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Abstract

This research addresses command-line embed-
ding in cybersecurity, a field obstructed by
the lack of comprehensive datasets due to pri-
vacy and regulation concerns. We propose the
first dataset of similar command lines, named
CyPHER1, for training and unbiased evaluation.
The training set is generated using a set of large
language models (LLMs) comprising 28,520
similar command-line pairs. Our testing dataset
consists of 2,807 similar command-line pairs
sourced from authentic command-line data.

In addition, we propose a command-line em-
bedding model named CmdCaliper, enabling
the computation of semantic similarity with
command lines. Performance evaluations
demonstrate that the smallest version of Cmd-
Caliper (30 million parameters) suppresses
state-of-the-art (SOTA) sentence embedding
models with ten times more parameters across
various tasks (e.g., malicious command-line
detection and similar command-line retrieval).

Our study explores the feasibility of data
generation using LLMs in the cybersecurity
domain. Furthermore, we release our pro-
posed command-line dataset, embedding mod-
els’ weights and all program codes to the pub-
lic. This advancement paves the way for more
effective command-line embedding for future
researchers.

1 Introduction

Sentence embeddings, which map diverse sen-
tences into a unified semantic feature space, are
critical for various NLP applications such as clas-
sifier training, visualization (van der Maaten and
Hinton, 2008), and retrieval-augmented generation
(RAG) (Lewis et al., 2020). In cybersecurity, com-
mand lines provide invaluable information for de-
tecting malicious attacks by comparing them with
known historical malicious command lines from

1CyPHER: CyCraft’s Paired Command-Lines Harnessed
for Embedding Research

Figure 1: After fine-tuning our proposed similar
command-line pair dataset, CyPHER, our proposed
command-line embedding model, CmdCaliper, can ef-
fectively embed command lines based on their seman-
tics rather than solely on appearance.

a semantic perspective. However, the flexibility
in command-line syntax and structure poses chal-
lenges for fully leveraging this information. For
example, as shown in Fig. 1, one can still correlate
the two command lines according to their outputs
despite the different appearances. To achieve this,
using a robust embedding model to calculate the
semantic similarity of command lines is promis-
ing. However, the grammatical differences between
command lines and natural language sentences
hinder the direct application of sentence embed-
ding models to command-line tasks. Furthermore,
one main challenge exacerbates the difficulty of
research in command-line embedding: the scarcity
of datasets specifically designed for command-line
embedding tasks, both for training models and for
fairly evaluating the performance of different meth-
ods.

To address the aforementioned challenges, this
paper introduces the first comprehensive dataset,
CyPHER, which includes semantically similar
pairs of command lines for both training and eval-
uating command-line embedding methodologies.
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Inspired by the successes of data synthesis by
LLMs (Wang et al., 2023b,a), the similar command-
line pairs in our training set are automatically gen-
erated from a set of diverse command-line seeds
initialized from multiple real-world sources by
a total of six distinct LLMs trained on diverse
datasets (§ 3.1). This facilitates a broader range
of command-line generation. For the testing set
of CyPHER, to prevent training data leakage, we
directly employed a totally different data source
instead of synthesizing command lines by LLMs,
as done in the training set. (§ 3.2)

To the end, our training set consists of 28,520
similar command-line pairs, totaling 55,909 unique
command lines, and our testing set comprises
2,807 similar command-line pairs, totaling 5,576
unique command lines. Our dataset analysis and
human evaluation results (§ 5) demonstrate that
our pipeline can generate highly diverse and high-
quality similar command-line pairs.

Based on our proposed dataset, CyPHER, we
also developed the first embedding model special-
ized for command-line embeddings, called Cmd-
Caliper. By encouraging semantically similar sam-
ples to come closer and simultaneously increasing
the distance between semantically dissimilar sam-
ples in the embedding space, CmdCaliper can em-
bed command lines into vectors from a semantic
perspective. As demonstrated in Fig. 1, even when
command lines differ in appearance, CmdCaliper
can still position them closely in the embedding
space based on their semantic meanings.

Our evaluation results (§6) demonstrate that even
the smallest version of CmdCaliper, with approxi-
mately 0.03 billion parameters, can surpass SOTA
sentence embedding models with ten times more
parameters (0.335 billion parameters) across vari-
ous command-line specific tasks, such as malicious
command-line detection, similar command-line re-
trieval, and command-line classification.

Our contribution is threefold. First, we pro-
pose the first dataset of similar command-line pairs
named CyPHER, which allows for training and
performance evaluation. Through detailed valida-
tion of the dataset’s effectiveness, we believe it is
well-suited for further command-line research. Sec-
ondly, we explore the potential of using LLMs to
synthesize command-line data in the cybersecurity
domain. Our experiments demonstrate that LLMs
can indeed generate high-quality and diverse data.
Lastly, we propose the first semantic command-line

embedding model, CmdCaliper. Our evaluations
reveal that a command-line-specific embedding
model significantly enhances performance across
various downstream tasks compared to generic sen-
tence embedding models. We open-source the en-
tire dataset, model weights, and all program codes
under BSD License at GitHub Repo2

2 Related Work

2.1 Semantic Embedding

Early works of sentence embedding such as
Word2Vec (Mikolov et al., 2013) and Glove (Pen-
nington et al., 2014), require the training of a pre-
defined static embedding lookup table to fuse into
the embedding vector of different sentences.

Recent works leverage well-trained language
models such as BERT (Devlin et al., 2019) and
T5 (Raffel et al., 2020) as pre-trained models to
globally embed inputs (i.e., the words of sentences)
into embedding vectors while considering con-
textual relationships to achieve impressive down-
stream performance. To fine-tune such models, a
contrastive learning scheme (van den Oord et al.,
2018) can be adopted, as demonstrated in (Gao
et al., 2021; Chuang et al., 2022; Zeng et al., 2022;
Neelakantan et al., 2022; Wang et al., 2022, 2023a)

In the cybersecurity domain, semantic embed-
ding is crucial for computing semantic similar-
ity across various data types, including logs and
command lines. For log-based data, Golczynski
and Emanuello (2021) introduced an autoencoder-
based model to convert log data into embedding
vectors for anomaly detection. Log2Vec (Liu et al.,
2019) creates a heterogeneous graph for each log
dataset and uses the random walk method with
Word2Vec to embed log data. LogBert (Guo et al.,
2021) leverages BERT for anomaly detection, clus-
tering the embedding vectors of normal samples to
increase the separation from abnormal samples.

For command-line based data, Ongun et al.
(2021) adapted the tokenization methodology
for command-line-based data and followed the
Word2Vec approach to train a pre-defined embed-
ding lookup table for a large amount of command-
line data. Conversely, Dong et al. (2023) directly
adopted Word2Vec for the command-line embed-
ding.

2
https://github.com/cycraft-corp/CmdCaliper
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Figure 2: The illustration of the pipeline for automati-
cally generating a dataset of similar command-line pairs
using the Self-Instruct algorithm with a pool of LLMs.

2.2 LLMs in Cybersecurity

In the field of cybersecurity, many re-
searchers (Motlagh et al., 2024; Divakaran
and Peddinti, 2024) have also explored leveraging
LLMs (OpenAI, 2023; Anthropic, 2024; Touvron
et al., 2023) for malicious code generations.

Moskal et al. (2023) use LLMs to generate
executable code for agent actions, facilitating au-
tomated cyber campaigns. McKee and Noever
(2023) explore using LLMs as honeypots by gen-
erating executable commands to simulate Linux,
Mac, and Windows terminals. Chatzoglou et al.
(2023) demonstrate ChatGPT’s ability to generate
malicious code that can evade detection.

3 CmdDataset: The First Command-Line
Similarity Dataset

Despite the impressive performance of existing sen-
tence embedding models (Li et al., 2023; Gao et al.,
2021; Neelakantan et al., 2022), no embedding
model has been designed specifically for command
lines. We believe this is due to the unavailability
of a large, diversified dataset with adequate annota-
tions for effective training and unbiased evaluation.

In this section, we primarily focus on introducing
the first command-line similarity dataset, named
CyPHER. This training set comprises 28,520 pairs
of command lines automatically generated by a
pool of LLMs. In contrast, the testing set contains
2,807 pairs of command lines collected from real-
world attack scenarios.

3.1 Training Set Synthesis by LLMs

Collecting large-scale unlabeled or small-scale an-
notated command-line data is challenging due to

two main factors. Firstly, labeling command-line
datasets requires specialized cybersecurity knowl-
edge, making it more stringent and costly than la-
beling images or natural language sentences. Sec-
ondly, privacy concerns involving company or per-
sonal information in real-world command lines dis-
courage sharing, complicating efforts to gather di-
verse, large-scale datasets.

The automatic data generation process known
as Self-Instruct (Honovich et al., 2023; Taori et al.,
2023; Wang et al., 2023b) has proven effective
in acquiring a comprehensive and diverse corpus
of instructional data for fine-tuning LLMs. This
process utilizes a powerful pre-trained large-scale
language model, such as ChatGPT or Claude 3.

Our research is inspired by the substantial suc-
cess of LLMs in code generation (Rozière et al.,
2023; Patil et al., 2023) that exhibits similar struc-
tures to command lines and strong comprehension
in the cybersecurity domain, such as malware gen-
eration (Pa et al., 2023; Botacin, 2023; Charan et al.,
2023; Chatzoglou et al., 2023). Based on these ca-
pabilities, we adapt the Self-Instruct method to syn-
thesize a substantial number of similar command-
line pairs using LLMs. Our data synthesis pipeline
comprises three stages: 1) Initial Seeds Collection,
2) Single Command Line Synthesis using a Pool of
LLMs, and 3) Similar Command Line Synthesis,
as illustrated in Fig. 2.

3.1.1 Initial Seeds Collection
Incorporating randomness into prompts is crucial
for enabling LLMs to synthesize diverse command
lines. This is achieved using initial seeds, which
consist of a diverse set of command lines. During
each synthesis iteration, a subset of these seeds is
sampled to construct the prompt, diversifying it and
encouraging a varied output from LLMs. To en-
sure high-quality initial seeds, we collected 2,061
diverse Windows command lines from multiple
sources (e.g., public red-team exercises and Win-
dows commands documentation). For more details
on the initial-seed collection, see Appendix B.

3.1.2 Single Command Line Synthesis with a
Pool of LLMs

Beyond the diversity of command-line seeds, the
ability of LLMs to generate sufficiently varied data
is also crucial. In the original Self-Instruct pipeline
(Wang et al., 2023b), GPT-3 (Brown et al., 2020)
was adopted for data generation, which confines
all generated data to the distribution of GPT-3’s
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training data. We extended this method by con-
structing a pool of distinct LLMs to aid in data gen-
eration. This is intuitive because the distribution of
training data varies among different LLMs, leading
to differences in the nature of the command lines
they preferentially generate. The LLM pool of our
pipeline comprises the following models: Mixtral
8x7B (Jiang et al., 2024), WizardLM-13B-v1.2 (Xu
et al., 2024), Gemini-1.0-Pro (Team et al., 2023),
Claude-3-Haiku (Anthropic, 2024), Qwen1.5-14B-
Chat (Bai et al., 2023), and GPT-3.5-Turbo (Ope-
nAI, 2022).

After constructing the LLM pool, we iteratively
synthesize command lines by randomly sampling
12 command lines from the total command-line
seeds–which include previously synthesized com-
mand lines and initial seeds–for prompt composi-
tion, as shown in Fig. 6. We then instruct a ran-
domly selected LLM from the pool to synthesize
four new command lines distinct from those in the
prompt. Valid command lines are extracted from
the LLM responses. Due to the randomness of gen-
eration, the LLMs may not always produce four
new valid command lines. These valid new com-
mand lines are added to the total command-line
seeds for the next iteration. The generation process
is halted after synthesizing 28,520 command lines.

In this step, LLMs may synthesize non-
executable command lines with minor syntax er-
rors. However, for our dataset of similar command-
line pairs, “similar” refers to command lines shar-
ing the same purposes or intentions, typically based
on associated executable files, arguments, and ar-
gument values. Therefore, even with syntax errors,
the command lines should still convey the same
purpose or intention as their correct versions.

3.1.3 Similar Command Line Synthesis

After collecting 28,520 command lines, we in-
structed GPT-4-Turbo (OpenAI, 2023) to generate
a similar command line for each. The prompting
template for this instruction is displayed in Fig. 7.
Here, “similar” refers to sharing the same purpose
or intention, rather than merely having a similar
appearance. This distinction is crucial, as in real-
world scenarios, attackers may use different com-
mand lines or obfuscation techniques to achieve the
same goal. We showcase several pairs of generated
similar command lines in Table. 8, demonstrating
the efficacy of utilizing LLMs for this purpose.

3.2 Real-World Testing Set Collection

To create a testing set that can fairly and compre-
hensively evaluate different methods, better reflect
real-world usage scenarios, and avoid training data
leakage, we neither directly partitioned the train-
ing set for the testing set, nor did we use LLMs
to generate entirely new command lines from the
initial seeds as the training set collection pipeline.
Instead, we employed Splunk Attack data (Splunk),
a dataset curated from various attacks, as the source
for our testing set. This allows us to evaluate
various approaches in real-world scenarios, as it
includes many malicious command lines corre-
sponding to various MITRE ATT&CK (mitre) tech-
niques, covering multiple distinct attack vectors.

Initially, we extracted 12,723 unique command
lines from the Splunk Attack data. However, many
command lines had similar meanings but differed
slightly in appearance, leading to data duplication
and potential evaluation inaccuracies. To address
this concern, we generated explanations using Chat-
GPT and then converted these explanations into
embeddings using GTE-Large (Li et al., 2023). We
used these embeddings to remove command lines
with semantically similar content, resulting in a
final testing set of 2,807 command lines. For more
details about the deduplication process, please refer
to Appendix A. We then followed the similar com-
mand line synthesis step proposed in Sec. 3.1.3 to
instruct GPT-4-turbo to generate the corresponding
similar command line for each command line.

For each command line from the original set of
2,807, we used the explanation embeddings to iden-
tify the 1,000 least similar command lines from
the remaining 2,806 as negative command lines.
Additionally, we designated the generated similar
command line as the positive command line. This
method avoids evaluation inaccuracies by prevent-
ing the inclusion of semantically similar command
lines among the negatives.

4 CmdCaliper: A Semantic-Aware
Command-Line Embedding Model

Utilizing the proposed dataset CyPHER, a
command-line embedding model can be trained
with a contrastive objective, like sentence embed-
ding methodologies, as seen in (Gao et al., 2021;
Chuang et al., 2022; Neelakantan et al., 2022).
Given an embedding model, denoted as E, the pro-
cedure of embedding a command line ci into an em-
bedding vector ei can be described as ei = E(ci).
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Training Set Testing Set

Num of command-line pair 28,520 2,807
Num of unique command line 55,909 5,576

Max. command-line length 3,464 7,502
Min. command-line length 3 2
Avg. command-line length 91.635 96.301

Std. of command-line length 60.794 196.675

Table 1: The statistic information of CyPHER.

Coverage Rate (%)

Windows Commands 73.52
Windows Common File Extensions 70.67

Table 2: Coverage rates of CyPHER across all Windows
Commands and Windows common file extensions.

In each training iteration, several similar pairs are
randomly sampled from the training set to form
a batch, which contains k similar command-line
pairs {(xi, x+i )}ki=1, where (xi, x

+
i ) represents the

ith similar command-line pair. Within the batch,
the similar command line x+i is regarded as a
positive sample of sample xi, thereby encourag-
ing the associated embedding vectors to be closer
within the feature space. Conversely, other sam-
ples {x+j ,∀j ∈ {1, 2, . . . , k} \ {i}} are treated
as in-batch negatives (Sohn, 2016; Neelakantan
et al., 2022; Gao et al., 2021), encouraging the em-
bedding vectors to be farther. The InfoNCE loss
(van den Oord et al., 2018), denoted as Linfo, can
be calculated as follows:

Linfo = −
k∑

i=1

log
exp(

E(xi)·E(x+
i )

τ )
k∑

j=1
exp(

E(xi)·E(x+
j )

τ )

, (1)

where τ is a hyperparameter that τ ∈ R+.

5 Evaluation on CyPHER

5.1 Experimental Settings

In the entire CyPHER synthesis pipeline, to en-
hance the diversity of the generated command lines,
we follow the hyperparameter settings outlined in
(Wang et al., 2023a), setting the temperature pa-
rameter to 1 for all large language models (LLMs)
to encourage more diverse outputs.

5.2 The Statistics of the Dataset

The statistical information for the training and test-
ing sets of the CyPHER is presented in Table 1.
Thanks to the real-world sources of our testing set,

the standard deviation of the testing data signifi-
cantly differs from that of the training set, enabling
a more generalized and accurate evaluation.

5.3 The Diversity of the Synthesized
Command Lines

In this experiment, we aim to assess the diversity
of the command lines synthesized by our data gen-
eration pipeline as described in Sec. 3.1. We ex-
cluded any initial command line seeds as well as
similar paired command lines for this experiment.
We calculated their coverage across all Windows
commands3 and common file name extensions in
a clean Windows 10 virtual machine, as demon-
strated in Table 2. To avoid bias, we excluded our
manually formulated initial seeds and focused only
on the command lines generated by LLMs. Over-
all, our synthesized command lines achieve a cov-
erage rate of 73.52% out of 306 unique Windows
commands and 70.67% out of 75 common file ex-
tensions. For more details about the coverage rate
calculation process, please refer to Appendix C.

We conducted an in-depth analysis of the dif-
ferences between the generated command lines
and the initial command-line seeds, which served
as a foundational starting point for constructing
the command-line dataset. For each generated
command line, we calculated the highest ROUGE-
L overlap (Lin, 2004) which ranges from 0 to 1
among all initial command-line seeds. A higher
ROUGE-L score indicates a greater overlap be-
tween the generated command lines and the initial
command-line seeds. The distribution of ROUGE-
L scores is illustrated in Fig. 3. These findings
suggest that the command lines synthesized by our
pipeline (Sec. 3.1) are not limited to minor tweaks
of the original command-line seeds. On the con-
trary, they are capable of producing a broad range
of command lines, some of which may exhibit sig-
nificant differences from the initial seeds.

5.4 The Diversity within the Similar
Command-Line Pairs

In this section, we examined the distribution of
ROUGE-L overlap for each pair of similar com-
mand lines, as shown in Fig. 4. These metrics help
determine whether similar command-line pairs are
derived from minor modifications to arguments or
entirely different commands achieving a similar
objective. Notably, our findings reveal that most

3Windows Command-line reference A-Z
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Figure 3: The distribution of the highest ROUGE-L
overlap score between the generated command lines
and the initial command-line seeds.

Figure 4: The distribution of ROUGE-L overlap score
for all similar command-line pairs.

ROUGE-L scores are low, nearing zero, suggesting
that the “similarity” in our command-line dataset
is not solely based on lexical similarities but rather
reflects genuine semantic similarities. This vital
understanding enables us to train command-line
embedding models from a semantic perspective
and subsequently evaluate the performance of dif-
ferent command-line embedding models.

5.5 The Quality of the LLM’s Command-Line
Explanations

In Sec. 3.2, we utilize ChatGPT (OpenAI, 2022)
to generate explanations for command lines and
employ GTE-Large (Li et al., 2023) to convert these
explanations into embeddings for data processing.
In this evaluation, our focus is on assessing the
quality of the explanations generated by LLM.

We randomly selected 200 command lines and
their explanations from our training set. An expert
(collaborator of this work) with over three years of
cybersecurity experience assessed the correctness
of each explanation, providing scores as positive,
neutral, or negative, while ignoring minor syntax
errors. We normalized the scores of the 200 eval-
uated command lines by assigning 0.5 points for
positive labels, 0.25 points for neutral labels, and 0
points for negative labels, resulting in a total score
of 100. After applying this scoring method, we ob-
tained a final normalized score of 98.25, indicating
that the majority of command-line explanations ac-
curately describe their intended purposes. Several

Figure 5: The histogram of the explanation similar-
ity between random command-line pairs and similar
command-line pairs in the testing set of CyPHER.

good and bad examples are listed in Table 9.

5.6 The Quality of the Similar
Command-Line Pairs

In this experiment, we investigate whether the
command-line pairs generated by LLMs are truly
similar in terms of semantics. Leveraging the find-
ings presented in Sec. 5.5, which demonstrate a
high alignment between the explanations generated
by LLMs and those provided by human experts,
we follow the same experimental settings, utilizing
identical prompts and instructing ChatGPT (Ope-
nAI, 2022) to generate explanations for each com-
mand line in the testing set.

After acquiring all explanations, we employ
GTE-Large (Li et al., 2023) to embed all expla-
nations into corresponding embedding vectors and
calculate the similarity between explanations for
each similar command-line pair. Subsequently, we
randomly construct an equal number of command-
line pairs, totaling 2,807 pairs, with both command
lines in each pair randomly sampled from all com-
mand lines in the testing set.

Fig. 5 illustrates the similarity distributions of
both similar and random command-line pairs. No-
tably, there is a significant gap in the explanation
similarity between these two groups. Specifically,
the average explanation similarity of each simi-
lar command-line pair exceeds that of 97.483% of
the random command-line pairs, indicating the ef-
fectiveness of synthesizing similar command lines
with LLMs. Note that the range of similarity for
GTE-Large is approximately between 0.65 and 1.

5.7 Effectiveness of a Pool of LLMs
In this experiment, we aim to study whether a pool
of LLMs can make the synthesized command lines
more diverse versus utilizing a single LLM as we
described in Sec. 3.1. First, we instruct each LLM
in our pool to synthesize 7,500 command lines from
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LLMs for Data Synthesis Coverage
Rate (%)

GPT-3.5-Turbo (OpenAI, 2022) 48.75
Mixtral 8x7B (Jiang et al., 2024) 27.5

WizardLM-13B-v1.2 (Xu et al., 2024) 35
Gemini-1.0-Pro (Team et al., 2023) 51.25

Qwen1.5-14B-Chat (Bai et al., 2023) 23.75
Claude-3-Haiku (Anthropic, 2024) 30

LLM Pool (our) 70

Table 3: Explanation clusters coverage rates of the com-
mand lines synthesized by different LLMs.

the same initial seeds, totaling 52,500 command
lines. Using findings from Sec.5.5, we then gen-
erate high-quality explanations for all synthesized
command lines. Next, we embed these explana-
tions into vectors using GTE-Large (Li et al., 2023)
and cluster them with DBSCAN (Ester et al., 1996),
using a maximum distance of 0.08, a minimum of
5 samples per cluster, and cosine similarity as the
distance metric. This process resulted in 80 dis-
tinct clusters (excluding the noise cluster), each
representing a specific purpose or intention based
on similar command line explanations. We then
computed the coverage rates of the LLM pool and
each individual LLM across these clusters to assess
the diversity of synthesized command lines.

The results are presented in Table. 3. It is evident
that command lines synthesized by the LLM pool
cover the highest number of explanation clusters,
reaching up to 70%. This highlights the capability
of utilizing a pool of LLMs pre-trained on diverse
training data to generate a broader range of com-
mand lines.

6 Evaluation on CmdCaliper

6.1 Experimental Settings

CmdCaliper was trained on three distinct model
scales: small, base, and large, which are initialized
from the GTE-small, -base, and -large (Li et al.,
2023), respectively. For more details about the hy-
perparameters and training processes, please refer
to to Appendix E.

6.2 Compare with SOTAs

This section compares several SOTA sentence
embedding methods using the testing set from
CyPHER. We adopt Mean Reciprocal Ranking@K
(MRR) and Top@K metrics for evaluating the per-
formance of CmdCaliper, following the text search
task methodology (Muennighoff et al., 2022). For

Methods MRR
@3

MRR
@10

Top
@3

Top
@10

Levenshtein
distance1 71.23 72.45 74.99 81.83

Word2Vec2 45.83 46.93 48.49 54.86

E5S
3 81.59 82.6 84.97 90.59

GTES
4 82.35 83.28 85.39 90.84

CmdCaliperS 86.81 87.78 89.21 94.76

BGE-enB
5 79.49 80.41 82.33 87.39

E5B 83.16 84.07 86.14 91.56
GTRB

6 81.55 82.51 84.54 90.1
GTEB 78.2 79.07 81.22 86.14

CmdCaliperB 87.56 88.47 90.27 95.26

BGE-enL 84.11 84.92 86.64 91.09
E5L 84.12 85.04 87.32 92.59

GTRL 88.09 88.68 91.27 94.58
GTEL 84.26 85.03 87.14 91.41

CmdCaliperL 89.12 89.91 91.45 95.65
1(Haldar and Mukhopadhyay, 2011) 2(Mikolov et al., 2013)

3(Wang et al., 2022) 4(Li et al., 2023) 5(Xiao et al., 2023) 6(Ni
et al., 2022)

Table 4: Comparison with the SOTAs for different pre-
trained language models. Subscript S, B, and L denote
the Small (0.03 billion parameters), Base (0.11 billion
parameters), and Large (0.34 billion parameters) ver-
sions, respectively.

more details about the two evaluation metrics,
please refer to Appendix D. Both metrics yield
scores between 0 and 100. The results of this com-
parative analysis are presented in Table 4.

The results indicate that CmdCaliper consis-
tently achieves competitive performance with state-
of-the-art (SOTA) models across all evaluation met-
rics and scales. Specifically, CmdCaliper-Base
achieved an MRR@3 score of 87.56, surpassing
the embedding model we fine-tuned on - GTE-
Base (Li et al., 2023) by 9.36 and outperforming
all sentence embedding models of comparable size.
On a larger scale, CmdCaliper-Large achieved an
MRR@3 score of 89.12, surpassing GTE-Large by
4.86. Remarkably, even CmdCaliper-Small, with
a mere 0.03B parameters, is comparable with all
SOTA embedding models at the large scale (with
0.335B parameters).

6.3 Semantic-Based Malicious
Command-Line Detection

In this section, we approach malicious command-
line detection as a retrieval task using the open-
source atomic-red-team dataset (Canary), which
includes command lines corresponding to 55 differ-
ent MITRE ATT&CK techniques (mitre) (i.e., each
technique describes different command line attack
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Models \ r (%) 20 40 60 80

GTRBase 0.793 0.852 0.866 0.903
E5Base 0.796 0.859 0.87 0.899

GTEBase 0.8 0.868 0.874 0.903
CmdCaliperBase 0.869 0.906 0.927 0.939

Table 5: The AUC comparison for different embedding
models and different sample rate r%.

Embedding Models Params
(B) Accuracy (%)

E5Base 0.11 93.86
GTEBase 0.11 92.8

CmdCaliperBase 0.11 96.37

Table 6: Accuracy comparison for command-line classi-
fication fine-tuned on fixed embedding models.

behaviors). We iteratively select r% of the mali-
cious command lines from each technique as query
command lines, while the remaining (1−r)% serve
as positive command lines. Command lines from
other techniques act as negative command lines.
This process is repeated for each technique, and
we calculate the average area under curve (AUC).
The intuition behind this experiment is that a good
embedding model should cluster malicious com-
mand lines from the same technique closer together,
as they share similar attack behaviors. For more
details about the experiment setup, please refer to
Appendix F.

The detection results are illustrated in Table. 5.
As observed, CmdCaliper-Base significantly out-
performs all embedding models not fine-tuned on
the command-line dataset. This difference is espe-
cially pronounced when the sample ratio is smaller.
For instance, at a 20% sample ratio (r = 20),
CmdCaliper-Base improves upon GTE-Base (Li
et al., 2023) by approximately 0.069 in AUC. This
suggests that when the query command-line set is
smaller, the model requires a deeper understanding
of the semantics of command lines.

6.4 Transfer to Command-Line Classification

Fine-tuning an additional module on a pre-trained
embedding model for tasks like classification or
regression often outperforms training from scratch.
This is because well-trained embeddings capture
rich, meaningful information that can be used
across tasks. In this experiment, we trained a logis-
tic regression classifier for Windows command clas-
sification using fixed command-line embeddings
from different approaches.

Model Params
(B)

MRR
@3

MRR
@10

Top
@3

Top
@10

Random
Initialization 0.11 70.43 72.14 74.49 84.04

BertBase 0.11 82.25 83.38 85.79 92.13
GTEBase 0.11 87.56 88.47 90.27 95.26

Table 7: Comparison of the performance of CmdCaliper
fine-tuning from the different model.

Collecting a labeled command-line dataset poses
significant challenges. To address this, we selected
seven Windows commands: ‘find’, ‘robocopy’,
‘msiexec’, ‘rundll32’, ‘sc query’, ‘certutil’, and
‘print’ to synthesize 24,500 training and 24,500
testing command lines. Each command class con-
tains an equal number of examples, ensuring a bal-
anced dataset for fair evaluation. For more details
about the the classification dataset synthesis and
the experimental setup, please refer to Appendix G.

The results of the classification are presented
in Table. 6. As observed, CmdCaliper generally
outperformed other sentence embedding models
in terms of accuracy for the same model size. For
example, CmdCaliper-Base achieved a 3.57% im-
provement over GTE-Base (Li et al., 2023). These
findings highlight the importance of specialized em-
bedding models for command-line data, allowing
the models to encode more command-line informa-
tion into their embedding vectors.

6.5 Does Command-Line Embedding Benefit
from Sentence Embedding?

We conducted experiments under three settings:
training the Bert-Base (Devlin et al., 2019) net-
work architecture, the pretrained model of GTE-
Base (Li et al., 2023), with randomly initialized
weights; fine-tuning from Bert-Base; and fine-
tuning directly from the GTE-Base model. The
results of the comparison are illustrated in Table 7.
As observed, the performance of the pretrained
model significantly influences the performance of
the command-line embedding model. For instance,
fine-tuning from the embedding model yields the
highest MRR@3, showing a 5.31% improvement
compared to direct fine-tuning with BERT.

We believe that the reason command-line embed-
ding models benefit from a good sentence embed-
ding model lies in the fact that, although command
lines often have entirely different grammar and
structure from general sentences, in many cases,
we can still infer some partial meanings of the com-
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mand lines from semantically meaningful words
such as filenames, arguments, or folder names.

7 Conclusion

In this work, we introduce CyPHER, a dataset of
similar command-line pairs. The training set uti-
lizes the impressive capabilities of an LLM pool for
automated generation, while the testing set consists
of real-world malicious command lines for realistic
evaluation. We also present CmdCaliper, the first
dedicated command-line embedding model. Our re-
sults show that CmdCaliper, specifically designed
for command-line processing, outperforms existing
sentence embedding methods in various command-
line downstream tasks, such as command classi-
fication, malicious command line detection, and
similar command-line retrieval.

We open-source the dataset, model weights, and
all program codes, hoping this study sheds light on
future command-line embedding research.

8 Limitation

Despite the contributions made in this paper, sev-
eral tasks listed below are worth exploring in the
future.

• Support more command-line interpreters:
Given their prominence in recent cyberse-
curity incidents, this study focuses on Win-
dows and PowerShell commands. Com-
pelling statistics (Kutscher, 2023) reveal that
over two-thirds of script-based attacks lever-
age PowerShell. Nevertheless, an investi-
gation into a unified command-line embed-
ding model capable of spanning multiple
command-line interpreters presents a promis-
ing avenue for future research.

• Resilience against command-line obfuscation:
While CmdCaliper was trained on semanti-
cally similar command-line pairs, providing
a certain degree of resilience against obfus-
cated command lines in this study, attackers
often employ more sophisticated command-
line obfuscation techniques to evade defense
and detection mechanisms. This poses a sig-
nificant challenge when relying solely on the
embedding model for detecting malicious ac-
tivities.

• Nested command line: We can obtain the
corresponding semantic embedding vector by

inputting a command line into CmdCaliper.
However, a command line itself can be a
composition of multiple command lines as
well, making it difficult to accurately em-
bed them into the feature space. Techniques
such as few-shot learning (Brown et al., 2020)
or instruction-finetuned text embeddings (Su
et al., 2023) may provide potential solutions
for generating command-line embeddings for
specific downstream tasks. This area repre-
sents another possibility for future investiga-
tion.
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Nikolaev, Pablo Sprechmann, Zachary Nado, Lukas
Zilka, Flavien Prost, Luheng He, Marianne Mon-
teiro, Gaurav Mishra, Chris Welty, Josh Newlan,
Dawei Jia, Miltiadis Allamanis, Clara Huiyi Hu,
Raoul de Liedekerke, Justin Gilmer, Carl Saroufim,
Shruti Rijhwani, Shaobo Hou, Disha Shrivastava,
Anirudh Baddepudi, Alex Goldin, Adnan Ozturel,
Albin Cassirer, Yunhan Xu, Daniel Sohn, Deven-
dra Sachan, Reinald Kim Amplayo, Craig Swan-
son, Dessie Petrova, Shashi Narayan, Arthur Guez,
Siddhartha Brahma, Jessica Landon, Miteyan Pa-
tel, Ruizhe Zhao, Kevin Villela, Luyu Wang, Wen-
hao Jia, Matthew Rahtz, Mai Giménez, Legg Yeung,
James Keeling, Petko Georgiev, Diana Mincu, Boxi
Wu, Salem Haykal, Rachel Saputro, Kiran Vodra-
halli, James Qin, Zeynep Cankara, Abhanshu Sharma,
Nick Fernando, Will Hawkins, Behnam Neyshabur,
Solomon Kim, Adrian Hutter, Priyanka Agrawal,
Alex Castro-Ros, George van den Driessche, Tao
Wang, Fan Yang, Shuo yiin Chang, Paul Komarek,
Ross McIlroy, Mario Lučić, Guodong Zhang, Wael
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Mostafa Dehghani, Fangyu Liu, Sid Mittal, Jun-
hyuk Oh, Seb Noury, Eren Sezener, Fantine Huot,
Matthew Lamm, Nicola De Cao, Charlie Chen, Sid-
harth Mudgal, Romina Stella, Kevin Brooks, Gau-
tam Vasudevan, Chenxi Liu, Mainak Chain, Nivedita
Melinkeri, Aaron Cohen, Venus Wang, Kristie Sey-
more, Sergey Zubkov, Rahul Goel, Summer Yue,
Sai Krishnakumaran, Brian Albert, Nate Hurley,

20199



Motoki Sano, Anhad Mohananey, Jonah Joughin,
Egor Filonov, Tomasz Kępa, Yomna Eldawy, Jiaw-
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A Testing Set Collection Detail

To deduplicate, we utilized ChatGPT (OpenAI,
2022) to transform all command lines into concise
descriptions that encapsulate the purpose and in-
tention. Subsequently, we transformed these brief
descriptions into embeddings using GTE-Large (Li
et al., 2023), which achieved SOTA performance on
the MTEB leaderboard (Muennighoff et al., 2022)
among models of similar size. We then applied
DBSCAN (Ester et al., 1996) for clustering the em-
beddings. Through this approach, each cluster con-
tains command lines with highly similar semantics
based on their explanations. Finally, we extracted
two command lines from each cluster, resulting in
a testing set comprising 2,807 command lines in
total.

B Initial-Seed Collection Detail

To gather high-quality initial seeds, we first ex-
tracted all command lines executed in DARPA
Transparent Computing (DARPA, 2019), totaling
142,886 unique command lines. We then applied
a heuristic filtering process to eliminate command
lines that are semantically similar and differ only
slightly, such as variations in log file suffixes. Ulti-
mately, we curated 722 command lines as part of
the initial seeds.

To further extend the initial seeds, we formu-
lated 796 command lines based on the descriptions
and corresponding syntax found in Windows Com-
mands4. Additionally, we parsed all example com-
mand lines from SS645, totaling 497 command
lines, and collected an additional 46 command
lines from GitHub. Together, these contributions
amounted to 2,061 high-quality and diverse com-
mand lines, which were integrated to form our ini-
tial command-line seeds.

4Windows Command-line reference A-Z
5SS64 Windows CMDs
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- "C:\Windows\System32\bitsadmin.exe" /transfer 59697582645 /priority foreground
http://example.com/example1234 "C:\Users\Public\Videos\V123456789\log32.dll"
- powershell -command "Start-BitsTransfer -Source
’http://malicious.com/malicious1234’ -Destination
’C:\Users\Public\Videos\V99999999\log32.dll’ -Priority High"

- "cmd" /c "net use \\REMOTEDIR /user:Administrator password /persistent:no"
- python -c "import os; os.system(’net use \\REMOTEDIR /user:Administrator
password /persistent:no’)"

- reg query "HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall" /f
"Chrome" /s
- Get-ItemProperty HKLM:\Software\Microsoft\Windows\CurrentVersion\Uninstall\* |
Select-Object -Property DisplayName, UninstallString | Where-Object
{$_.DisplayName -like ’*Chrome*’} | Format-Table -AutoSize

- schtasks /create /tn "TaskName" /tr "C:\Path\to\program.exe" /sc daily /st
00:00
- cronjob schedule daily 00:00 /path/to/program

Table 8: The similar command-line pairs in CyPHER. Similar command lines are not merely similar on the lexical
level but also in terms of their intrinsic purpose and semantic meaning.

Here are 12 Windows command line examples for referencing:
1. {sampled command line seed 1}
2. {sampled command line seed 2}
...
12. {sampled command line seed 12}

Your job is to synthesize 4 new Windows command lines. Please adhere to the
following synthesizing guidelines:
- Ensure diverse command lines in appearance, argument value, purpose, result, and
length, particularly making sure the generated command lines differ significantly
from the reference command lines in every aspect.
- Prioritize practicality in generated commands, ideally those executed or
executable. For example, please give me real argument value, filename, IP address,
and username.
- Include Windows native commands, commands from installed applications or packages
(for entertainment, work, artistic, or daily purposes), commands usually adopted
by IT, commands corresponding with mitre att&ck techniques, or even some commonly
used attack command lines. The more uncommon the command line, the better.
- Do not always generate short command lines only. Be creative to synthesize all
kind of command lines.

Give me your generated command lines only without any explanation or anything else.
Separate each generated command line with "\n" and add a prefix "<CMD>" before each
generated cmd.

Figure 6: The prompt used for generating a single command line. 12 exemplary command lines are randomly
sampled from total command-line seeds for in-context demonstration.
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Your task is to generate a similar Windows command line for each entry in the
following command line list.
In this task, ’similar’ means that the command lines share the same purpose, or
intention, rather than merely having a similar appearance.

Consequently, the generated command lines may differ significantly in argument
values, format, and order from the original command line, or even from a different
executable file, as long as they serve a similar purpose or intention.
{query command line}

Be creative to make the command lines appear distinctly different while adhering
to the defined ’similar’ criteria. For instance, you might employ obfuscation
techniques, randomly rearrange the order of arguments, change the way to call the
exe file, or substitute the executable file with a similar one.
Please provide only the generated similar command lines without any explanation,
prefixed with "<CMD>", and separate each command line with "\n".

Figure 7: The prompt used for generating similar command lines. The query command line is randomly sampled
from the total command-line seeds.

Command Line Explanation Labels

net use Z:
\\192.168.1.1\SharedFolder
/user:administrator Passw0rd! |
findstr /i connected

This command line is used to map a
network drive to the letter Z, connect to
a shared folder on a specific IP address
using administrator credentials, and then
search for the keyword "connected" in
the output.

Positive

schtasks /create /sc weekly /d
MON,TUE,WED,THU,FRI /tn
"WeeklyBackup" /tr
"C:\Scripts\backup.bat" /st 18:00

This command line creates a scheduled
task to run a backup script every
weekday at 6:00 PM.

Positive

tasklist /fi "IMAGENAME eq
notepad.exe" /fo list | find "1234"

This command line is used to list all
running processes with the name
"notepad.exe" and then search for a
specific process ID "1234" within the
list.

Positive

findstr /s /i /m "hello world"
"world take care" C:\Users\* \*.pdf

Search for the phrase "hello world" in all
PDF files located in the C:\Users
directory and its subdirectories, ignoring
case and only displaying the file names
that contain the phrase.

Neutral

Table 9: Example of command lines and their corresponding explanations generated by GPT-3.5-Turbo (OpenAI,
2022). The rightmost column denotes the labels (e.g., Positive, Neutral, or Negative) assigned by the expert.
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C Windows-Commands Coverage Rate
Detail

While many Windows commands are listed sepa-
rately, several utilize identical executable files, like
‘reg add’ and ‘reg copy’. To present a unified per-
spective, commands with shared executable were
further grouped into one, resulting in 306 unique
Windows commands.

For common file name extensions, we first
parsed all extensions from a clean Windows 10
virtual machine, and removing those with special
characters and frequencies lower than 0.05%. This
process yielded a total of 75 common extensions.
We then identified how many of these extensions
are included in our training set.

D Evaluation Metrics Detail

MRR@K is a key metric in information retrieval
and recommendation systems. It calculates the
average reciprocal rank of the first relevant item
within a list of ranked results, focusing on the top
K positions. This method helps us gauge how well
the most relevant item ranks among the top 10 with
the highest predicted scores. The Top@K metric is
similar to MRR@K but differs in that it awards a
score if the ground truth is within the top K ranks,
without the rank-dependent decay seen in MRR.

E Hyperparameters and Training Process
of CmdCaliper Detail

We trained CmdCaliper for 2 epochs using the
Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 0.00002 and a batch size of 64. For
the temperature parameter τ in Equation 1, we set
it to 0.05. CmdCaliper was trained on three distinct
model scales: small, base, and large. These mod-
els were initialized from the GTE-small (Li et al.,
2023), GTE-base, and GTE-large, respectively.

We randomly selected 1,000 similar pairs from
the training set to form a validation set. Evalua-
tions on the validation set were conducted every 50
training steps. The checkpoint that demonstrated
optimal performance on the validation set was then
used for subsequent evaluations on the testing set.

F Semantic-Based Malicious
Command-Line Detection Detail

Initially, we define the pre-collected set of ma-
licious command lines as the ‘malicious gene
pool’. Given a new command line, we leverage

a command-line embedding model to obtain their
embedding vectors, and compute the semantic sim-
ilarity between each command line within the ma-
licious gene pool. If one of the similarities exceeds
a pre-defined threshold, we classify the new com-
mand line as malicious. This approach enables
us to detect malicious command lines from a se-
mantic perspective, even when attackers attempt to
obfuscate command lines to evade pattern-based
detection.

In this experiment, we utilize the open-source
dataset: atomic-red-team (Canary), which encom-
passes a variety of command lines corresponding
to numerous MITRE ATT&CK techniques (e.g.,
Abuse Elevation Control Mechanism or Browser
Session Hijacking). The dataset consists of a set
of techniques, denoted as {t1, t2, . . . , tn}. Within
each technique ti, we obtain a set of malicious
command lines, denoted as Li, containing Mi en-
tries: Li = {ci1, ci2, . . . , ciMi

}. By unioning all
these malicious command line sets, we form a total
command line set A, which consists of 1,523 ma-
licious command lines across various techniques,
represented as A =

⋃n
i=1 Li. To construct the mali-

cious gene pool Pi for each technique ti, we select
the first r% of the command lines from each tech-
nique, defined as Pi = {ci1, ci2, . . . , ci⌈ r

100
×Mi⌉}.

The remaining command lines form the incom-
ing command line set Oi, denoted as: Oi =
{ci⌈ r

100
×Mi⌉+1

, . . . , ciMi
}.

For malicious gene pool construction, we ex-
clude techniques with fewer than 9 malicious com-
mand lines, resulting in a total of 55 distinct mali-
cious gene pools corresponding to different tech-
niques. For the evaluation of each technique ti,
we first exclude the command lines in the mali-
cious gene pool to form a candidate command line
set Ci, denoted as Ci = A \ Pi. We treat the in-
coming command line set Oi as the positive set,
while the negative set Gi is formed by excluding
all command lines corresponding to the technique
ti, denoted as Gi = A \ Li.

Given a command line cij from the candidate
command line set Ci and an embedding model
E, the embedding vector eij can be computed by
eij = E(cij). Subsequently, the malicious score
scij

of the command line cij for the technique ti is
determined by calculating its maximum similarity
with each command line pik in the malicious gene
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pool Pi:

sicij
= max

pik∈Pi

S(eij , E(pik)) (2)

where S(·) is the similarity function (e.g., cosine
similarity function). Note that if the command
line cj belongs to the positive set Oi of the tech-
nique ti, then the malicious score should exceed the
pre-defined threshold τ for correct classification;
otherwise, the score should be below the threshold
if the command line is in the negative set Gi.

We iteratively evaluated all 55 techniques and
concatenated all malicious scores to compute the
area under the curve (AUC). This evaluation metric
aligns with real-world application scenarios where
a static threshold is usually applied across all tech-
niques.

G Classification Dataset Synthesis Detail

These commands to synthesize the command-
line classification dataset were chosen based
on their ability to accept a wide range of ran-
domly generated strings as arguments, provided
that the corresponding file exists. The classi-
fier’s task is to identify the corresponding Win-
dows command, regardless of the argument’s
length or complexity. For example, the com-
mand lines “find ‘fewj2po3kdlewfmpemrgborktig
fe34krop4k5ogjs9rkgewfefw34f’" and “find ‘test’"
should both be correctly categorized under the
‘find’ command. This highlights the importance
of a robust command-line embedding model in en-
coding the command information within its embed-
dings, as it plays a crucial role in determining the
purpose of each command line.

In this experiment, we used the pattern “<com-
mand> ‘<argument value>’" to randomly generate
7,000 command lines for each command. Of these,
3,500 were assigned to the training set and the re-
maining 3,500 to the testing set. The arguments for
each command line were formed by concatenating
seven random strings, made up of ASCII letters
and digits, with lengths ranging from 1 to 20 char-
acters, separated by spaces. To increase the diffi-
culty of classification and simulate the obfuscation
techniques that attackers might use in real-world
scenarios to evade detection, we also randomly in-
corporated seven different commands into the argu-
ment values. For example, a synthesized command
line might read: “certutil.exe ‘msiexec tr9QI1L
find C print oGod 5K 7Okf4 2ZcVT9 rundll32 sc

query mNjIL robocopy q5’", where only the first
command, ‘certutil’, is valid.

We randomly selected 20% of the training set to
serve as a validation set in the search for optimal
hyperparameters. Subsequently, we utilized the
obtained optimal hyperparameters to train a logistic
regression classifier for performance evaluation on
the testing set.
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