Evaluator quality has a non-trivial impact As
observed in Figure 7, a random evaluator leads
to a very steep performance drop for ToT for both
best@k as well as total accuracy. Results imply that
an evaluator has a non-trivial impact. Evaluation is
done only once per thought as opposed to multiple
times also leads to performance drops.

Cost-efficiency of evaluator Using a weaker
evaluator like GPT-3.5 allows us to maintain most
of the performance cost-effectively. For instance,
employing GPT-4 as the proposer and GPT-3.5 as
the evaluator for 100 instances of Game24 costs
$33.53 with 72% accuracy. In contrast, using GPT-
4 as both proposer and evaluator raises the cost
nearly fivefold to $159.87, with only a slight in-
crease in accuracy to 76%.

More effective use of budget for proposer Em-
ploying a GPT-3.5 proposer with a GPT-4 evaluator
resulted in markedly lower accuracy (38%) com-
pared to using GPT-4 for both roles (76%). While

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Yes or No
Confidence Score
Probability

Figure 11: Calibration result for the math reasoning
datasets. Three different self-evaluation methods are
calibrated here.

this discussion does not extensively explore the
role of the proposer, since most reasoning strate-
gies involve one, we emphasize its importance. For
further ablation results, refer to Appendix Table 3.

5.3 Reflexion does not scale that well unless
with a good evaluator

In an experiment shown in Figure 10, we compared
various Reflexion configurations: standard, with
oracle, with self-consistency, with a random evalu-
ator, and with a GPT-4 evaluator. Results indicate
that while Reflexion with an oracle significantly
outperforms the self-consistency model, Reflex-
ion with a GPT-4 evaluator lags behind the self-
consistency version. This underscores the vast dif-
ference between an ideal and a practical evaluator,
suggesting substantial potential for improvement
in LLM self-evaluation capabilities.

5.4 Self-evaluation is a promising
budget-efficient improvement but is
currently lacking

The previous sections on Tree-of-Thoughts and Re-
flexion have highlighted the crucial role of a strong
evaluator in enhancing performance. When self-
evaluation capabilities are lacking, reasoning strate-
gies struggle to scale effectively with increased in-
ference. Self-evaluation usually involves very few
tokens generated since evaluation is short. This can
be potentially very cost-effective since prefilling
is cheaper and faster. In this section, we investi-
gate further how a self-evaluator can benefit the
reasoning process in a budget-aware setting and
demonstrate why there may still be a long way to
go.

Self-evaluation ability We first benchmarked
three types of evaluations: Yes or No: model an-
swers Yes/No on answer correctness; Score 1-10:

19923

0 5k 10k
0.93

0.94

0.95

Ac
cu

ra
cy

GSM8k

0 5k 10k

0.55

0.60

0.65

MATH

0 5k 10k
Number of Tokens

0.35

0.40

0.45

TheoremQA

0 5k 10k
0.66

0.67

0.68

HotpotQA

0 5k 10k
0.90

0.91

0.92
CSQA

GPT-4 SC GPT-4 SC^2

Figure 12: SC2 with total tokens being the budget if caching is enabled.

Dataset Correct Accuracy Incorrect Accuracy Total Accuracy

GSM8K 0.992 0.156 0.937
MATH 0.911 0.461 0.707

TheoremQA 0.945 0.232 0.547
HotpotQA 0.994 0.029 0.675

CSQA 0.987 0.06 0.901

Table 1: Self-evaluation accuracy on five datasets. Cor-
rect accuracy denotes self-evaluation accuracy for an-
swers that turn out to be correct and vice versa. All
numbers are obtained with GPT-4-0613.

model rates its confidence on a 1-10 scale; and
Probability between 0 to 1: model rates its con-
fidence on a 0 to 1 scale. Each method involves
multiple evaluations, with the final confidence de-
termined by averaging the scores. We found Yes or
No to be the most calibrated as shown in Figure 11.
More details and results in Appendix D.

Table 1 shows the self-evaluation accuracy for
GPT-4 for multiple datasets. The self-evaluation
accuracy turns out to be dependent on the dataset.
On harder tasks like TheoremQA, GPT-4’s accu-
racy is close to random. This means LLMs have a
long way to go before they are reliable evaluators.

Self-Confident Self-Consistency (SC2) As an
investigation of using self-evaluation to improve
reasoning procedure, we propose to weigh the SC
by the confidence the model has in its answer, de-
rived from self-evaluation. We call this score the
Self-Confident Self-Consistency (SC2) score. We
showed that SC2 beats self-consistency on GSM8k
and MATH while fall behind on the other three as
shown in Figure 12.2 This shows that although
theoretically, self-evaluation is promising (shown
with oracle results in Figure 10), it is still lacking
in practice due to low accuracy.

2More details can be found at Appendix D.3.

6 Conclusion

In this paper, we examined the performance of
seven reasoning strategies on the often overlooked
metric of budget. We used budget metrics of
queries and tokens to reflect various ways LLMs
are used (LLM APIs or self-host). We identified
self-evaluation as an important aspect of many rea-
soning strategies and analyzed different prompting
strategies to have the model evaluate its genera-
tions. We then evaluated self-evaluation and found
that although self-evaluation could be promising at
improving performance while being cost-effective,
current LLMs are mostly incapable of doing that.
With the current popularity of reasoning strategies,
we think this more balanced budget-aware metric
is beneficial for the community and helps set the
correct trajectory for future LLM research.

7 Limitations

Our goal in the paper was to highlight the impor-
tance of different aspects of the generation bud-
get for LLMs that are often ignored in the recent
spate of reasoning strategies for LLMs. To that end,
we chose some representative reasoning strategies
and evaluated them on some common reasoning
tasks. However, due to both monetary and time con-
straints, we could not include even more reasoning
strategies or tasks. A more exhaustive evaluation
might reveal additional nuances which would be
interesting to explore.

19924

References
Yuntao Bai, Saurav Kadavath, Sandipan Kundu,

Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak,
Jon Ander Campos, Jun Shern Chan, Samuel R Bow-
man, Kyunghyun Cho, and Ethan Perez. 2023a. Im-
proving code generation by training with natural lan-
guage feedback. arXiv preprint arXiv:2303.16749.

Liting Chen, Lu Wang, Hang Dong, Yali Du, Jie Yan,
Fangkai Yang, Shuang Li, Pu Zhao, Si Qin, Saravan
Rajmohan, et al. 2023b. Introspective tips: Large lan-
guage model for in-context decision making. arXiv
preprint arXiv:2305.11598.

Wenhu Chen, Ming Yin, Max Ku, Yixin Wan, Xueguang
Ma, Jianyu Xu, Tony Xia, Xinyi Wang, and Pan Lu.
2023c. Theoremqa: A theorem-driven question an-
swering dataset. Conference on Empirical Methods
in Natural Language Processing.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, D. Song, and
J. Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. NeurIPS Datasets
and Benchmarks.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv: 2310.01798.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023a. Mistral 7b. arXiv
preprint arXiv: 2310.06825.

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang,
and Ge Li. 2023b. Self-planning code genera-
tion with large language model. arXiv preprint
arXiv:2303.06689.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315–5333.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and
Shuming Shi. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.
arXiv preprint arXiv:2305.19118.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su. 2023.
Deductive verification of chain-of-thought reasoning.
arXiv preprint arXiv:2306.03872.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

William Merrill and Ashish Sabharwal. 2023. The
expresssive power of transformers with chain of
thought. arXiv preprint arXiv:2310.07923.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic.
2021. Attention is turing-complete. Journal of Ma-
chine Learning Research, 22(75):1–35.

Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak,
Jun Shern Chan, Angelica Chen, Kyunghyun Cho,
and Ethan Perez. 2023. Training language mod-
els with language feedback at scale. arXiv preprint
arXiv:2303.16755.

Noah Shinn, Federico Cassano, Beck Labash, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu
Yao. 2023. Reflexion: Language agents with
verbal reinforcement learning. arXiv preprint
arXiv:2303.11366.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Gemini Team. 2023. Gemini: A family of highly ca-
pable multimodal models. arXiv preprint arXiv:
2312.11805.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher D Manning. 2023. Just ask for cali-
bration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human
feedback. arXiv preprint arXiv:2305.14975.

19925

https://doi.org/10.48550/arXiv.2305.12524
https://doi.org/10.48550/arXiv.2305.12524
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schel-
ten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:
2307.09288.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi
Lan, R. Lee, and Ee-Peng Lim. 2023. Plan-and-solve
prompting: Improving zero-shot chain-of-thought
reasoning by large language models. Annual Meeting
of the Association for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Kaiyu Yang, Jia Deng, and Danqi Chen. 2022. Gen-
erating natural language proofs with verifier-guided
search. arXiv preprint arXiv:2205.12443.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel
Deutch, and Jonathan Berant. 2023. Answering
questions by meta-reasoning over multiple chains
of thought. arXiv preprint arXiv:2304.13007.

Muru Zhang, Ofir Press, William Merrill, Alisa Liu,
and Noah A. Smith. 2023. How language model
hallucinations can snowball. CoRR, abs/2305.13534.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo
Li, and Yu Li. 2023. Progressive-hint prompting
improves reasoning in large language models. arXiv
preprint arXiv: 2304.09797.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, D. Schuurmans,
O. Bousquet, Quoc Le, and E. Chi. 2022. Least-
to-most prompting enables complex reasoning in
large language models. International Conference
on Learning Representations.

19926

https://doi.org/10.48550/arXiv.2305.04091
https://doi.org/10.48550/arXiv.2305.04091
https://doi.org/10.48550/arXiv.2305.04091
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.48550/arXiv.2305.13534
https://doi.org/10.48550/arXiv.2305.13534
https://doi.org/10.48550/arXiv.2205.10625
https://doi.org/10.48550/arXiv.2205.10625
https://doi.org/10.48550/arXiv.2205.10625

A Model/Dataset Details

A.1 Datasets

Here we describe the datasets we used in our ex-
periments.

GSM8K GSM8K consists of 8.5K grade school
math problems. There are 7.5K examples in the
training set and 1K in the testing set. Each prob-
lem is expressed in natural language and usually
involves multi-hop reasoning.

MATH MATH dataset collects 12.5K (7.5K
training, 5K testing) high-school level competitive
math problems in natural languages. This dataset
is considerably harder than GSM8K.

TheoremQA Theorem QA annotated 800 QA
pairs covering over 300 theorems spanning across
Math, EE&CS, Physics and Finance. We focus on
math reasoning hence we only used the subset that
covers math problems which contains 442 ques-
tions. This dataset is even harder than GSM8K
since these questions are college-level and involve
using theorems.

CSQA CSQA sourced commonsense reasoning
questions from crowd workers based on Concept-
Net. It has a total of 12,247 examples (9741,
1140,1140 for the size of train, dev, and test set
respectively).

HotpotQA HotpotQA collects 113K question-
answer pairs that require multi-hop reasoning.
There are 7,405 pairs in the test set.

Game of 24 Game of 24 is a mathematical
reasoning challenge, where the goal is to use 4
numbers and 4 arithmetic operations (+-*/) to
obtain 24. (Yao et al., 2023) collects 100 problems
from 4num.com which are ranked 901-1000 (it
is ranked from easy to hard, so these 100 are
relatively hard).

For each dataset above, we randomly sampled
100 samples from the test set for all of our experi-
ments. For Game of 24, since there are exactly 100
problems, we just use the same 100 problems as in
(Yao et al., 2023).

A.2 Model Hyperparameters

Since we want to maintain the diversity of reason-
ing processes, most of the results are obtained with
a temperature of 1 for GPT-3.5 and GPT-4. In our

preliminary study, we also tested with a tempera-
ture of 0.7 and 0.5 and observed the same conclu-
sion. The GPT-3.5 version we used is 0301. The
GPT-4 version we used is 0613.

For open-source models, we use a temperature
of 1 as well.

A.3 Inference
For all the GPT models, we use OpenAI API. For
all the open-source models, we either use Together
Endpoint3 or vllm4 for inference.

B Additional Result for Budget-aware
Performance Metrics

B.1 Budget Metrics on All Datasets
Budget metrics on all datasets are shown in Figure
3 and Appendix G.

B.2 Detailed description of Reasoning
strategies

1. Tree of thoughts generates a search tree to
search through possible chains of thought. It
maintains a chain of thought. At each node
in the tree, it generates a list of candidate
thoughts to be added to the chain and does
an evaluation to select the next thought to add.
It concludes by generating an answer at a leaf
node of the tree. The path in the tree from the
root to the leaf node forms a single chain of
thought, with each node corresponding to a
single thought. If the answer is deemed incor-
rect (as per another evaluator), it backtracks
to a previous node of the tree (unwinding the
chain of thought along the way) and selects
the next thought out of the candidate list of
thoughts to add to the chain of thought.

B.3 Self-Evaluation with CoT
All of our self-evaluations are done without CoT.
For both evaluation calibration and weighted con-
fidence self-consistency, we only generated one
token "yes" or "no" or one number. One may be
interested in whether CoT can improve the self-
evaluation performance and further boost the re-
sults. We tested this by extracting 160 CoT an-
swers from 80 questions from GPT-3.5, where
each question we extract 1 correct CoT answer
and 1 incorrect CoT answer. We then compared
the performance of direct evaluation versus CoT

3https://api.together.ai/playground/chat
4https://github.com/vllm-project/vllm

19927

then evaluation. For GPT-3.5-turbo-0301, the ac-
curacy increased from 50.625% to 54.375%. For
GPT-4-0613, the accuracy increased from 78.75%
to 79.375%. For GPT-4 the benefit from CoT is
very mariginal and we concluded that it is not worth
the extract cost from CoT. Hence we use the direct
evaluation for all of our self-evaluations.

Figure 10 that investigates the Reflexion tech-
nique (Shinn et al., 2023) reveals a similar trend
compared to the multi-agent debate with respect to
inference scale. We find that Reflexion relies heav-
ily on the oracle that helps the model determine
when the correct answer is encountered and stops
the generation early and returns that answer. This
is in contrast to strategies like SC. We demonstrate
the performance of Reflexion including baselines
that have access to oracle and without. For direct
comparison, it is more fair to compare strategies
within the group with access to an oracle, or with-
out. We find that in each group, inference scale is
a strong prediction on the performance.

C Mathematical Framework for
Self-Consistency

In many real-world reasoning tasks and decision-
making processes, the use of SC has emerged as a
powerful and often robust technique. Whether it’s
human experts forming a consensus or ensemble
methods in machine learning, the idea of aggregat-
ing multiple opinions to reach a final decision has
proven to be effective. The empirical success of
SC in various domains, such as classification, re-
gression, and human-driven decision-making, mo-
tivates a deeper examination into the underlying
principles that make it work so well.

For instance, in complex reasoning tasks where
individual models or experts might be uncertain,
the wisdom of the crowd often leads to improved
accuracy. SC can act as a regularization method,
mitigating the effects of overfitting or biases that
might be present in individual models. By combin-
ing multiple models or opinions, SC captures the
common patterns among them, enhancing general-
ization to unseen data.

In this work, we seek to understand what makes
SC an effective strategy, especially in the context
of reasoning tasks. We aim to analyze the mathe-
matical properties and probabilistic behavior that
underlie this mechanism, considering various sce-
narios such as binary choices or multi-choice prob-
lems. Through rigorous analysis, simulations, and

real-world datasets, we hope to derive insights that
explain why SC often leads to consistent improve-
ment and under what conditions it might fail.

The following section explores the mathemat-
ical explanation of SC, beginning with a simple
binomial distribution model and gradually extend-
ing to more complex multinomial and Dirichlet
distributions. By understanding the mathematical
characteristics of these distributions, we hope to
explain the empirical results observed in real-world
reasoning tasks, thereby contributing to the ongo-
ing efforts to harness the power of SC in a wide
range of applications.

C.1 Self-Consistency Results on Reasoning
Tasks

In our exploration of SC strategies applied to rea-
soning tasks, we conducted several experiments to
analyze the effectiveness and behavior of different
approaches. Figure 3 and Appendix G illustrate our
findings, including the results for different tasks.

The convergence patterns and the improvement
as the number of trials increases are shown for each
task, highlighting the impact of SC.

These visualizations demonstrate the potential of
SC in enhancing reasoning tasks, leading to more
robust and accurate solutions. In this section, we
will provide a theoretical framework that could
explain the gains from SC. Note that we use Self-
Consistency (SC) and Majority-Vote (MV) inter-
changeably.

C.2 Binomial

We seek to analyze the behavior of parallel sam-
pling with n trials with self-consistency or SC. In
this setup, given a set of problems {xi}, each prob-
lem’s answer prediction (whether it is correct or
not) can be modeled as a binomial distribution, as-
suming two choices (yes or no). Mathematically,
the probability mass function for each problem’s
answer is given by:

f(Xi = k) =

(
n

k

)
pki (1− pi)

n−k, (1)

where Xi corresponds to the correct answer of the
binomial distribution and pi represents the proba-
bility of a correct answer for the i-th problem.

We can calculate the probability that SC yields
the correct solution over n trials by calculating the
probability that Xi yields a value that is at least

19928

0 20 40 60 80 100
Number of Trials (n)

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900
Pr

ob
ab

ilit
y

of
 M

V
Be

in
g

Co
rre

ct
 O

ve
r D

at
as

et
Binomial with Beta Distribution (7,3)

(a)

0 20 40 60 80 100
Number of Trials (n)

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Pr
ob

ab
ilit

y
of

 M
V

Be
in

g
Co

rre
ct

 O
ve

r D
at

as
et

Binomial with Beta Distribution (2,5)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ob

ab
ilit

y
De

ns
ity

Beta Distribution for Different Alpha and Beta

alpha=2, beta=5
alpha=7, beta=3
alpha=5, beta=5

(c)

Figure 13: Convergence of self consistency under different beta distributions. Here, a Beta distribution that peaks at
high p indicates that there are a lot of data examples where the model can solve with high probabilities, which leads
to higher average self-consistency scores.

n/2. This is expressed as:

P (MV correct|xi) =
n∑

k=⌈n/2⌉

(
n

k

)
pki (1− pi)

n−k.

(2)
By plotting the probability of MV being correct

as a function of n, we observe that as n increases,
P (MV correct|xi) either goes to 0 or 1, depending
on whether pi > 0.5 or pi < 0.5 for this particular
problem. This is evident in the synthetic experi-
ment shown in Figure 14.

If pi is extreme (closer to 1 or 0), then the con-
vergence is fast, and the probability function can
be described as:

lim
n→∞

P (MV correct|xi) =
{
1 if pi > 0.5,

0 if pi < 0.5.
(3)

Figure 14: Probability of self consistency being correct
for a given problem with varying p.

On the other hand, if pi is close to 0.5, the conver-
gence is slow, reflecting the uncertainty associated
with an answer that is nearly equally likely to be
correct or incorrect.

Over the set of all problems we consider, we
place a beta distribution over pi and integrate
P (MV correct|xi) over the set of all problems
to obtain P (MV correct). This can be expressed
mathematically as:

P (MV correct)

=

∫ 1

0
P (MV correct|pi) · f(pi|α, β) dpi, (4)

where f(pi|α, β) is the probability density function
of the beta distribution with parameters α and β.

If we select a beta distribution where the mode
peaks beyond 0.5, then we find that P (MV correct)
increases as a function of n, albeit to a value less
than 1 as you can see in Figure 13. This behavior
explains our observation in real datasets directly.

This also implies that for datasets where major-
ity vote leads to consistent improvement, the dis-
tribution of pi needs to be peaked greater than 0.5.
There would also exist a set of problems where self-
consistency leads to lowered performance, specifi-
cally for the set of problems where pi < 0.5.

By carefully selecting the parameters of the beta
distribution, we can control the characteristics of
the majority voting process and gain insights into
the behavior of parallel sampling across various
datasets. This mathematical framework provides a
powerful tool for understanding and optimizing the
majority vote process in practical applications.

C.3 Generalization to multinomial
We can further generalize this setup by considering
each problem as being modeled by a multinomial
distribution with K choices. In this more general-
ized scenario, the distribution of probabilities over
problems can also be modeled by a Dirichlet distri-
bution.

19929

(a) (b)

Figure 15: Convergence of self consistency under different Dirichlet distributions with K = 3

Let p = (p1, p2, . . . , pK) be the probabili-
ties associated with the K choices, and let α =
(α1, α2, . . . , αK) be the parameters of the corre-
sponding Dirichlet distribution. The probability
of obtaining a correct majority vote for a given
problem is then:

P (MV correct|p) =
n∑

k=⌈n/2⌉
multinomial(k;n, p),

(5)
where the sum is taken over all combinations of k
votes that would result in a majority for the correct
choice.

The overall probability of obtaining a correct
majority vote, integrating over all problems, can be
expressed as:

P (MV correct) =
∫

P (MV correct|p)·f(p|α) dp,
(6)

where f(p|α) is the probability density function,
which can be modeled by the Dirichlet distribution.

Following a similar simulation to the binary
case, we find that the conclusions hold (see Fig-
ure 15). Specifically, if the mode of the Dirichlet
distribution is biased towards the correct choices,
the probability of the majority vote being correct
increases with n, and the set of problems where
self-consistency leads to lowered performance can
be characterized by the subset where the correct
choice probabilities are below certain thresholds.

This generalization to multinomial and Dirichlet
distributions adds complexity but also additional
flexibility in modeling the majority voting process,
making it applicable to a broader range of practical
scenarios.

19930

Method Correct Accuracy Incorrect Accuracy Total Accuracy

Yes or NO 0.911 0.461 0.707
Score 1-10 0.995 0.149 0.613

Probability 0.0-1.0 0.886 0.115 0.537

Table 2: Self-evaluation accuracy on MATH with three
methods

D Self-Evaluation

D.1 Self-Evaluation Method
Given an answer, there are multiple ways we can
prompt the LLM to evaluate that answer. Here we
examine 3 possibilities for self-evaluation

1. Binary5 - we ask the model to output Yes/No
as to whether the answer is correct. We do this
multiple times and take the fraction of times
the model answers Yes as the confidence of
the model in the answer.

2. Numerical confidence - we ask the model to
output a score between 1 and 10 to indicate its
confidence in the answer. We do this multiple
times and take the average as the confidence
of the model in the answer.

3. Confidence probability - similar to the previ-
ous strategy except now we prompt the model
to output a confidence between 0.0 and 1.0
and average it.

The evaluation result is shown in Figure 11 and
Table 2. The binary Yes or No is the most well
calibrated.

D.2 Self-evaluation is correlated with problem
difficulty

To get an understanding of whether models found
it easier to evaluate answers to easier problems, we
computed the following metric for a 100 problem
subset of the GSM8K dataset. For each problem
i, let aij be the jth answer. We had 20 sampled
answers per problem. We computed the fraction ci
of answers that were correct. Our assumption was
that ci indicates the difficulty of the problem – the
higher the value, the easier the problem. For each
answer aij , we obtained the binary self-evaluation
confidence as described in the beginning of this
section (we sampled the evaluation 5 times). We

5We also investigate a variant where we ask the model to
think step by step before evaluating. While we see a small
increase in performance for such a strategy, it also necessitates
a big increase in the token budget. Further analysis is in the
Supplement.

then computed the correlation ρi between the self-
evaluation confidence for the answers aij and the
binary vector indicating whether the answers were
correct or not. We then computed the correlation
between ρi and ci. We obtained a correlation of
0.347 with a p-value of 0.00026 – a clear indication
that an increase in the problem difficulty results in
the self-evaluation becoming more noisy. We re-
peated this experiment for MATH and TheoremQA
and obtained correlations of 0.31 and 0.42 with
p-values of 0.02 and 0.0025 respectively.

D.3 Self-Confident Self-Consistency (SC2)
Details

We take the answer which has the highest SC score
as the predicted answer. Formally the definition is

SC2
a =

∑

ai=a

confidence(ai) (7)

where confidence(ai) =
∑

vj
I(vj=Yes)

m where m
denotes the number of Binary evaluations vj sam-
pled. We apply this strategy to the MATH, Theo-
remQA (integer answer subset), TheoremQA (ran-
dom subset), and HotpotQA datasets. SC2 is con-
sistently on par or better than a simple majority
vote. The results are in Figure 16. SC2 achieves
non-trivial gain for math reasoning tasks but the
overall costs increase quite a bit. This prompts us
to inquire whether the achieved performance boost
justifies the additional costs incurred. However,
if we have the option to cache, then during self-
evaluation, previous questions and answers can be
cached and don’t need to be encoded again. This
can save a lot of budget and the new results would
look like Figure 12. We see non-trivial gains for the
math reasoning datasets. However, for TheoremQA
we see markedly smaller gains. We hypothesize
that the reason for this is that TheoremQA is a
harder dataset for the model. As we showed in the
previous section, self-evaluation ability decreases
as problem difficulty increases. GPT-4 shows a
self-evaluation ability of no better than random for
TheoremQA and thus we observe very small im-
provement. Overall, a budget-aware comparison of
reasoning methods is a healthy approach to com-
pare among vastly different methods.

D.3.1 Budget-efficiency
The strategy requires only a handful of extra tokens
(m additional tokens per answer corresponding to
the Yes/No) to execute (Figure 17). However, it
does require more encoded tokens (We can sample

19931

0 5k 10k
0.93

0.94

0.95

Ac
cu

ra
cy

GSM8k

0 5k 10k

0.55

0.60

0.65

MATH

0 5k 10k
Number of Tokens

0.35

0.40

0.45

TheoremQA

0 5k 10k
0.66

0.67

0.68

HotpotQA

0 5k 10k
0.90

0.91

0.92
CSQA

GPT-4 SC GPT-4 SC^2

Figure 16: SC2 with total tokens being the budget. There are sizable improvements in using our method SC2 on
math reasoning tasks.

10 20 30 40
Proposer Budget ($)

0.55

0.60

0.65

A
cc

ur
ac

y

GPT4 CoT SC GPT4 SC^2

0 2 4 6
Evaluator Budget ($)

0 20 40
Total Budget ($)

Figure 17: Separate proposer budget and evaluation budget on the dataset of MATH.

Method Top1 Best out of all Total Accuracy
ToT b=5 (GPT-4,GPT-4) 0.74 0.76 0.4
ToT b=3 (GPT-4,GPT-4) 0.77 0.77 0.49
ToT b=1 (GPT-4,GPT-4) 0.65 0.65 0.65

ToT eval once (GPT-4,GPT-4) 0.73 0.75 0.352
CoT 100 times (GPT-4) 0.17 0.56 0.0756

ToT Random Eval (GPT-4) 0.0 0.04 0.008
ToT b=5 (GPT-3.5,GPT-3.5) 0.25 0.35 0.11

CoT 100 times (GPT-3.5) 0.04 0.46 0.0252
ToT b=5 (GPT-4,GPT-3.5) 0.68 0.72 0.302
ToT b=5 (GPT-3.5,GPT-4) 0.3 0.38 0.156

Table 3: Various results on Game of 24. ToT refers to Tree-of-Thoughts. For ToT, the first model name in the
parenthesis refers to the model used to generate the candidate thoughts, while the second model name refers to the
model used to evaluate the candidate thoughts.

all of the m additional tokens as part of a single
query). Thus if one is self-hosting the model, this
strategy has only marginal additional cost.

D.3.2 Query vs Token budget
While we have discussed both query and token
budget in this paper, token budget has some notable
advantages as a metric.

Theoretical aspects Equivalence in the number
of queries can be arbitrarily far from the equiva-
lence in the amount of compute. Merrill and Sab-
harwal (2023) and Pérez et al. (2021) both show
that the expressive power of transformers can be
greatly enhanced by generating intermediate steps
in the computation (colloquially called chain of
thought). Merrill and Sabharwal (2023) shows that

without any bound in the number of steps, an
encoder-decoder architecture with only one en-
coder and three decoder layers can simulate a Tur-
ing Machine and thus a single query to such a Trans-
former can perform computations with arbitrarily
large amount of compute. Pérez et al. (2021) shows
that even for decoder-only transformers, allowing
for polynomial-sized chains of thought makes it
powerful enough to do, in a single query, any com-
putation a Turing Machine can do in polynomial
time. While the number of queries metric fails to
capture this, by contrast, the number of tokens met-
ric which is novel to our paper, does capture this
aspect as it by definition includes the length of the
generated thought as part of the compute.

19932

5 10 15 20
Number of Queries

0.40

0.45

0.50

0.55

AC
C

Dataset = MATH

GPT-3.5-Turbo-0125

CoT SC
AggregateCoT SC

(a) Query Budget

0 5000 10000
Number of Tokens

0.40

0.45

0.50

0.55

AC
C

Dataset = MATH

(b) Token Budget

Figure 18: We evaluated this custom reasoning strategy
on MATH with GPT-3.5-Turbo-0125 for 15 queries, so
in theory it should generate 15*4=60 responses. Here
is the result based on the number of queries metric (we
name the custom reasoning strategy AggregateCoT).
We can find that it never outperforms Chain-of-Thought
Self-Consistency with same amount of tokens. The
"improvement" previously was an unfair comparision
because the custome reasoning strategy will use much
more tokens per query.

Practical aspects The above is not just a theoret-
ical consideration. In Figure 18a we demonstrate, a
custom reasoning strategy that at first glance, seems
to outperform self-consistency – based on the num-
ber of queries metric. However, when we properly
take the holistic compute budget into account via
the number of tokens metric, we can see that self-
consistency is more token-efficient (Figure 18b).
That is, the number of tokens as a metric of bud-
get captures the nuances of resources required for
LLM reasoning more properly.

E More Ablation Results for Tree of
Thought

In Table 3 you can see more ToT results on the task
of Game of 24. Most of the results are shown in the
Figure 7. The table mainly shows the ablation for
when using GPT-3.5 as the proposer and GPT-4 as
the evaluator. We see that the performance is better

than using a GPT-3.5 as the evaluator but far below
the performance of using GPT-4 as the proposer.

F Terms and Licenses

GSM8K, MATH, TheoremQA, CSQA are under
the MIT license. HotpotQA is under the CC BY-
SA 4.0 License. All the datasets and models are
used for their intended use.

19933

G Results From More Models

G.1 MAD & Reflexion
Here we extend the results to a variety of models: GPT-3.5-Tubo-0125, Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023a), LLaMA-2-70b-chat(Touvron et al., 2023), and Mixtral-8x7B-Instruct-v0.1. Overall, we
find similar trends that self-consistency is extremely competitive compared to multi-agent debate and
reflexion, when evaluated in a budget-aware manner.

We observed that it is very consistent that CoT with self-consistency beat other reasoning strategies
across models with various sizes/training procedures. Multi-agent debate and Reflexion often decrease
performances with more budget. This is not surprising considering our analysis in Section 5. Note that
for LLaMA-2-70b-chat, we can’t run Mad and Reflexion to the same amount of budget as CoT with
self-consistency due to the context limit of around 4k. But the trend stays similar.

0 10 20

0.80

0.85

0.90

Ac
cu

ra
cy

gsm8k

0 10 20

0.40

0.45

0.50

0.55

MATH

0 10 20
Number of Queries

0.20

0.22

0.24

0.26

0.28
TheoremQA

0 10 20
0.55

0.60

0.65

HotpotQA

0 10 20

0.78

0.80

CSQA
GPT-3.5-Turbo-0125:

(a)

0 5k 10k

0.80

0.85

0.90

Ac
cu

ra
cy

0 5k 10k

0.40

0.45

0.50

0.55

0 5k 10k
Number of Tokens

0.20

0.22

0.24

0.26

0.28

0 5k 10k
0.55

0.60

0.65

0 5k 10k

0.78

0.80

CoT SC MAD 6agents SC Reflexion SC

(b)

Figure 19: GPT-3.5-0125: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Performance@Number
of Tokens for all 5 datasets.

19934

0 10 20

0.40

0.50

0.60

0.70

Ac
cu

ra
cy

gsm8k

0 10 20

0.10

0.15

0.20

MATH

0 10 20
Number of Queries

0.05

0.08

0.10

0.12

0.15
TheoremQA

0 10 20
0.10

0.20

0.30

0.40

0.50
HotpotQA

0 10 20
0.65

0.68

0.70

0.72

0.75
CSQA

Mistral-7B-Instruct-v0.2:

(a)

0 5k 10k

0.40

0.50

0.60

0.70

Ac
cu

ra
cy

0 5k 10k

0.10

0.15

0.20

0 5k 10k
Number of Tokens

0.05

0.08

0.10

0.12

0.15

0 5k 10k
0.10

0.20

0.30

0.40

0.50

0 5k 10k
0.65

0.68

0.70

0.72

0.75

(b)

Figure 20: Mistral-7B-Instruct-v0.2: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Perfor-
mance@Number of Tokens for all 5 datasets.

0 10 20
0.40

0.50

0.60

0.70

Ac
cu

ra
cy

gsm8k

0 10 20

0.10

0.15

0.20

MATH

0 10 20
Number of Queries

0.10

0.12

0.14

TheoremQA

0 10 20

0.50

0.55

0.60

HotpotQA

0 10 20

0.70

0.75

0.80
CSQA

LLaMA-2-70b-chat:

(a)

0 5k 10k
0.40

0.50

0.60

0.70

Ac
cu

ra
cy

0 5k 10k

0.10

0.15

0.20

0 5k 10k
Number of Tokens

0.10

0.12

0.14

0 5k 10k

0.50

0.55

0.60

0 5k 10k

0.70

0.75

0.80

CoT SC MAD 3agents SC Reflexion SC

(b)

Figure 21: LLaMA-2-70b-chat: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Perfor-
mance@Number of Tokens for all 5 datasets.

19935

0 10 20
0.60

0.70

0.80

0.90

Ac
cu

ra
cy

gsm8k

0 10 20

0.30

0.40

MATH

0 10 20
Number of Queries

0.20

0.25

TheoremQA

0 10 20

0.40

0.45

0.50

HotpotQA

0 10 20
0.73

0.75

0.78

0.80

0.83
CSQA

Mixtral-8x7B-Instruct-v0.1:

(a)

0 5k 10k
0.60

0.70

0.80

0.90

Ac
cu

ra
cy

0 5k 10k

0.30

0.40

0 5k 10k
Number of Tokens

0.20

0.25

0 5k 10k

0.40

0.45

0.50

0 5k 10k
0.73

0.75

0.78

0.80

0.83

(b)

Figure 22: Mixtral-8x7B-Instruct-v0.1: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Perfor-
mance@Number of Tokens for all 5 datasets.

19936

G.2 Three Other Reasoning Strategies
In this section, we will evaluate on three other reasoning strategies in the self-consistency family: Plan and
Solve (Wang et al., 2023), Least to Most Prompting (Zhou et al., 2022), and Progressive Hint Prompting
(Zheng et al., 2023).

Plan and Solve It asks LLMs to do some planning before solving a question. It is like an extension to
CoT. To plot the accuracy vs. budget figure, we increase the number of sampled CoTs to increase the
budget.

Least to Most Prompting This strategy prompts the model to decompose a question first and then
answer each subquestion before aggregating them to the final answer. To plot the accuracy vs. budget
figure, we also increase the number of sampled CoTs to increase the budget.

Progressive Hint Prompting This strategy uses previous answers as hints to generate next answer. To
plot the accuracy vs. budget figure, we increase the number of rounds of regeneration of answer given
hints.

All three new strategies here can be integrated with self-consistency seamlessly, since they are mostly
just variants of chain-of-thought. Based on the plots, it seems that normal self-consistency is still very
competitive, but different prompting styles can make a big difference. For some models and some datasets,
a strategy other than CoT converges to a higher performance. This is strong evidence that self-consistency
is a really budget-effective strategy.

0 10 20

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

gsm8k

0 10 20

0.35

0.40

0.45

0.50

0.55
MATH

0 10 20
Number of Queries

0.20

0.23

0.25

0.28

0.30
TheoremQA

0 10 20

0.56

0.58

0.60

HotpotQA

0 10 20
0.75

0.76

0.77

0.78

0.79

CSQA
GPT-3.5-Turbo-0301:

(a)

0 5k 10k

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

0 5k 10k

0.35

0.40

0.45

0.50

0.55

0 5k 10k
Number of Tokens

0.20

0.23

0.25

0.28

0.30

0 5k 10k

0.56

0.58

0.60

0 5k 10k
0.75

0.76

0.77

0.78

0.79

CoT SC Plan and Solve SC Least to Most SC Progressive Hints SC

(b)

Figure 23: GPT-3.5-0301: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Performance@Number
of Tokens for all 5 datasets.

19937

0 10 20
0.75

0.80

0.85

0.90

Ac
cu

ra
cy

gsm8k

0 10 20
0.40

0.45

0.50

0.55

MATH

0 10 20
Number of Queries

0.22

0.24

0.26

0.28
TheoremQA

0 10 20

0.62

0.64

0.66
HotpotQA

0 10 20

0.79

0.80

0.81

0.82
CSQA

GPT-3.5-Turbo-0125:

(a)

0 5k 10k
0.75

0.80

0.85

0.90

Ac
cu

ra
cy

0 5k 10k
0.40

0.45

0.50

0.55

0 5k 10k
Number of Tokens

0.22

0.24

0.26

0.28

0 5k 10k

0.62

0.64

0.66

0 5k 10k

0.79

0.80

0.81

0.82

CoT SC Plan and Solve SC Least to Most SC Progressive Hints SC

(b)

Figure 24: GPT-3.5-0125: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Performance@Number
of Tokens for all 5 datasets.

0 10 20
0.40

0.50

0.60

0.70

Ac
cu

ra
cy

gsm8k

0 10 20

0.10

0.15

0.20

MATH

0 10 20
Number of Queries

0.05

0.10

0.15

TheoremQA

0 10 20

0.40

0.45

0.50

HotpotQA

0 10 20
0.65

0.68

0.70

0.72

0.75
CSQA

Mistral-7B-Instruct-v0.2:

(a)

0 5k 10k
0.40

0.50

0.60

0.70

Ac
cu

ra
cy

0 5k 10k

0.10

0.15

0.20

0 5k 10k
Number of Tokens

0.05

0.10

0.15

0 5k 10k

0.40

0.45

0.50

0 5k 10k
0.65

0.68

0.70

0.72

0.75

CoT SC Plan and Solve SC Least to Most SC Progressive Hints SC

(b)

Figure 25: Mistral-7B-Instruct-v0.2: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Perfor-
mance@Number of Tokens for all 5 datasets.

19938

0 10 20

0.50

0.60

0.70

0.80

Ac
cu

ra
cy

gsm8k

0 10 20
0.10

0.15

0.20

MATH

0 10 20
Number of Queries

0.08

0.10

0.12

0.15

0.17
TheoremQA

0 10 20

0.55

0.58

0.60

0.62
HotpotQA

0 10 20

0.70

0.75

0.80
CSQA

LLaMA-2-70b-chat:

(a)

0 5k 10k

0.50

0.60

0.70

0.80

Ac
cu

ra
cy

0 5k 10k
0.10

0.15

0.20

0 5k 10k
Number of Tokens

0.08

0.10

0.12

0.15

0.17

0 5k 10k

0.55

0.58

0.60

0.62

0 5k 10k

0.70

0.75

0.80

CoT SC Plan and Solve SC Least to Most SC Progressive Hints SC

(b)

Figure 26: LLaMA-2-70b-chat: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Perfor-
mance@Number of Tokens for all 5 datasets.

0 10 20
0.60

0.70

0.80

0.90

Ac
cu

ra
cy

gsm8k

0 10 20
0.25

0.30

0.35

0.40

0.45
MATH

0 10 20
Number of Queries

0.15

0.20

0.25

TheoremQA

0 10 20
0.40

0.45

0.50

0.55
HotpotQA

0 10 20
0.76

0.78

0.80

0.82
CSQA

Mixtral-8x7B-Instruct-v0.1:

(a)

0 5k 10k
0.60

0.70

0.80

0.90

Ac
cu

ra
cy

0 5k 10k
0.25

0.30

0.35

0.40

0.45

0 5k 10k
Number of Tokens

0.15

0.20

0.25

0 5k 10k
0.40

0.45

0.50

0.55

0 5k 10k
0.76

0.78

0.80

0.82

CoT SC Plan and Solve SC Least to Most SC Progressive Hints SC

(b)

Figure 27: Mixtral-8x7B-Instruct-v0.1: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Perfor-
mance@Number of Tokens for all 5 datasets.

19939

