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Abstract
Large Language Models (LLMs) have shown
promising performance in code generation.
However, how to reliably evaluate code gener-
ated by LLMs remains an unresolved problem.
This paper presents CODEJUDGE , a code
evaluation framework that leverages LLMs to
evaluate the semantic correctness of generated
code without the need for test cases. We inves-
tigate different ways to guide the LLM in per-
forming “slow thinking” to arrive at an in-depth
and reliable evaluation. We experimented with
four LLMs as evaluators on four code genera-
tion datasets and five programming languages.
The results show that CODEJUDGE signifi-
cantly outperformed existing methods in most
settings. Furthermore, compared with a SOTA
GPT-3.5-based code evaluation method, CODE-
JUDGE achieved better results even when using
a much smaller model, Llama-3-8B-Instruct.
Our code and datasets are available on GitHub
https://github.com/VichyTong/CodeJudge.

1 Introduction

There is an increasing interest in leveraging Large
Language Models (LLMs) to generate code (Roz-
ière et al., 2023; Shen et al., 2023). However, re-
liably evaluating LLMs on code generation tasks
remains a challenging problem (Evtikhiev et al.,
2023). Test-based methods, such as measuring
pass@k (Kulal et al., 2019; Chen et al., 2021), rely
on manually written test cases to evaluate code
quality. This reliance presents a significant limita-
tion, since many tasks do not come with test cases
or only have insufficient test cases that miss corner
cases (Liu et al., 2023a). Moreover, it is challeng-
ing to write test cases for many coding tasks, such
as object serialization and web scraping, since they
require extensive effort to construct and configure
test stubs and mock objects.

When there are no test cases, existing work often
relies on token-based metrics, such as BLEU (Pa-
pineni et al., 2002), ROUGE-L (Lin, 2004) and

CodeBLEU (Ren et al., 2020), to evaluate model-
generated code. However, these metrics do not
account for cases where model-generated code is
semantically equivalent to the ground truth while
having syntactic variations, e.g., using a while loop
instead of a for loop, following different naming
conventions, etc. In particular, Evtikhiev et al.
(2023) shows a statistically significant disagree-
ment on code assessment between human judges
and these token-based metrics.

Recent studies show that LLMs are promis-
ing alternatives to human evaluators in different
tasks (Liu et al., 2023b; Zheng et al., 2023a; Chan
et al., 2024). Inspired by these findings, we pro-
pose an LLM-based code evaluation framework
called CODEJUDGE . CODEJUDGE supports two
kinds of assessment: (1) determines whether the
model-generated code is correct or not, and (2) esti-
mates to what extent the generated code is aligned
with user-intended code. While the former is the
typical way of evaluating LLMs in code generation,
we argue that the latter provides a more informa-
tive evaluation, since LLMs often generate partially
correct code, which provides a good starting point
or hints to developers (Vaithilingam et al., 2022;
Barke et al., 2023). Thus, it is useful to account for
partial correctness and the severity of code errors
when evaluating LLMs for code generation.

We design two methods to guide the LLM to
perform “slow thinking” (Kahneman, 2011) for re-
liable code evaluation. For the first assessment,
CODEJUDGE instructs the LLM to perform a step-
by-step analysis of the code functionality and then
asks it to summarize the analysis results into a
binary decision. For the second assessment, CODE-
JUDGE provides the LLM with a taxonomy of com-
mon coding errors and instructs the LLM to identify
what types of errors the generated code contains.
Then, it computes a code correctness score based
on the severity of identified errors. Notably, our
framework does not require any test cases or any
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fine-tuning of backbone models in code evaluation.
We evaluate CODEJUDGE on five programming

languages—Java, C++, Python, JavaScript, Go—
and four datasets—HumanEval-X (Zheng et al.,
2023b), CoNaLa (Yin et al., 2018; Evtikhiev et al.,
2023), APPS (Hendrycks et al., 2021), and Big-
CodeBench (Zhuo et al., 2024). Following prior
work on text generation evaluation (Zhang et al.,
2020; Yuan et al., 2021) and code generation eval-
uation (Zhou et al., 2023; Yuan et al., 2021), we
adopt Kendall’s τ coefficient and Spearman’s ρ to
measure the statistical correlation between CODE-
JUDGE’s assessment and the ground truth, which
provides a robust measurement for CODEJUDGE’s
performance. For the first assessment, we also mea-
sure the accuracy of the binary decision made by
CODEJUDGE as a more intuitive metric for CODE-
JUDGE’s performance.

We experiment with four LLMs as code evalu-
ators and compare CODEJUDGE with nine exist-
ing methods, including ICE-Score (Zhuo, 2024), a
state-of-the-art code evaluation method based on
GPT-3.5-Turbo. For all four LLMs, we observe
that CODEJUDGE achieves significantly higher cor-
relations (12.1%-41.8%) than existing methods
in most settings. Even when using a relatively
small model (Llama-3-8B-Instruct), CODEJUDGE

still outperforms ICE-Score, which uses GPT-3.5-
Turbo. CODEJUDGE also achieves a high accu-
racy (80.56% on average) when directly predicting
whether a generated code is correct or not. Notably,
when the ground-truth code is not available for
comparison, CODEJUDGE still achieves reasonable
performance (e.g., 0.502 Kendall’s τ coefficient1

and 73.13% accuracy) and outperforms all existing
methods that rely on references. This demonstrates
that CODEJUDGE can effectively guide LLMs to
exert their reasoning capabilities to examine the
correctness of code.

2 Background and Related Work

2.1 Problem Formulation

The objective of this work is to evaluate the seman-
tic correctness of machine-generated code. The
task of code generation is formulated as generating
a code snippet c based on a given task description
t. We define an evaluation method as a function
f(c, t).

Code evaluation is typically treated as a binary
1A correlation coefficient above 0.5 is often interpreted as

strong correlation (Cohen, 1988).

classification task (Chen et al., 2021). The evalua-
tion method f simply determines whether the gen-
erated code is correct or not (i.e., f(c, t) ∈ {0, 1}).
For instance, test-based evaluation treats the gen-
erated code as correct if it passes all test cases.
Otherwise, the code is considered wrong.

Recent studies indicate that code evaluation
should not be simply treated as a yes-or-no ques-
tion (Vaithilingam et al., 2022; Barke et al., 2023).
In practice, LLMs often generate code that is not
fully correct, e.g., not handling corner cases, miss-
ing one computation step, etc. Despite these errors,
many developers find the generated code a good
starting point compared with writing code from
scratch, since they can fix the errors by changing
a few lines of code or at least get some inspiration.
Thus, it would be helpful if the evaluation method
f could measure to what extent the generated code
deviates from the user-intended code based on the
task description (i.e., f(c, t) ∈ R).

Evaluation without reference code. Many eval-
uation methods assume that the correct code is
available as the ground truth so that they can
directly compare the generated code with the
ground-truth code. All token-based methods,
such as CodeBLEU (Ren et al., 2020) and Code-
BERTScore (Zhou et al., 2023), fall into this cat-
egory. However, this assumption does not always
hold in practice, especially in online settings. In
many cases, human programmers can make a good
assessment only through code inspection and rea-
soning based on their programming knowledge,
without the need for the ground truth. Since LLMs
have been demonstrated as promising alternatives
to human judges (Liu et al., 2023b; Zheng et al.,
2023a; Chan et al., 2024), it is appealing to in-
vestigate whether LLMs can make accurate code
assessments without reference code. In this work,
we consider code evaluation without references as
a special and more challenging evaluation task.

Challenges. The challenge of code evaluation is
two-fold. First, the generated code may have many
syntactic variations compared with the correct code
while being semantically equivalent, e.g., using dif-
ferent variable names, using a different ordering
of independent program statements, using a for
loop instead of a while loop, etc. Second, there
can be multiple alternative solutions for a code gen-
eration task. For instance, for the task of sorting in-
tegers, there are many different sorting algorithms
that have drastically different implementations. In
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Task Description: Alphabetize letters in each word of a
sentence, keeping the words and spaces in the same order.

def anti_shuffle(s):
return ' '.join([

''.join(sorted(list(i)))
for i in s.split(' ')

])

(a) Reference code (e.g., ground truth)
def anti_shuffle(s):

return ' '.join([
sorted(list(i))
for i in s.split(' ')

])

(b) Partially correct code
def anti_shuffle(s):

pass

(c) Completely useless code
def anti_shuffle(s):

return ' '.join([
''.join(sorted(list(word)))
for word in s.split(' ')

])

(d) Correct code with syntactic variations
def anti_shuffle(s):

def sort(word):
return ''.join(sorted(list(word)))

word_list = []
current_word = ""
for i in range(len(s)):

if s[i] != " ":
current_word += s[i]

else:
word_list.append(sort(current_word))
current_word = ""

word_list.append(sort(current_word))
return ' '.join(word_list)

(e) Correct code with a different implementation

Figure 1: An intuitive example of different types of code
solving a sentence sorting problem.

the following section, we will illustrate these chal-
lenges using existing code evaluation methods on
a running example in Figure 1.

2.2 Existing Evaluation Methods

Existing evaluation methods for code generation
can be categorized into four categories: test-based,
token-based, embedding-based, and more recently,
LLM-based methods.
Test-based Methods. Pass@k (Kulal et al., 2019)
is defined as the percentage of code generation
tasks where at least one of the top k code samples
generated for a task passes the unit tests of the
task. Chen et al. (2021) then introduces an unbi-
ased version of pass@k to reduce variances, which
is widely used to evaluate code generation mod-
els these days. However, since many tasks lack a
comprehensive set of test cases, this often leads to

incorrect code snippets incidentally passing given
tests. To address this issue, EvalPlus (Liu et al.,
2023a) augments the test cases of a given task us-
ing LLMs and mutation-based strategies. However,
this method still relies on hand-written test cases
as the initial seeds.

Token-based Methods. Conventional methods for
evaluating machine translation or text generation
have been adopted for code evaluation. Basically,
these methods compute the token-level similarity
between the generated text and the ground-truth
text to measure the generation quality. For in-
stance, BLEU (Papineni et al., 2002) calculates
modified n-gram precision and includes a brevity
penalty. ROUGE-L (Lin, 2004) computes se-
quence n-grams based on the longest common sub-
sequence. METEOR (Denkowski and Lavie, 2014)
relies on the recall and precision of unigrams, while
also considering the order of the matched words.
ChrF (Popović, 2015) calculates character-level n-
gram precision and recall.

CodeBLEU (Ren et al., 2020) and RUBY (Tran
et al., 2019) extend traditional token-based methods
for code evaluation. CodeBLEU incorporates the
similarity of data-flow graphs and abstract syntax
trees into the calculation. RUBY calculates simi-
larity based on three representation levels of code:
text, AST, and the program dependence graph.

Embedding-based Method. Zhou et al.
(2023) proposed CodeBERTScore based on a
machine translation evaluation method called
BERTScore (Zhang et al., 2020). CodeBERTScore
first encodes the generated code and reference code
using a fine-tuned CodeBERT (Feng et al., 2020)
model. Then, it computes a cosine similarity matrix
between the embeddings, based on which Code-
BERTScore calculates precision and recall by tak-
ing the maximum across rows and columns and
averaging the results. CodeBERTScore employs F1

and F3 scores to represent the alignment between
the generated code and reference code.

LLM-based Method. To the best of our knowl-
edge, ICE-Score (Zhuo, 2024) is the only work that
also adopts LLMs for code evaluation. ICE-Score
performs multi-dimensional evaluation (Zhong
et al., 2022; Liu et al., 2023b; Fu et al., 2023) and
instructs the LLM to predict an evaluation score
from 0 to 4 based on the definition of an evalua-
tion criterion. Unlike token-based and embedding-
based methods, ICE-Score does not require the
availability of the reference code. Furthermore,
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Fig. 1(b) Fig. 1(c) Fig. 1(d) Fig. 1(e)
Test-based Methods

pass@1 0 0 1 1
Token-based Methods

BLEU 0.779 0.010 0.858 0.231
ROUGE-L 0.914 0.267 0.947 0.431
chrF 0.852 0.266 0.891 0.466
CodeBLEU 0.852 0.052 0.983 0.851
RUBY 0.811 0.364 0.990 0.533
METEOR 0.846 0.164 0.947 0.705

Embedding-based Methods
CodeBERTScoreF1 0.990 0.796 0.976 0.800
CodeBERTScoreF3 0.988 0.746 0.976 0.841

LLM-based Methods
ICE-Score 3.0 0 4.0 3.0
w/o REF 2.0 2.0 3.5 3.0

CODEJUDGEA.S. 0 0 1 1
w/o REF 0 0 1 1
CODEJUDGEF.L. 0.50 0 1.00 1.00
w/o REF 0.50 0 1.00 1.00

Table 1: Scores assigned by various code evaluation
methods to the code snippets shown in Figure 1, where
Fig. 1(b) is partially correct, Fig. 1(c) is completely
useless, Fig. 1(d) is correct but with syntactic variations,
and Fig. 1(e) is correct but implemented differently.
CODEJUDGEA.S.and CODEJUDGEF.L.correspond to the
analyze then summarize method and taxonomy-guided
fault localization method described in Section 3.1 and
Section 3.2, respectively.

their evaluation shows that including the reference
code in the prompt does not significantly improve
ICE-Score’s performance.
Drawbacks of Existing Methods. Table 1 shows
the evaluation scores computed by different meth-
ods for the four types of code solutions in Figure 1.
We made several interesting observations about the
alignment between evaluation scores and the actual
correctness of the generated code.

First, token-based and embedding-based meth-
ods assign higher scores to partially correct code
(Figure 1(b)) compared to correct code with a dif-
ferent implementation (Figure 1(e)). This indicates
that these methods face challenges in appropriately
scoring code that is correct but syntactically very
different.

Second, without the reference code, ICE-Score
cannot differentiate between partially correct code
(Figure 1(b)) and completely useless code (Figure
1(c)), as it assigns both a score of 2.0. Adding the
reference code to ICE-Score addresses this prob-
lem but still cannot distinguish between partially
correct code (Figure 1(b)) and correct code with a
different implementation (Figure 1(e)), assigning
both a score of 3.0. These drawbacks may stem
from the prompt design of ICE-Score, which sim-

ply asks the LLM to predict a score based on the
definition of a criterion. In this work, we inves-
tigate better ways to exert the inherent reasoning
capabilities of LLMs for reliable code evaluation.

3 CODEJUDGE

Our key insight is to guide LLMs to perform “slow
thinking” (Kahneman, 2011) in code evaluation,
instead of predicting an evaluation score in one
step. We design two methods for the two kinds of
code evaluation assessment defined in Section 2.1.

3.1 Analyze then Summarize
For the binary evaluation task, we decompose the
evaluation task into two subtasks: analysis and sum-
marization, as illustrated in Figure 2. Specifically,
the analysis task provides a step-by-step evalua-
tion guideline and asks the LLM to identify the
required functionalities from the task description,
examine the logic of the generated code, and report
any requirement that is not fulfilled. Optionally, a
reference solution can be added to the prompt to
aid the analysis. Subsequently, the summarization
task asks the LLM to check the analysis report and
decide whether the code is correct or not.

This design is inspired by how developers per-
form code review in practice. Instead of directly
arriving at a decision, developers typically do a
round of careful analysis of task requirements and
code functionality and then decide whether there is
any inconsistency. By explicitly asking the LLM
to generate a detailed analysis report and double-
check it, CODEJUDGE forces the LLM to exert its
reasoning capabilities and perform a more careful
analysis, instead of making a quick decision.

3.2 Taxonomy-Guided Fault Localization
To decide to what extent a generated code deviates
from the user-intended code, we augment the anal-
ysis step in the previous section by supplementing
the LLM with a taxonomy of common inconsisten-
cies in LLM-generated code and instructing it to
identify any potential inconsistencies. As discussed
in Section 2.1, different kinds of inconsistencies
have different kinds of consequences. Some errors
are simple and easy to fix, while others are more
severe. Therefore, we incorporate the severity of
each identified inconsistency into the summariza-
tion step to calculate the correctness score. We
explain the details below.
A Taxonomy of Common Inconsistencies. To
design the taxonomy, we manually inspected code
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Task Description: 
Alphabetize letters in each word of a sentence, keeping the words and spaces in the same order.
Reference Code:
def anti_shuffle(s):
    return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])
Code Snippet:
def anti_shuffle(s):
    return ' '.join([sorted(list(i)) for i in s.split(' ')])

[{
  "inconsistency": "Logic error because   
                    the sorted function   
                    returns a list, not   
                    a string",
  "severity": "major"
}]

...
Output your answer in a JSON format list.
a) If the code snippet is correct, output:
[{"inconsistency": "None", "severity":
"Negligible"}].
b) If the code snippet is incorrect, output
the identified inconsistencies and their
severity according to the catalog of code
inconsistencies.

{Input}

Taxonomy of Common Inconsistencies:
1. Missing dependency declarations:
Negligible
...

The code snippet is wrong because it does
not join the sorted letters back into words.
It returns a list of sorted characters for
each word instead of a string.

...
Your task is to check if the code snippet
covers the required functionalities. 
Evaluation Steps:
...

{Input}

You will be provided with an analysis 
result of a code snippet.
If the analysis believes that the code
snippet is correct, output: "Yes".
Otherwise, output: "No".
"The code snippet is wrong because it
does not join the sorted letters back into
words. It returns a list of sorted characters
for each word instead of a string."

No

Input Example

Taxonomy-Guided Fault LocalizationAnalyze then Summarize

Final Decision: 0.5 / 1.0 (1 Major inconsistency identified)Final Decision: 0 (incorrect code)

Identify inconsisten-
cies in the code
snippet and classify
their severities.

Analyze the semantic
correctness of the
code snippet and
provide reasons.

Summarize the output
of a1.

b1a1

a2

b1

a1

a2

Model Output

Model Input

Workflow

Figure 2: An overview of CODEJUDGE. Full prompts can be found in Appendix F.

snippets generated by different LLMs in different
programming languages and also referred to the lit-
erature on code error analysis (Hristova et al., 2003;
Weimer and Necula, 2004; Chabbi and Mellor-
Crummey, 2012; Chen et al., 2018). We summa-
rized eight distinct types of frequent code incon-
sistencies and categorized them into four severity
levels based on their impact on the semantic cor-
rectness of the generated code, as shown in Table 2.

• Negligible. Code inconsistencies in this cat-
egory have little impact on semantic correct-
ness. Specifically, we consider missing import
statements or exception handling not semanti-
cally wrong, since the code generated in such
cases indeed achieves the functionality in the
task description while not being perfect.

• Small. We classify input handling as small
due to their limited impact on the core func-
tionality of the code snippet and the straight-
forward nature of their correction.

• Major. Logical errors directly affect the se-

mantic correctness of the code, leading to in-
correct outputs. These errors are considered to
have a major impact on semantic correctness.

• Fatal. Code generation models sometimes
hallucinate function calls or variable names
that are never defined in the code. Further-
more, in many cases, they generate code with
incomplete expressions and statements. These
issues often lead to runtime exceptions or com-
pilation errors that crash the program execu-
tion. Thus, we considered them as fatal errors.

Given the potential inconsistencies identified by
the LLM, we aggregate them via a weighted sum
based on their severity levels to compute the final
score. To better compare with other methods, we
normalize the score to the range of [0, 1]. More
details can be found in Appendix B.
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Type Description
Negligible

Alternative Using different methods or algo-
rithms to solve the problem.

Dependency Missing import statements.

Error Handling No exception handling for unex-
pected events, e.g., invalid inputs.

Efficiency Including inefficient or unneces-
sary statements.

Small
Input Handling Failing to handle edge cases.

Major
Logic Error Containing logical errors.

Fatal

Declaration Using undefined functions or vari-
ables.

Incompletion Incomplete code.

Table 2: The catalog of code inconsistencies.

4 Experiments

4.1 Datasets

As described in Section 2.1, CODEJUDGE makes
two kinds of code assessment. Following Zhuo
(2024), we use HumanEval-X (Zheng et al., 2023b)
for the binary assessment task and CoNaLa (Yin
et al., 2018) for the code deviation assessment task.
The rationale is that HumanEval-X includes test
cases for each task so we can easily obtain binary
correctness labels based on test results. By con-
trast, CoNaLa (Yin et al., 2018) does not have test
cases. Instead, it provides human-annotated code
usefulness scores in the range of 0 to 4, which were
obtained via crowdsourcing.

Since HumanEval-X only includes introductory
coding tasks, we also include two more challeng-
ing datasets, APPS (Hendrycks et al., 2021) and
BigCodeBench (Zhuo et al., 2024). Compared with
HumanEval-X, APPS includes competition-level
coding problems and BigCodeBench includes more
complex instructions and more API calls. For in-
stance, Codex achieves a pass@1 rate of 28.81%
on HumanEval, but only 0.92% on APPS (Le
et al., 2022; Chen et al., 2021). Similarly, GPT-4o
achieves a pass@1 rate of 90.2% on HumanEval
but only 56.1% on the BigCodeBench (Anthropic,
2024; Zhuo et al., 2024). Since both APPS and Big-
CodeBench provide only test cases, we use them
for the binary assessment task.

We apply our analyze then summarize method
for binary assessment task datasets (HumanEval-X,
APPS, and BigCodeBench) and Taxonomy-Guided

Fault Localization method for the code deviation
assessment task dataset (CoNaLa). We briefly de-
scribe each dataset below.

HumanEval-X (Zheng et al., 2023b) is a multi-
language version of HumanEval, a popular code
generation benchmark originally from the Codex
paper (Chen et al., 2021). It contains 164 introduc-
tory coding tasks, each of which includes a natural
language task description, some test cases, and
a human-created reference. We evaluate CODE-
JUDGE on five programming languages in the ini-
tial release of HumanEval-X, including Python,
C++, Java, JavaScript, and Go.2

CoNaLa (Yin et al., 2018) is a Python code gen-
eration benchmark with 472 tasks collected from
StackOverflow. We use the human annotation col-
lected by Evtikhiev et al. (2023) as ground truth
for the code deviation assessment. For each task,
Evtikhiev et al. (2023) asked experienced software
developers to grade a score of usefulness between
0 and 4 for the generated code snippets from five
different models.

APPS (Hendrycks et al., 2021) is a Python code
generation benchmark. It includes introductory-
level problems, interview-level, and competition-
level coding tasks collected from code competition
websites. We randomly sampled 100 competition-
level tasks to form a challenging dataset.
BigCodeBench (Zhuo et al., 2024) is a recently
released code generation dataset in Python with
1,140 practical and challenging programming tasks.
This dataset challenges the ability of LLMs to in-
voke multiple function calls from various libraries.

4.2 Evaluation Metrics

Statistical Correlations. Recent studies have used
statistical correlation metrics, such as Kendall’s
τ coefficient (τ ) and Spearman’s rank correlation
coefficient (rs), as a robust way to measure the
correlation between code evaluation results and
the ground truth (Zhou et al., 2023; Zhuo, 2024).
Thus, we adopt these correlation metrics to evaluate
CODEJUDGE on both kinds of assessment tasks.

Accuracy. For the binary classification task, we
also measure the correctness prediction accuracy
of CODEJUDGE as a more intuitive metric.

2We tried other languages such as Rust in the latest version
of HumanEval-X but encountered issues when running their
test cases. Thus, we chose not to evaluate those languages.
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Method
HumanEval-X CoNaLa APPS BigCodeBench
τ rs τ rs τ rs τ rs

EXISTING METHODS

BLEU 0.306 0.373 0.437 0.485 0.035 0.042 0.072 0.089
ROUGE-L 0.318 0.388 0.450 0.501 0.035 0.043 0.117 0.143
METEOR 0.357 0.436 0.412 0.463 0.085 0.104 0.247 0.302
chrF 0.328 0.400 0.457 0.514 0.036 0.044 0.167 0.205
CodeBLEU 0.362 0.442 0.292 0.332 0.135 0.164 0.173 0.212
RUBY 0.309 0.376 0.332 0.373 0.092 0.113 0.119 0.146
CodeBERTScoreF1 0.339 0.414 0.499 0.558 -0.003 -0.003 0.048 0.059
CodeBERTScoreF3 0.372 0.454 0.485 0.542 0.008 0.010 0.133 0.163
VANILLA 0.570 0.570 0.357 0.386 0.103 0.103 0.251 0.251
VANILLA w/o REF 0.390 0.390 0.465 0.499 -0.058 -0.058 0.131 0.131
ICE-Score 0.475 0.492 0.253 0.271 0.224 0.224 0.321 0.330
ICE-Score w/o REF 0.349 0.363 0.462 0.491 0.140 0.143 0.117 0.118

CODEJUDGE 0.612 0.612 0.457 0.478 0.354 0.354 0.392 0.392
CODEJUDGE w/o REF 0.502 0.502 0.538 0.562 0.153 0.153 0.317 0.317

Table 3: The results on four datasets when using GPT-3.5-Turbo-1106 as the evaluator. The best results are in bold.
Due to space limitations, tables with standard deviation and results of each language are shown in Appendix E.

4.3 Comparison Baselines

We employ the six token-based evaluation meth-
ods, the embedding-based method, and the recent
LLM-based evaluation method described in Sec-
tion 2.2 as our comparison baselines. We also intro-
duce a vanilla LLM-based method as the baseline.
VANILLA directly prompts LLMs to determine the
binary semantic correctness of generated code. Ta-
ble 16 and Table 17 show the prompts used by
VANILLA for the two kinds of assessment.

Notably, all token-based and embedding-based
methods require the existence of reference code.
For LLM-based methods, we evaluate them with
and without reference code.

4.4 Experiment Setup

We experiment with four different LLMs as the
LLM evaluator in CODEJUDGE, including GPT-
3.5, CodeLlama-Instruct (34B), Llama-3-Instruct
(8B), and Llama-3-Instruct (70B). For GPT-3.5,
we used the GPT-3.5-Turbo-1106 API. For other
models, we run them locally on eight A100-80GB
GPUs. Since the cost of prompting GPT-3.5 is
high, we only ran the experiments with GPT-3.5
once and set the temperature to 0 and top_p to 1
to obtain consistent outputs. For other models, we
set the temperature to 0.4 and top_p to 0.9. We
repeat the experiments three times to account for
the randomness in model inference.

Method HE-X APPS BCB
VANILLA 75.96 52.67 65.79
VANILLA w/o REF 65.15 40.33 41.67
ICE-Score 70.91 60.00 66.93
ICE-Score w/o REF 62.47 52.00 46.49

CODEJUDGE 80.56 68.33 74.56
CODEJUDGE w/o REF 73.13 57.00 54.56

Table 4: Average accuracies (%) on HumanEval-X,
APPS, and BigCodeBench using GPT-3.5-Turbo.

4.5 Experiment Results
Given the large number of experiments in this eval-
uation, we first report the results on HumanEval-X
and CoNaLa and then report the results on the more
challenging APPS and BigCodeBench datasets.
Then we report the impact of different factors, in-
cluding programming languages, LLM evaluators,
and prompt design. In the end, we report a failure
analysis of 600 cases where CODEJUDGE makes
the wrong prediction.
Statistical Correlation with Ground Truth. Ta-
ble 3 shows the correlations between the code evalu-
ation results of each method and the ground truth on
HumanEval and CoNaLa. CODEJUDGE achieves
the highest correlations in all settings. For instance,
CODEJUDGE achieves 0.612 and 0.562 Spearman’s
coefficient on HumanEval-X and CoNaLa. Note
that a correlation coefficient above 0.5 is often in-
terpreted as a strong correlation (Cohen, 1988).

Surprisingly, providing reference code leads to
worse performance for all three LLM-based meth-
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Metric
Java C++ Python JavaScript Go

τ rs τ rs τ rs τ rs τ rs
CODEJUDGE 0.638 0.638 0.580 0.580 0.707 0.707 0.591 0.591 0.543 0.543
CODEJUDGE w/o REF 0.508 0.508 0.474 0.474 0.629 0.629 0.453 0.453 0.446 0.446

Table 5: The Kendall-Tau (τ ) and Spearman (rs) correlations between CODEJUDGE using GPT-3.5-Turbo and
semantic correctness in HumanEval-X.

Method
CoNaLa HE-X APPS BCB
τ rs τ = rs τ = rs τ = rs

CodeLlama-Instruct-34B
CODEJUDGE 0.559 0.581 0.492 0.210 0.334
w/o REF 0.582 0.607 0.412 0.062 0.097

Llama-3-8B-Instruct
CODEJUDGE 0.523 0.547 0.480 0.161 0.383
w/o REF 0.576 0.602 0.388 0.072 0.258

Llama-3-70B-Instruct
CODEJUDGE 0.572 0.598 0.681 0.391 0.440
w/o REF 0.628 0.654 0.619 0.153 0.298

Table 6: The results of CODEJUDGE using three open-
source models (more results in Appendix E).

ods in the CoNaLa dataset. One plausible expla-
nation is that for the code deviation task, the LLM
evaluator focuses too much on the differences be-
tween the generated code and reference code rather
than high-level semantic similarities. This implies
future opportunities to calibrate LLMs for code
assessment.
Results on More Challenging Benchmarks. Ta-
ble 3 shows the correlations on APPS and Big-
CodeBench. While CODEJUDGE still achieves the
best performance, we observe that all evaluation
methods suffer from a significant drop in perfor-
mance on APPS and BigCodeBench. The vanilla
LLM-based method, which performs comparably
to ICE-SCore on the other benchmarks, experi-
enced the biggest degradation. Such a performance
drop is not surprising, since these competition-level
tasks are challenging to human developers, not
even to mention LLMs. Without running and de-
bugging the code, many developers may also strug-
gle with assessing the code. Table 3 shows that
LLM-based methods consistently perform better
when reference code is provided to aid code eval-
uation. We also observe that for BigCodeBench,
LLM-based methods with reference show a sig-
nificantly smaller performance degradation com-
pared to methods without reference. This implies
that providing reference code is more helpful for
challenging tasks compared with relatively simple
tasks.
Accuracy of Binary Evaluation. Table 4 shows

the accuracy of different methods in the binary as-
sessment task. Since ICE-Score produces a rating
in the range of 0 to 4, we treat the rating of 4 as
fully correct, while the other ratings as not correct
in the binary assessment task. CODEJUDGE outper-
forms both ICE-Score and VANILLA regardless of
whether the reference code is provided or not.

Evaluating without References. We want to high-
light that even when reference code is not provided
to CODEJUDGE but is provided to all other meth-
ods, CODEJUDGE still outperforms all existing
methods in most settings. This implies the power
of performing “slow thinking” in code evaluation.

Impact of Programming Languages. Table 5
shows the statistical correlation results of CODE-
JUDGE on different programming languages. When
reference code is provided, CODEJUDGE consis-
tently achieves a coefficient above 0.5, which in-
dicates a strong correlation with the ground truth.
CODEJUDGE performs much better on Python and
Java compared with the other three languages.

Generalizaiblity to Open-Source LLMs. Ta-
ble 6 shows the correlation results of CODEJUDGE

when substituting GPT-3.5 with three open-source
models. Compared with GPT-3.5, CODEJUDGE

achieves better correlations when using Llama-3-
70B. Besides, even when using a relatively small
model (Llama-3-8B-Instruct), CODEJUDGE still
achieves better or comparable performance to all
existing methods, including ICE-Score, which uses
GPT-3.5 as the evaluator. This demonstrates that
CODEJUDGE can be easily applied to other LLMs
and obtain evaluations with a reasonable correla-
tion to semantic correctness.

Prompt Design. We further test CODEJUDGE with
few-shot learning, Chain-of-Thought (CoT), and
the combination of them. However, CODEJUDGE

with these prompting methods do not outperform
the original one. Our analysis of the drawbacks
of employing CoT and few-shot learning can be
found in Appendix A.

Failure Case Analysis. To understand the lim-
itations of CODEJUDGE, we manually inspected
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600 failure cases, especially those from APPS. We
identified three failure patterns:

• Wrong Analysis of Code Logic (52.83%).
The most common pattern is that the LLM
evaluator fails to infer the code logic correctly.
For example, the LLM may mention that the
code implements a logic while it does not.

• Wrong Identification of Task Requirements
(26.42%). For some complex tasks, the LLM
evaluator struggles to identify all requirements
from the task description correctly.

• Requirements of Error Handling (20.75%).
We find that the LLM evaluator tends to report
many error-handling errors (e.g., not handling
invalid inputs) in generated code, even though
it is not necessary in many cases. This makes
CODEJUDGE over-conservative when evaluat-
ing some partially correct code.

5 Conclusion

We propose CODEJUDGE , a framework that
leverages LLMs to evaluate code generation with-
out the need for test cases. We demonstrate that
by guiding LLMs to perform slow thinking, CODE-
JUDGE outperforms all existing code evaluation
methods. This demonstrates a promising future
direction to replace human evaluators with LLM
evaluators. This is also beneficial for alignment
methods that rely on human evaluation as feed-
back. Finally, we release our code and dataset at
https://github.com/VichyTong/CodeJudge.

6 Limitations

While we demonstrate that CODEJUDGE achieves
state-of-the-art correlation with semantic correct-
ness compared to existing methods, our work does
face certain limitations. As we analyzed in Sec-
tion 4.5, LLMs can generate incorrect judgments
or fail to completely follow system prompts when
evaluating challenging and complex cases such
as the APPS benchmark. However, since CODE-
JUDGE is an off-the-shelf framework that can eas-
ily change the backbone model to powerful LLMs,
CODEJUDGE can be continuously improved.

References
AI Anthropic. 2024. Claude 3.5 sonnet model card

addendum. Claude-3.5 Model Card.

Shraddha Barke, Michael B James, and Nadia Po-
likarpova. 2023. Grounded copilot: How program-
mers interact with code-generating models. Pro-
ceedings of the ACM on Programming Languages,
7(OOPSLA1):85–111.

Milind Chabbi and John Mellor-Crummey. 2012. Dead-
spy: a tool to pinpoint program inefficiencies. In
Proceedings of the Tenth International Symposium
on Code Generation and Optimization, CGO ’12,
page 124–134, New York, NY, USA. Association for
Computing Machinery.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.
2024. Chateval: Towards better LLM-based eval-
uators through multi-agent debate. In The Twelfth
International Conference on Learning Representa-
tions.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. arXiv
preprint arXiv:2107.03374.

Wei Chen, Guoquan Wu, and Jun Wei. 2018. An ap-
proach to identifying error patterns for infrastructure
as code. In 2018 IEEE International Symposium
on Software Reliability Engineering Workshops (ISS-
REW), pages 124–129.

Jacob Cohen. 1988. Statistical Power Analysis for the
Behavioral Sciences. Lawrence Erlbaum Associates.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376–380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov,
and Timofey Bryksin. 2023. Out of the BLEU: How
should we assess quality of the code generation mod-
els? Journal of Systems and Software, 203:111741.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,

20040

https://github.com/VichyTong/CodeJudge
https://doi.org/10.1145/2259016.2259033
https://doi.org/10.1145/2259016.2259033
https://doi.org/10.1109/ISSREW.2018.00-19
https://doi.org/10.1109/ISSREW.2018.00-19
https://doi.org/10.1109/ISSREW.2018.00-19
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.1016/j.jss.2023.111741
https://doi.org/10.1016/j.jss.2023.111741
https://doi.org/10.1016/j.jss.2023.111741


Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2023. Gptscore: Evaluate as you desire. arXiv
preprint arXiv:2302.04166.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2024. GPTScore: Evaluate as you desire. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 6556–6576, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with APPS. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2).

Maria Hristova, Ananya Misra, Megan Rutter, and Re-
becca Mercuri. 2003. Identifying and correcting java
programming errors for introductory computer sci-
ence students. In Proceedings of the 34th SIGCSE
Technical Symposium on Computer Science Educa-
tion, SIGCSE ’03, page 153–156, New York, NY,
USA. Association for Computing Machinery.

Daniel Kahneman. 2011. Thinking, fast and slow.
macmillan.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. Spoc: Search-based pseudocode to code. Ad-
vances in Neural Information Processing Systems,
32.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:
Mastering code generation through pretrained models
and deep reinforcement learning. Advances in Neural
Information Processing Systems, 35:21314–21328.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023a. Is your code generated by chat-
GPT really correct? rigorous evaluation of large lan-
guage models for code generation. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023b. G-eval:

NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522, Singapore. Association for Com-
putational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.
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A Prompt Design

Method Acc.
CODEJUDGE 81.63
CODEJUDGE w/o REF 74.43

CoT 77.65
CoT w/o REF 68.56

CoT + Few-shot 78.22
CoT + Few-shot w/o REF 67.61

CODEJUDGE + CoT 78.60
CODEJUDGE + CoT w/o REF 72.16

CODEJUDGE + Few-shot 77.84
CODEJUDGE + Few-shot w/o REF 69.89

CODEJUDGE + CoT + Few-shot 77.27
CODEJUDGE + CoT + Few-shot w/o REF 69.51

Table 7: Average accuracy (%) across five programming
languages in HumanEval-X using different prompts.

We use Chain-of-Thought (CoT) (Wei et al.,
2022) and few-shot learning methods (three exam-
ples) to construct different prompts and test them
using GPT-3.5-Turbo in HumanEval-X. Table 7
shows the results, helping us understand the effects
of CoT and few-shot learning. These two methods
slightly reduce the correlation of the results. We ob-
serve the following drawbacks of the CoT method
and few-shot prompting:

• Incorrect judgments: The CoT method can
cause the model to make incorrect logical
judgments when thinking step by step. If the
initial determination is incorrect, the model
will generate incorrect evidence to support
that determination. For instance, Table 8
shows that when the LLM determines that
the code snippet does not cover all the re-
quired functionalities in the first sentence, it
then makes the incorrect judgment that the
model does not account for frequency.

• Misleading fixed code: When using the CoT
method, the model may ignore the system
prompt and create its own process: first, find
the errors, then fix the code. This can be
misleading during summarization because the
model might evaluate the correctness of the
fixed code instead of the original, incorrect
version. For example, Table 9 shows that
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Task Description
You are given a non-empty list of positive integers. Return the greatest integer that is greater
than zero, and has a frequency greater than or equal to the value of the integer itself. The
frequency of an integer is the number of times it appears in the list. If no such a value exist,
return -1.

Code Snippet

def search(lst):
# your code here
d = {}
for i in lst:

if i in d:
d[i] += 1

else:
d[i] = 1

for i in sorted(d, reverse=True):
if d[i] >= i:

return i
return -1

Evaluation
The code snippet provided does not cover all the required functionalities. It does not correctly
implement the condition for finding the greatest integer that is greater than zero and has a
frequency greater than or equal to the value of the integer itself.

The code snippet iterates through the dictionary keys in reverse order and returns the first key
that satisfies the condition, but it does not consider the frequency of the integer.

The reference solution correctly calculates the frequency of each integer and then iterates through
the frequencies to find the greatest integer that satisfies the condition.

Table 8: As the initial determination is that the code “does not cover all the required functionalities”, the model
provides incorrect evidence—the model does not consider the frequency—in support of the determination.

the LLM generates a conclusion based on the
fixed code, and this conclusion further mis-
leads the summarization step.

• Less example few-shot limitation: Similar
to GPTScore (Fu et al., 2024), we observe
a similar performance degradation when the
number of few-shot examples is less than four.
One possible reason is that LLMs become
constrained by the given examples, leading
to a preference for particular correctness and
reduced generalization ability.

B Postprocessing Steps

For the binary evaluation task, since the LLM gen-
erates a free-form response to the summarization
task. We use a regex parser that assigns a score of 1
to answers that mention “Yes” and 0 to answers that
mention “No”. While this postprocessing method
may sound simple, it turns out to work very well.
In our experiments, we did not observe any cases
where the LLMs generated ambiguous answers that
cannot be handled by this method.

For the more complex code deviation estimation
task, we set the initial correctness score to 100

and deduct a penalty score for each inconsistency
identified by CODEJUDGE. We experimented with
different penalty score settings on a small valida-
tion set, which includes 32 tasks from HumanEval
(20%). We found that setting the penalty score of
Small, Major, and Fatal inconsistencies to 5, 50,
and 100 points achieve the best correlation. We cal-
culate the final score with the following equations.

S = NumSmall × 5

M = NumMajor × 50

F = NumFatal × 100

Penalty = max(−100,−(S +M + F ))

Score = 1− Penalty

100

(1)

C Experiment Details

We use the official version of the HumanEval-X,
CoNaLa, APPS, and the BigCodeBench datasets.
To generate code snippets for HumanEval-X and
APPS, we adopt the code from MultiPL-E.3 For
BigCodeBench, we use the official pre-generated
code samples from LLMs.4 For token-based meth-

3https://github.com/nuprl/MultiPL-E
4https://github.com/bigcode-project/bigcodebench
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Task Description
You are given a word. Your task is to find the closest vowel that stands between two consonants from
the right side of the word (case sensitive). Vowels in the beginning and ending doesn’t count.
Return empty string if you didn’t find any vowel met the above condition. You may assume that the
given string contains English letter only.

Code Snippet

def get_closest_vowel(word):
pass

Evaluation
The given problem requires finding the closest vowel that stands between two consonants from the
right side of the word. The reference solution iterates through the word from the right side and
checks if the current character is a vowel and the characters on its right and left are consonants.
If this condition is met, the function returns the current vowel. If no such vowel is found, it
returns an empty string.

The provided code snippet is incomplete and does not contain any implementation. To address the
problem statement, the code should iterate through the word from the right side and implement the
logic to find the closest vowel between two consonants.

Here’s the complete code snippet:

def get_closest_vowel(word):
if len(word) < 3:

return ""

vowels = {"a", "e", "i", "o", "u", "A", "E", 'O', 'U', 'I'}
for i in range(len(word)-2, 0, -1):

if word[i] in vowels:
if (word[i+1] not in vowels) and (word[i-1] not in vowels):

return word[i]
return ""

This code snippet covers the required functionalities as per the problem statement and is
consistent with the reference solution.

Table 9: When using the CoT method, the model may design an evaluation plan by itself and generate the fixed
code. This fixed code may mislead the summarization step.

Method GPT-3.5-Turbo-1106 CodeLlama-Instruct-34B Llama3-Instruct-8B Llama3-Instruct-70B
CODEJUDGEA.S. 2.36 17.42 5.15 7.97
CODEJUDGEA.S. w/o REF 2.73 19.32 6.23 12.23
CODEJUDGEF.L. 1.14 14.72 3.04 3.15
CODEJUDGEF.L. w/o REF 1.08 15.18 3.16 3.60

Table 10: Average single execution times (in seconds) over 100 runs.

ods, we adopt implementations from Jetbrains.5

For CodeBERTScore and ICE-Score, we use their
implementations available on GitHub.6,7. To evalu-
ate CODEJUDGE, we use the implementations of
correlation metrics from https://scipy.org/.

D Latency Discussion

Table 10 shows the average execution times of
CODEJUDGE using four different models over 100
runs. The results for GPT-3.5-Turbo-1106 were ob-
tained via the official API. For CodeLlama-Instruct-
34B and Llama-3-Instruct-8B, a single A100-80GB

5https://github.com/JetBrains-Research/codegen-metrics
6https://github.com/neulab/code-bert-score
7https://github.com/terryyz/ice-score

GPU was utilized. The execution times of Llama-3-
Instruct-70B were measured using two A100-80GB
GPUs to load the model. The generating time of
CODEJUDGE is less than 20 seconds, which is rea-
sonable for code evaluation compared to manual
human annotation.

E Full Results

We report the numbers with standard deviations
in the HumanEval-X dataset in Table 11. We also
report the accuracy of the binary classification task
of the HumanEval-X dataset in Table 12. The full
results of the CoNaLa, APPS, and BigCodeBench
are in Table 13, Table 14, and Table 15, respectively.
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F Prompts

We present the full prompts of VANILLA in Ta-
bles 16 and 17. Full prompts of CODEJUDGE are
shown in Table 18 and 19.
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Metric
Java C++ Python JavaScript Go

τ rs τ rs τ rs τ rs τ rs
EXISTING METHODS

BLEU 0.230±0.00 0.280±0.00 0.306±0.00 0.373±0.00 0.446±0.00 0.541±0.00 0.288±0.00 0.352±0.00 0.261±0.00 0.318±0.00

ROUGE-L 0.249±0.00 0.304±0.00 0.305±0.00 0.372±0.00 0.450±0.00 0.546±0.00 0.329±0.00 0.401±0.00 0.260±0.00 0.317±0.00

METEOR 0.299±0.00 0.365±0.00 0.338±0.00 0.412±0.00 0.487±0.00 0.594±0.00 0.379±0.00 0.462±0.00 0.284±0.00 0.346±0.00

chrF 0.267±0.00 0.326±0.00 0.314±0.00 0.383±0.00 0.448±0.00 0.545±0.00 0.368±0.00 0.449±0.00 0.242±0.00 0.295±0.00

CodeBLEU 0.318±0.00 0.388±0.00 0.341±0.00 0.417±0.00 0.501±0.00 0.611±0.00 0.384±0.00 0.468±0.00 0.268±0.00 0.326±0.00

RUBY 0.260±0.00 0.318±0.00 0.284±0.00 0.346±0.00 0.425±0.00 0.516±0.00 0.329±0.00 0.401±0.00 0.245±0.00 0.299±0.00

CodeBERTScoreF1 0.282±0.00 0.344±0.00 0.334±0.00 0.408±0.00 0.453±0.00 0.553±0.00 0.318±0.00 0.388±0.00 0.308±0.00 0.376±0.00

CodeBERTScoreF3 0.303±0.00 0.370±0.00 0.375±0.00 0.458±0.00 0.495±0.00 0.604±0.00 0.363±0.00 0.443±0.00 0.324±0.00 0.396±0.00

CodeLlama-Instruct-34B
VANILLA 0.300±0.01 0.300±0.01 0.345±0.01 0.345±0.01 0.489±0.03 0.489±0.03 0.316±0.03 0.316±0.03 0.314±0.01 0.314±0.01

VANILLA w/o REF 0.297±0.01 0.297±0.01 0.373±0.02 0.373±0.02 0.541±0.03 0.541±0.03 0.277±0.03 0.277±0.03 0.348±0.05 0.348±0.05

ICE-Score 0.418±0.06 0.449±0.06 0.309±0.04 0.331±0.05 0.440±0.04 0.477±0.04 0.308±0.06 0.332±0.07 0.297±0.06 0.320±0.07

ICE-Score w/o REF 0.263±0.04 0.279±0.04 0.282±0.04 0.303±0.04 0.471±0.05 0.503±0.05 0.382±0.04 0.404±0.04 0.338±0.05 0.362±0.05

CODEJUDGEA.S. 0.515±0.04 0.515±0.04 0.464±0.03 0.464±0.03 0.625±0.00 0.625±0.00 0.503±0.03 0.503±0.03 0.354±0.02 0.354±0.02

CODEJUDGEA.S. w/o REF 0.355±0.06 0.355±0.06 0.408±0.02 0.408±0.02 0.561±0.02 0.561±0.02 0.338±0.04 0.338±0.04 0.396±0.02 0.396±0.02

Meta-Llama-3-8B-Instruct
VANILLA 0.342±0.01 0.342±0.01 0.216±0.01 0.216±0.01 0.409±0.02 0.409±0.02 0.265±0.03 0.265±0.03 0.192±0.01 0.192±0.01

VANILLA w/o REF 0.282±0.01 0.282±0.01 0.159±0.04 0.159±0.04 0.446±0.02 0.446±0.02 0.356±0.01 0.356±0.01 0.331±0.01 0.331±0.01

ICE-Score 0.389±0.01 0.400±0.01 0.242±0.01 0.248±0.01 0.440±0.00 0.455±0.00 0.296±0.01 0.303±0.01 0.269±0.00 0.281±0.00

ICE-Score w/o REF 0.290±0.02 0.296±0.02 0.306±0.04 0.316±0.04 0.481±0.03 0.499±0.03 0.275±0.00 0.283±0.00 0.287±0.02 0.299±0.02

CODEJUDGE 0.523±0.01 0.523±0.01 0.387±0.02 0.387±0.02 0.637±0.04 0.637±0.04 0.446±0.03 0.446±0.03 0.407±0.03 0.407±0.03

CODEJUDGE w/o REF 0.411±0.06 0.411±0.06 0.309±0.04 0.309±0.04 0.586±0.03 0.586±0.03 0.339±0.06 0.339±0.06 0.295±0.01 0.295±0.01

Meta-Llama-3-70B-Instruct
VANILLA 0.607±0.01 0.607±0.01 0.624±0.01 0.624±0.01 0.685±0.00 0.685±0.00 0.554±0.00 0.554±0.00 0.529±0.00 0.529±0.00

VANILLA w/o REF 0.554±0.01 0.554±0.01 0.541±0.01 0.541±0.01 0.651±0.01 0.651±0.01 0.553±0.01 0.553±0.01 0.571±0.01 0.571±0.01

ICE-Score 0.552±0.00 0.576±0.00 0.516±0.01 0.543±0.01 0.626±0.01 0.654±0.01 0.471±0.00 0.490±0.00 0.389±0.01 0.411±0.01

ICE-Score w/o REF 0.509±0.01 0.531±0.00 0.507±0.00 0.533±0.00 0.591±0.00 0.620±0.00 0.425±0.00 0.444±0.00 0.478±0.00 0.508±0.00

CODEJUDGE 0.640±0.02 0.640±0.02 0.700±0.03 0.700±0.03 0.803±0.02 0.803±0.02 0.675±0.01 0.675±0.01 0.589±0.02 0.589±0.02

CODEJUDGE w/o REF 0.583±0.02 0.583±0.02 0.611±0.01 0.611±0.01 0.698±0.02 0.698±0.02 0.617±0.04 0.617±0.04 0.587±0.05 0.587±0.05

GPT-3.5-Turbo-1106
VANILLA 0.615 0.615 0.482 0.482 0.675 0.675 0.550 0.550 0.528 0.528
VANILLA w/o REF 0.343 0.343 0.328 0.328 0.537 0.537 0.345 0.345 0.398 0.398
ICE-Score 0.499 0.510 0.436 0.455 0.514 0.537 0.524 0.542 0.402 0.415
ICE-Score w/o REF 0.275 0.278 0.410 0.429 0.485 0.513 0.253 0.258 0.324 0.337

CODEJUDGE 0.638 0.638 0.580 0.580 0.707 0.707 0.591 0.591 0.543 0.543
CODEJUDGE w/o REF 0.508 0.508 0.474 0.474 0.629 0.629 0.453 0.453 0.446 0.446

Table 11: The Kendall-Tau (τ ) and Spearman (rs) correlations of each method with semantic correctness on
HumanEval-X in multiple languages. “w/ REF” indicates that this method contains the reference code in the prompt.
The correlation coefficients are reported across three runs using open-source models, along with the standard
deviation.
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Method Java C++ Python JavaScript Go
CodeLlama-Instruct-34B

VANILLA 57.07±0.01 61.11±0.01 72.22±0.01 58.33±0.01 62.37±0.00

VANILLA w/o REF 59.09±0.00 65.91±0.01 73.48±0.02 58.84±0.02 57.32±0.02

CODEJUDGE 75.00±0.02 75.25±0.01 80.56±0.00 73.74±0.01 75.51±0.01

CODEJUDGE w/o REF 67.93±0.03 73.48±0.01 78.03±0.01 66.16±0.02 71.97±0.01

Meta-Llama-3-8B-Instruct
VANILLA 57.83±0.00 47.47±0.01 67.42±0.01 55.05±0.01 47.73±0.01

VANILLA w/o REF 58.84±0.01 47.47±0.02 70.20±0.01 62.12±0.01 60.10±0.00

CODEJUDGE 74.49±0.01 65.91±0.01 81.57±0.02 69.44±0.02 69.70±0.02

CODEJUDGE w/o REF 70.20±0.03 66.16±0.02 78.79±0.01 65.15±0.02 66.16±0.01

Meta-Llama-3-70B-Instruct
VANILLA 78.28±0.00 79.29±0.00 83.33±0.00 74.24±0.00 73.48±0.00

VANILLA w/o REF 75.51±0.00 75.51±0.00 82.07±0.01 75.76±0.01 78.03±0.01

CODEJUDGE 81.31±0.01 84.60±0.02 90.15±0.01 81.82±0.01 80.30±0.01

CODEJUDGE w/o REF 79.55±0.01 81.82±0.01 84.60±0.01 80.56±0.02 81.82±0.02

GPT-3.5-Turbo-1106
VANILLA 77.27 71.21 82.07 72.98 76.26
VANILLA w/o REF 60.86 67.17 74.24 61.36 62.12

CODEJUDGE 81.57 78.28 85.35 78.28 79.29
CODEJUDGE w/o REF 73.48 72.22 80.81 68.43 70.71

Table 12: Accuracies (%) across five programming languages in the binary classification task of HumanEval-X
dataset. The accuracies are reported across three runs using open-source models, along with the standard deviation.
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Method τ rs
BLEU 0.437 0.485
ROUGE-L 0.450 0.501
METEOR 0.412 0.463
chrF 0.457 0.514
CodeBLEU 0.292 0.332
RUBY 0.332 0.373
CodeBERTScoref1 0.499 0.558
CodeBERTScoref3 0.485 0.542

Code Llama - Instruct 34B
VANILLA 0.317 0.344
VANILLA w/o REF 0.448 0.486
ICE-Score 0.397 0.425
ICE-Score w/o REF 0.534 0.572

CODEJUDGE 0.559 0.581
CODEJUDGE w/o REF 0.582 0.607

Meta-Llama-3-8B-Instruct
VANILLA 0.524 0.560
VANILLA w/o REF 0.555 0.592
ICE-Score 0.481 0.513
ICE-Score w/o REF 0.482 0.512

CODEJUDGE 0.523 0.547
CODEJUDGE w/o REF 0.576 0.602

Meta-Llama-3-70B-Instruct
VANILLA 0.580 0.611
VANILLA w/o REF 0.583 0.624
ICE-Score 0.481 0.515
ICE-Score w/o REF 0.603 0.641

CODEJUDGE 0.572 0.598
CODEJUDGE w/o REF 0.628 0.654

GPT-3.5-Turbo-1106
VANILLA 0.357 0.386
VANILLA w/o REF 0.465 0.499
ICE-Score 0.253 0.271
ICE-Score w/o REF 0.462 0.491

CODEJUDGE 0.457 0.478
CODEJUDGE w/o REF 0.538 0.562

Table 13: The Kendall-Tau(τ ), Pearson(rp), and
Spearman(rs) correlations of each method with the cor-
rectness on the CoNaLa dataset. w/ REF indicates that
this method contains the reference code in the prompt.

Method τ rs
EXISTING METHODS

BLEU 0.035±0.00 0.042±0.00

ROUGE-L 0.035±0.00 0.043±0.00

METEOR 0.085±0.00 0.104±0.00

chrF 0.036±0.00 0.044±0.00

CodeBLEU 0.135±0.00 0.164±0.00

RUBY 0.092±0.00 0.113±0.00

CodeBERTScoreF1 -0.003±0.00 -0.003±0.00

CodeBERTScoreF3 0.008±0.00 0.010±0.00

CodeLlama-Instruct-34B
VANILLA 0.005±0.05 0.005±0.05

VANILLA w/o REF 0.080±0.00 0.080±0.00

ICE-Score 0.174±0.06 0.185±0.06

ICE-Score w/o REF -0.032±0.02 -0.034±0.02

CODEJUDGE 0.210±0.09 0.210±0.09

CODEJUDGE w/o REF 0.062±0.04 0.062±0.04

Meta-Llama-3-8B-Instruct
VANILLA 0.123±0.01 0.123±0.01

VANILLA w/o REF 0.168±0.01 0.168±0.01

ICE-Score 0.003±0.03 0.003±0.03

ICE-Score w/o REF 0.090±0.08 0.091±0.08

CODEJUDGE 0.161±0.07 0.161±0.07

CODEJUDGE w/o REF 0.072±0.10 0.072±0.10

Meta-Llama-3-70B-Instruct
VANILLA 0.334±0.01 0.334±0.01

VANILLA w/o REF 0.279±0.04 0.279±0.04

ICE-Score 0.297±0.07 0.307±0.07

ICE-Score w/o REF 0.251±0.01 0.256±0.01

CODEJUDGE 0.391±0.02 0.391±0.02

CODEJUDGE w/o REF 0.359±0.04 0.359±0.04

GPT-3.5-Turbo-1106
VANILLA 0.103 0.103
VANILLA w/o REF -0.058 -0.058
ICE-Score 0.224 0.224
ICE-Score w/o REF 0.140 0.143

CODEJUDGE 0.354 0.354
CODEJUDGE w/o REF 0.153 0.153

Table 14: The Kendall-Tau (τ ) and Spearman (rs) cor-
relations of each method with semantic correctness on
APPS. “w/ REF” indicates that this method contains the
reference code in the prompt. The correlation coeffi-
cients are reported across three runs using open-source
models, along with the standard deviation.
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Method τ rs
EXISTING METHODS

BLEU 0.072±0.00 0.089±0.00

ROUGE-L 0.117±0.00 0.143±0.00

METEOR 0.247±0.00 0.302±0.00

chrF 0.167±0.00 0.205±0.00

CodeBLEU 0.173±0.00 0.212±0.00

RUBY 0.119±0.00 0.146±0.00

CodeBERTScoreF1 0.048±0.00 0.059±0.00

CodeBERTScoreF3 0.133±0.00 0.163±0.00

CodeLlama-Instruct-34B
VANILLA 0.104±0.02 0.104±0.02

VANILLA w/o REF 0.047±0.02 0.047±0.02

ICE-Score -0.023±0.01 -0.023±0.01

ICE-Score w/o REF 0.025±0.02 0.025±0.02

CODEJUDGEA.S. 0.334±0.03 0.334±0.03

CODEJUDGEA.S. w/o REF 0.097±0.02 0.097±0.02

Meta-Llama-3-8B-Instruct
VANILLA 0.070±0.01 0.070±0.01

VANILLA w/o REF 0.064±0.00 0.064±0.00

ICE-Score 0.107±0.02 0.108±0.02

ICE-Score w/o REF 0.007±0.02 0.007±0.02

CODEJUDGE 0.383±0.01 0.383±0.01

CODEJUDGE w/o REF 0.258±0.02 0.258±0.02

Meta-Llama-3-70B-Instruct
VANILLA 0.316±0.00 0.316±0.00

VANILLA w/o REF 0.225±0.00 0.225±0.00

ICE-Score 0.297±0.00 0.307±0.00

ICE-Score w/o REF 0.164±0.00 0.166±0.00

CODEJUDGE 0.440±0.01 0.440±0.01

CODEJUDGE w/o REF 0.298±0.01 0.298±0.01

GPT-3.5-Turbo-1106
VANILLA 0.251 0.251
VANILLA w/o REF 0.131 0.131
ICE-Score 0.321 0.330
ICE-Score w/o REF 0.117 0.118

CODEJUDGE 0.392 0.392
CODEJUDGE w/o REF 0.317 0.317

Table 15: The Kendall-Tau (τ ) and Spearman (rs) cor-
relations of each method with semantic correctness on
BigCodeBench. “w/ REF” indicates that this method
contains the reference code in the prompt. The corre-
lation coefficients are reported across three runs using
open-source models, along with the standard deviation.
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Determine the correctness of the code snippet. Output Yes or No.

Problem Statement: {PROBLEM}

Code Snippet: {CODE}

Answer(Yes or No only): Yes

Table 16: Full prompt of VANILLA baseline for binary assessment task. Blue text is an example of model output.
Brown text is the problem, reference, and code we provide to LLMs.

Determine the helpfulness of the code snippet. Output a score from 0 to 4 where 0 means the code
snippet is not helpful at all and 4 means the code snippet is very helpful.

Problem Statement: {PROBLEM}

Code Snippet: {CODE}

Helpfulness (0-4): 4

Table 17: Full prompt of VANILLA baseline for code deviation assessment task. Blue text is an example of model
output. Brown text is the problem, reference, and code we provide to LLMs.

Analysis Subtask

You will be provided with a problem statement and a code snippet that supposedly addresses the
problem in {LANGUAGE}.
Your task is to check if the code snippet covers the required functionalities. Do not provide a
corrected version.
Evaluation Steps:
1. Read the problem statement carefully and identify the required functionalities of the
implementation. You can refer to the example to understand the problem better.
2. Read the code snippet and analyze its logic. Check if the code snippet covers all the required
functionalities of the problem.
3. Finally, conclude your evaluation.

Problem Statement: {PROBLEM}
Code Snippet: {CODE}

<ANALYSIS>
Summarization Subtask

You will be provided with an analysis result of a code snippet.
If the analysis believes that the code snippet is correct, output: "Yes". Otherwise, output: "No".

Analysis Result: {ANALYSIS}

Yes

Table 18: Full prompt of ANALYZE THEN SUMMARIZE method. Blue text is an example of model output. Brown
text is the problem and code we provide to LLMs.
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You will be provided with a problem statement, a code snippet that supposedly addresses the problem,
and a catalog of code inconsistencies.

Evaluation Steps:
1. Read the problem statement carefully to identify the functionalities required for the
implementation.
2. Read the code snippet and compare it to the problem statement. Check if the code snippet covers
the required functionalities.
3. Output your answer in a JSON format list.
a) If the code snippet is correct, output: ["inconsistency": "None", "severity": "Negligible"].
b) If the code snippet is incorrect, output the identified inconsistencies and their severity

according to the catalog of code inconsistencies. For example: ["inconsistency": "<inconsistency1>",
"severity": "<severity1>", "inconsistency": "<inconsistency2>", "severity": "<severity2>", ...]

Problem: {PROBLEM}

Code Snippet: {CODE}

Taxonomy of Common Inconsistencies:
1. Missing dependency declarations: Negligible
2. No error messages for unexpected input cases: Negligible
3. Inefficiency, unnecessary statements: Negligible
4. Edge case not handled: Small
5. Logic error: Major
6. Function or variable not defined: Fatal
7. Code not completed: Fatal
Evaluation Form:
JSON output (a JSON list only):

[{"inconsistency": "None", "severity": "Negligible"}]

Table 19: Full prompt of FAULT LOCALIZATION method. Blue text is an example of model output. Brown text is
the problem and code we provide to LLMs.
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