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Abstract

Prompt engineering is very important to en-
hance the performance of large language mod-
els (LLMs). When dealing with complex is-
sues, prompt engineers tend to distill multi-
ple patterns from examples and inject rele-
vant solutions to optimize the prompts, achiev-
ing satisfying results. However, existing auto-
matic prompt optimization techniques are only
limited to producing single flow instructions,
struggling with handling diverse patterns. In
this paper, we present AMPO, an automatic
prompt optimization method that can itera-
tively develop a multi-branched prompt using
failure cases as feedback. Our goal is to ex-
plore a novel way of structuring prompts with
multi-branches to better handle multiple pat-
terns in complex tasks, for which we introduce
three modules: Pattern Recognition, Branch
Adjustment, and Branch Pruning. In experi-
ments across five tasks, AMPO consistently
achieves the best results. Additionally, our ap-
proach demonstrates significant optimization
efficiency due to our adoption of a minimal
search strategy.

1 Introduction

Prompt Engineering involves creating the best pos-
sible prompts to enhance the performance of large
language models (LLMs). It has become increas-
ingly significant in the development of LLM appli-
cations (Brown et al., 2020; Welleck et al., 2022).
Creating suitable prompts frequently demands con-
siderable human effort, specialized knowledge,
and numerous trial-and-error attempts (Zamfirescu-
Pereira et al., 2023). Therefore, investigating effi-
cient automatic prompt engineering techniques is
crucial (Zhang et al., 2022; Chen et al., 2023).

In recent times, automatic prompt optimization
methods based on LLMs have seen extensive explo-
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Figure 1: Our prompt optimization approach aims to
iteratively optimize a single flow of instructions into a
multi-branched format to handle multiple patterns.

ration (Zhou et al., 2022; Yang et al., 2023; Schn-
abel and Neville, 2024). These studies generally
employ LLMs as prompt optimizers to progres-
sively enhance prompts for target models. Particu-
larly, one promising paradigm is feedback-based
optimization methods, where LLM-based prompt
optimizers act like human experts by analyzing
and fixing failed cases (Pryzant et al., 2023; Wang
et al., 2023b; Ye et al., 2023). These methods ex-
plicitly leverage the self-reflection ability of LLMs
for prompt refinement and mirrors the steps of
“gradient” in the direction of error descent and then
“propagate” to the prompt. Currently, this paradigm
of prompt optimization has achieved promising ad-
vancements and widespread interest.

Despite the success of feedback-based optimiza-
tion methods, we find that the optimized prompts
are primarily achieved by meticulously rewriting
certain steps, attempting to provide more details.
Essentially, they are mainly a form of single flow
instructions. As shown in Figure 1, when deal-
ing with complex issues, categorizing problems in
advance can help LLM analyze issues more sys-
tematically and easier to find appropriate solutions
(Thomas et al., 2023; Ren et al., 2024; Mao et al.,
2023). It is evident that an LLM optimizer gen-
erating a single flow instructions struggles with
handling various patterns. For example, current
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feedback-based methods either fail to provide ef-
fective fixes or cause numerous regressions when
failed cases are not addressed by the single flow
instructions (Ma et al., 2024).

Given the complexity of real-world scenarios,
we contend that a single flow of instructions is in-
adequate. The LLM optimizer should identify mul-
tiple patterns from failure cases, which in turn al-
lows for the exploration and development of more
adaptable prompt structures. Motivated by this, we
propose AMPO, a prompt optimization method
that moderately transforms a prompt into a multi-
branched format and then optimizes the prompt
using failure cases as a guide. The key aspect of
this process is to create an adaptive prompt struc-
ture that aligns with the complexity of the task.
To achieve this, we introduce three modules: (1)
Pattern Recognition is responsible for analyzing
the pattern of the failure cases. (2) Branch Adjust-
ment can adaptively choose between adding the
branches to address the new pattern and providing
more details to enhance the existing branches. (3)
Branch Pruning takes both pre-pruning and post-
pruning techniques to prevent the prompt from
overfitting. The advantage of our multi-branched
prompt structure is that it allows the target LLM
to autonomously determine the most appropriate
path for each sample during inference, thereby en-
hancing its ability to handle diverse patterns and
complexities.

We conduct experiments across five tasks, en-
compassing various levels of complexity. Our ex-
perimental results show that AMPO consistently
achieves the best results across five tasks from Gen-
eral NLU and Domain Knowledge. Additionally,
compared with other feedback-based optimization
approaches, our approach exhibits impressive opti-
mization efficiency due to our adoption of a mini-
mal search strategy.

Our contributions are as follows:
(1) We introduce AMPO, an automatic prompt

optimization method that can iteratively construct a
multi-branched prompt using failure cases as feed-
back. Notably, AMPO is currently the first-known
prompt optimization method designed to generate
multi-branched prompt.

(2) To the best of our knowledge, we are the first
to explore structuring prompts with multi-branches
to better handle multiple patterns in complex tasks.
Our results show that AMPO can automatically
construct an effective multi-branched prompt from
the data distribution, thereby accommodating com-

plex tasks.
(3) We conduct experiments across five tasks.

AMPO consistently outperforms other feedback-
based prompt optimization methods. Meanwhile,
experimental results show that AMPO exhibits
impressive optimization efficiency due to our adop-
tion of a minimal search strategy.

2 Motivating Example

To illustrate the importance of recognizing and han-
dling different patterns when dealing with complex
issues, we take search query understanding task as
an example, In this task, we employ LLM to predict
a personalized query intent using the current query
and user’s search history as input. As the saying
goes “there are a thousand Hamlets in a thousand
people’s eyes”, predicting personalized intents is
quite difficult. According to expert experience, the
best approach is to first categorize users’ search
behaviors into distinct classes and then develop a
strategy for predicting personalized intent for each
category. For example, if the current query is a re-
finding query—identical to a previous query—the
most likely intent is to revisit the same webpage
from the user’s recent clicks. If the current query
is a reformulation query derived from any previous
queries, the intent should be personalized based
on the nature of the reformulation, such as an ex-
pansion or filtering of the original query. When
the query is a domain preference query, where the
user’s history indicates a preference for specific
domains related to the current query, we should
refine the query intent using this domain prefer-
ence. Inspired by this, AMPO introduces multiple
branches to handle various categories, adaptively
expanding or pruning them to achieve the most
appropriate coverage.

3 Related Work

3.1 The Structure of Prompting Instructions
Prompts significantly influences the performance
of LLMs (White et al., 2023; Liu et al., 2023). Nu-
merous studies confirm that breaking down ques-
tions into multiple intermediate steps can markedly
enhance the quality of outputs (Wei et al., 2022),
particularly in tasks requiring reasoning (Wang and
Zhou, 2024; Yasunaga et al., 2023) and planning
(Wang et al., 2023a; Zhang et al., 2023). To further
improve these intermediate steps, many researchers
utilize the model’s in-context learning abilities (Ko-
jima et al., 2022; Shum et al., 2023). While these
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prompt design methods enhance LLMs’ reason-
ing and generation capabilities, they still rely on
a sequential, single-flow structure, which remains
inadequate for more complex situations. In this
work, we want to explore a novel way of structur-
ing prompts with multi-branches to better handle
multiple patterns in complex tasks. We hypothe-
sized that a multi-branched prompt structure could
allow the target LLM to autonomously determine
the most appropriate path for each sample during
inference.

3.2 Automatic Prompt Optimization

Advances in LLMs have led to numerous studies
exploring automatic prompt optimization technolo-
gies (Ye et al., 2023; Schnabel and Neville, 2024).
These studies often fall into two categories: using
search algorithms (Guo et al., 2023; Zhou et al.,
2022) or leverage the self-reflection capabilities
of LLMs (Pryzant et al., 2023; Yang et al., 2023)
to identify optimal prompts. Recently, there have
been attempts to combine both approaches by em-
ploying search algorithms like Monte Carlo tree
search (MCTS) integrated with self-reflection ca-
pabilities (Wang et al., 2023b). In this combined
approach, each prompt is treated as a state, and
each optimization as an action, enabling more re-
fined prompt optimization through traceable tree
search. Our approach falls under the self-reflection
category. The key difference between AMPO
and existing methods is that AMPO considers
the prompt’s structure as an optimization objec-
tive. Traditional methods typically treat prompts
as a single block of text, optimizing them as a
whole. In contrast, AMPO identifies multiple pat-
terns from error cases and refines the prompt into a
multi-branched structure by adding new branches
or enhancing existing ones. This multi-branched
structure enables LLMs to handle tasks with highly
diverse data distributions more effectively.

4 Methodology

Given a task τ specified by a provided training
set as Dtrain = {(q1, a1), (q2, a2)..., (qn, an)},
where qi/ai are input/output pairs from each entry,
we start with an initial prompt P0. The model input
consists of P and qi, and the base LLM β makes
the prediction based on pβ(ai|qi, P ). The goal of
prompt optimization is to find the optimal prompt
P ∗ that maximizes the performance towards a
measure function R (e.g., accuracy) over Dtrain.
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Figure 2: Overall framework of AMPO

This can be formally defined as an optimization
problem: P ∗ = argmaxP∈S

∑
iR(pβ(ai|qi, P )),

where S denotes the sample space for a natural
language prompt.

4.1 Overview

The goal of AMPO is to iteratively develop a
multi-branched prompt using failure cases as feed-
back. The key aspect of this process is generating
an adaptive prompt structure that aligns with the
complexity of the task. To achieve this, our ap-
proach mainly consists of three modules: (1) Pat-
tern Recognition is responsible for analyzing the
patterns of failure cases. (2) Branch Adjustment is
responsible for balancing the adaptability between
adding new branches to address emerging patterns
and enhancing existing branches based on recog-
nized patterns. A proper balance is crucial for adap-
tive prompt structure. (3) Branch Pruning takes
both pre-pruning and post-pruning techniques to
prevent the prompt from overfitting, further ensur-
ing the adaptivity of prompt structure. The overall
framework of AMPO is shown in Figure 2.

At the beginning, an initial prompt P0 is gen-
erated based on few-shot examples (Zhou et al.,
2022)1. Then, we start to iteratively optimize the
prompt by using failed cases as feedback. Details
of the algorithm can be found in Algorithm 1. Be-
low, we provide a detailed introduction to each
module.

4.2 Pattern Recognition

Given the current prompt P and K bad examples
drawn from the training set Dtrain, the goal of
this module is to perform error analysis to uncover

1Our approach can also optimize human-written prompts.
In this paper, we use LLM-based prompt initialization to
facilitate human effort.
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Algorithm 1 AMPO
Require: Initial prompt: P0, Training set: Dtrain, Valida-

tion set: Dval, Iteration limit: T
1:
2: // LLM agents
3: Analyzer: Conduct error analysis.
4: Summarizer: Condense error reasons into patterns and

assign important scores.
5: Revisor: Edit the multi-branched prompt.
6:
7: Initiate P = P0

8: while t ≤ T do
9: Evaluate P on Dtrain and sample K failed cases

E = {(xi, yi)|(xi, yi) ∈ Dtrain ∧ LLM(xi; p) ̸= yi}
10: // Pattern Recognition
11: LLM-Analyzer conducts error analysis and iden-

tifies the error reasons for each failed case: R =
{r1, r2, . . . rK}

12: LLM-Summarizer condenses R reasons into M pat-
terns and assign important scores from each pattern:
Patt = {(patt1, s1), . . . (pattM , sM )}

13: // Branch Adjustment
14: Selects top N patterns by important scores.
15: LLM-Revisor optimizes P based on top N Patt and

obtained optimized prompts Popt = {P1, . . . PN}.
16: // Branch Pruning
17: LLM-Revisor prunes the optimized prompts Popt and

obtained Ppruned = {P1, . . . PN}
18: Evaluate N pruned prompts Ppruned =

{P1, . . . PN} on Dval and select the best prompt
P ∗.

19: Update P = P ∗

20: end while
21: return The best prompt.

the root causes of each bad example. To facilitate
this, we have created step-by-step instructions for
an LLM agent named LLM-Analyzer. The meta
prompt for LLM-Analyzer is provided in Appendix
A.3. By analyzing the output reasons, we found
that the reasons produced by LLM are often similar,
even though the failed cases differ. This leads
to low optimization efficiency of feedback-based
methods. Furthermore, in AMPO, similar feedback
can lead to redundant branches within the prompt,
ultimately affecting its performance (as shown in
Section 5.5).

To address the aforementioned issue, we employ
another LLM agent (named as LLM-Summarizer),
to summarize the causes of all failed cases into
different patterns for each iteration. Incorporating
this summarization offers several benefits: (1) It
reduces repetitive reasons, significantly enhanc-
ing the efficiency of optimization compared to
other feedback-based methods. (2) Summariz-
ing reasons into patterns improves generalizabil-
ity, thereby minimizing redundant branches in the
multi-branched prompt. Additionally, we ask the
LLM-Summarizer to assign an importance score

for each pattern. In our paper, we select top N pat-
terns by importance scores. It enables the selection
of important patterns during the branch adjustment
process, further reducing the number of explored
prompts and thereby improving efficiency. The
meta prompt for the LLM-Summarizer is provided
in Appendix A.4.

4.3 Branch Adjustment

The goal of the branch adjustment module is to
optimize a multi-branched prompt based on the
summarized patterns from the LLM-Summarizer.
It is critical to clarify whether a pattern should
be used to enhance an existing branch or create
a new one. The optimal choice depends on the
specific task. For instance, more complex tasks are
likely to exhibit a wider range of patterns, mak-
ing a multi-branched prompt preferable due to its
scalability and capacity to handle various patterns.
Conversely, for simpler tasks, single-flow instruc-
tions are more effective, as they are easier to follow
and more robust.

Adaptivity between adding the branches to ad-
dress the new pattern and providing more de-
tails to enhance the existing branches In this
module, we employ an LLM agent, referred to
as "LLM-Revisor," to modify the multi-branched
prompt. Specifically, we define two types of opera-
tions for the LLM-Revisor: (1) adding branches to
address new patterns and (2) providing additional
details to enhance existing branches. By analyzing
the existing branches and new pattern, the LLM-
Revisor determines whether to expand the prompt
in depth (by adding more details) or in breadth (by
adding more branches). The advantage of this ap-
proach lies in its flexibility, allowing for the prompt
structure to be tailored to the task’s complexity and
pattern distribution. The step-by-step instructions
for the LLM-Revisor are provided in Appendix
A.5.

4.4 Branch Pruning

By thoroughly examining the edition process of
the LLM-Revisor, we observed that the multi-
branched prompt is susceptible to overfitting. Typ-
ically, after several rounds of iteration, the per-
formance of the prompt on the test set begins to
decline. Meanwhile, the prompt appears to have
more and more branches perceptually. This hap-
pens when the LLM memorizes corner cases in the
training data and fails to pick up essential patterns.
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Inspired by pruning techniques in machine learn-
ing (Esposito et al., 1997; Kwon et al., 2022), we
propose two possible solutions: (1) pre-pruning
prevents the prompt from further growth by early
stopping. After each iteration, we check the cross-
validation error. If the error does not decrease
significantly then we stop. By pruning early, we
obtain a more streamlined prompt that is less prone
to overfitting the training data. (2) post-pruning
does the opposite of pre-pruning and allows the
prompt to grow to its full depth. Particularly, we
add a step at the end of the meta prompt for the
LLM-Revisor to review the entire set of instruc-
tions again and delete any branches to enhance the
instructions’ generalization ability.

5 Experimental

5.1 Baselines

Human Instruction: Human prompts are the in-
structions crafted by humans based on their un-
derstanding and cognition of the original dataset.
For each task, we take instructions written by do-
main experts, sourced from scholarly databases
or professional websites, and make corresponding
modifications to adapt them to our tasks.

Chain-of-Thought (CoT) (Wei et al., 2022) ap-
pends "Let’s think step by step." after the question
to trigger the model’s reasoning process.

Chain-of-Thought Instructions (CoT Instruc-
tions) (Wei et al., 2022): We randomly select 5
cases and generate corresponding thought chains
by few-shot learning. After that, we manually op-
timize the prompts to enhance performance. This
prompt is also used as the initial prompt for other
feedback-based prompt optimization methods.

APO (Pryzant et al., 2023): APO generates nat-
ural language-level gradients from incorrect exam-
ples, and then utilizes these gradients to reverse-
edit the prompt.

OPRO (Yang et al., 2023): OPRO leverages
historical prompts, scores, and error examples
to guide the LLM in generating higher-scoring
prompts. Unlike APO, OPRO does not provide
explicit feedback during the optimization process.

PromptAgent (Wang et al., 2023b): PromptA-
gent utilizes the Monte Carlo Tree Search (MCTS)
algorithm to strategically optimize the prompting
process.

5.2 Tasks

To thoroughly evaluate the effectiveness of our
method across a wide range of applications, we
carefully select 5 tasks from different domains
for in-depth experimentation: the well-known
text classification task TREC (Voorhees and Tice,
2000), the widely recognized sentiment classifica-
tion task SST-5 (Socher et al., 2013) and the large-
scale reading comprehension task RACE (Lai et al.,
2017). Additionally, we chose two domain-specific
tasks from the biomedical field, which explicitly
require domain insights when crafting expert-level
prompts, namely the medical question-answering
tasks MedQA (Jin et al., 2021) and MedMCQA
(Pal et al., 2022). Detailed dataset information is
available in Appendix A.1.

5.3 Implementation Details

In our study, we utilize GPT-3.5-turbo and GPT-4-
turbo as the target model, with GPT-4-turbo serv-
ing as the optimizer. To comprehensively capture
potential error feedback, we set the temperature
parameter of the Analyzer to 1. For the Revisor,
we set the temperature to 0 to ensure precision in
the edits. We sample K=5 bad cases and select
the top N = 1 pattern for LLM-Revisor to op-
timize. Therefore, we keep only one prompt to
iterate. Throughout the iterative processes of APO,
PromptAgent and AMPO, we sample 10% of the
training data as the validation set to assess prompt
effectiveness. In our experiments, we run each ex-
periment three times and report the average of the
results evaluated on the test set.

5.4 Main Results

In Table 1, we present a comparison of prompts
generated by AMPO against Human Instruction,
CoT, CoT Instructions, APO, OPRO, and Promp-
tAgent across five tasks in three domains. We ob-
served that our method significantly outperforms
accuracy in all tasks, which validates the effective-
ness of our approach in optimizing prompts.

AMPO significantly surpasses other methods
in complex tasks Taking the MedQA task as
an example, this task includes various conditions
and complex situations. Therefore, when address-
ing such issues, it is crucial for LLMs to iden-
tify different patterns based on the specific con-
ditions of patients and provide the most suitable
treatment plan. As shown in Table 1, whether
using GPT-3.5-turbo or GPT-4-turbo, the human-

20271



LLMs Methods General NLU Domain Knowledge

SST-5 TREC RACE MedQA MedMCQA

GPT-3.5
-turbo

Human 51.56 69.60 79.25 61.25 45.75
CoT 50.00 63.00 77.75 50.50 47.25
CoT Instructions 49.56 67.75 78.25 68.25 48.25
APO 52.00 69.00 78.00 72.25 48.00
OPRO 52.44 70.50 78.75 70.50 46.75
PromptAgent 54.22 72.50 80.75 71.75 47.50
OURS 55.78↑ 1.56 76.00↑ 3.50 81.75↑ 1.00 76.50↑ 4.25 48.75↑ 0.50

GPT-4-turbo

Human 52.34 70.50 89.75 64.50 65.75
CoT 53.86 63.50 88.50 63.50 69.75
CoT Instructions 50.33 71.25 91.00 71.75 70.75
APO 55.25 75.25 90.75 83.25 71.50
OPRO 56.44 79.50 90.00 76.50 66.00
PromptAgent 57.33 81.50 91.00 77.00 70.25
OURS 59.78↑ 2.45 82.00↑ 0.50 91.25↑ 0.25 89.00↑ 5.75 73.00↑ 1.50

Table 1: Performance comparison of GPT-3.5-turbo and GPT-4-turbo across five tasks, highlighting the highest
accuracy results in bold. The up arrow indicates the amount by which OURS exceeds the second-highest score.

Model MedQA TREC SST-5
AMPO 89.00 82.00 59.78

- Summarization 86.75 81.50 57.00
∆ -2.25% -0.50% -2.78%

- Enhance existing 86.25 78.25 55.33branches
∆ -2.75% -3.75% -4.45%

- Add new branches 82.25 77.75 53.78
∆ -6.75% -4.25% -6.00%

Table 2: The ablation study results of AMPO without
summarization, enhancing existing branches and adding
new branches. The exact match score is reported.

constructed prompt performs the worst, possible
because the instructions are general and do not
align closely with the input information. Then,
prompts generated through few-shot examples per-
form better. Next, when supplemented with failure
cases as feedback, APO, OPRO and PromptAgent
can further improve the performance. Finally, our
method achieved relative improvements of 24.50%,
25.50%, 17.25%, 5.75% and 12.00% compared to
the other methods (i.e., Human Instruction, CoT,
CoT-Instructions, APO, OPRO, and PromptAgent)
using GPT-4-turbo. Because our method offers a
multi-branched prompt to handle complex situa-
tions by categorizing the problems first rather than
using a single flow to address all issues. The ex-
perimental results demonstrate that AMPO signifi-
cantly surpasses other methods in complex tasks.

AMPO also outperforms the other methods
in normal tasks Take a relatively normal task
RACE as an illustration. As we can see from Ta-
ble 1, the prompts constructed by human and few-

shot examples both perform well. Then, the im-
provements brought by using feedback-based meth-
ods like APO and PromptAgent are minimal, or
even detrimental. For example, on the RACE task,
the APO-optimized prompt performs 0.25% lower
than the initial prompt (i.e., CoT-Instructions) with
GPT-4-turbo as the target model. Meanwhile,
AMPO consistently surpassed other methods and
achieved state-of-the-art performance. It indicates
that our method performs well even under normal
circumstances. This means that our method can
flexibly create an adaptive multi-branched prompt
from the data distribution, thereby adapting to com-
plex or normal tasks.

5.5 Ablation Study
To systematically study the effects of the pattern
summarization, adaptivity of multi-branched and
branch pruning in AMPO, we conduct thorough
ablation experiments across three tasks. The results
are shown in the table 2.

Summarization For each iteration of AMPO,
we incorporate the LLM-Summarizer to summa-
rize the error reasons of all K sampled failed
cases into M patterns. By removing the LLM-
Summarizer, the error reasons produced by LLM-
Analyzer are directly fed into the LLM-Revisor in
batch. According to the results in the table 2, in
the MedQA, TREC, and SST-5 tasks, the perfor-
mance respectively decreased by 2.25%, 0.50%,
and 2.78%. It indicates that it is crucial to summa-
rize the error reasons to common patterns before
revising.
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Figure 3: Comparison between our pattern selection
strategy and the random strategy on MedQA and SST-
5.

Adaptive Adjustment One of the significant in-
novations of AMPO is its adaptivity between ex-
panding new branches and enhancing the existing
branches of a multi-branched prompt, making it
necessary to validate the importance of this fea-
ture through ablation experiments. Specifically,
we modified the meta prompt of LLM-Revisor by
removing options to enhance existing branches or
adding new branches. The experimental results
show that the performance significantly decreases
by an average of 5.67% across three tasks without
adding new branches. Notably, by removing the
addition operation of new branches, AMPO would
actually degrade into APO. When LLM-Revisor
can only add new branches, the performance also
decreases by an average of 3.65%, but still remains
higher than enhancing existing branches-only by
3.03%. Through this study, we have arrived at two
conclusions: (1) both adding new branches and
enhancing existing ones are crucial for develop-
ing an adaptive multi-branched prompt; (2) adding
new branches is more significant than enhancing
existing ones when handling complex tasks.

6 Analysis

6.1 Pattern Selection Strategy

In our experimental design, we start by randomly
sampling K=5 bad cases and analyzing them with
the LLM-Analyzer, without specifying a fixed num-
ber of causes. After that, all identified reasons are
handed over to the LLM-Summarizer, which con-
solidates them into several main categories. Mean-
while, we ask the LLM-Summarizer to assign an
importance score for each main reason. After that,
we select the top N=1 most critical pattern by im-
portant scores. Figure 3 shows that our search strat-
egy has improved by 2.75% over random sampling
on average, which demonstrates the effectiveness
of our pattern selection strategy.
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Figure 4: Exploration efficiency analysis. Our method
achieved the best results with the fewest exploration
prompts. The horizontal axis represents the number
of intermediate exploratory prompts, while the vertical
axis represents accuracy. Here, AMPO-No-S refers to
AMPO without the Summarizer.
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Figure 5: Convergence Analysis

6.2 Exploration Efficiency Analysis

Exploration efficiency is critical to reduce the com-
putation cost. We thus compare the number of
explored prompts between our method and three
strong baselines. In Figure 4, ours achieves the best
results with the fewest exploration prompts across
various tasks. Take the MedQA task as an example,
we performed 5 iterations for 4 different methods,
calculating the number of prompts they generated.
For each iteration, APO generates 3 prompts from
each of the 4 prompts of the previous iteration, and
selects the 4 prompts with the best performance on
the validation set for the next iteration, resulting
in 240 exploration prompts. PromptAgent, using
an MCTS Search strategy(Winands et al., 2008)
with a depth of 3 and a breadth of 3, produces a
total of 52 prompts after 5 iterations. Compared
to PromptAgent and APO, AMPO uses 6.4 times
and 48 times fewer explored prompts respectively,
yet achieved performance improvements of 12%
and 5.75%. The high efficiency of our method
is mainly due to three reasons: (1) We employ a
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1. Read the input carefully to understand the context and specifics of the scenario: 
- If the scenario is clinical, focus on the patient's condition and any special circumstances (like pregnancy).
- Else if the scenario is non-clinical, such as a biochemical experiment, ensure comprehension of the scientific principles involved. 
2. Identify key information. 
... 
3. Consider the context:
- If it's a clinical scenario, ... If the scenario is diagnostic in nature and suggests an embryologic error, ... .
- Else if the scenario is treatment-oriented, proceed to the next steps with a focus on treatment selection.
- Else if it's a non-clinical scenario, ... . 
4. Review options based on the context:. ...- Else if treating, review treatment options and prioritize based on safety and 
effectiveness. ...- If the case involves enzyme kinetics, provide specific guidance on interpreting data such as Km and Vmax. 
5. If multiple options seem appropriate:- If in a clinical case, .... 
6. Make a decision:
- If in a clinical scenario, ... .
- If diagnosing, ... .
- Else if in a non-clinical scenario, choose the conclusion or next step that best fits the experimental data and scientific knowledge.

(A) Hemoptysis
(B) Easy fatigability
(C) Persistent ST-segment elevation
(D) Shortness of breath

Firstly, this scenario is clinical, dealing with a patient who presents with severe, retrosternal 
chest pain, radiating to the left shoulder and associated with sweating-clear indications of an 
acute myocardial infarction. ... .treatment-oriented, since immediate medical interventions 
have been applied and their outcomes must be monitored closely. ... . So the answer is A.

A 67-year-old man is brought to the emergency department with severe, crushing, retrosternal chest pain for the last 45 minutes. The 
pain radiates to his left shoulder and is S4 and bilateral ... started on dopamine, morphine, nitroglycerin, and streptokinase. Which of the 
following would be the most concerning development over the next 24h this patient?

Question

AMPO-Optimized Prompt

Analysis Options

Figure 6: Here is an example from MedQA where the AMPO-optimized prompt led the LLM to make the correct
choice, while other methods all failed. Intuitively, the multi-branched prompt generated by AMPO has branches at
different steps, considering various conditions with if-else statements. Compared to a single flow instruction, it can
handle a wider variety of patterns, thereby achieving better performance. We use different colors to highlight various
judgment conditions of our prompts. From this example, the multi-branched prompt first guides the LLMs to
differentiate problems into clinical and non-clinical, further judge whether they are diagnostic or treatment-oriented,
while also assessing whether the patient is suitable for treatment. For cases involving enzyme kinetics, it will guide
the LLMs to provide insights specific to that field.

greedy search strategy, meaning that in each iter-
ation, only one best prompt is retained. (2) Our
LLM-Summarizer condenses all the error reasons
from failure cases into several patterns. (3) Ad-
ditionally, the LLM-Summarizer assigns an im-
portant score for each pattern, allowing the LLM-
Revisor to filter the patterns, which further reduces
the number of exploration prompts.

6.3 Convergence analysis

To further investigate the learning process of
AMPO, we monitored and visualized the perfor-
mance changes of prompts over each round of the
process. Specifically, we recorded and plotted the
performance trajectories of all baselines across six
rounds in the MedQA task, illustrating the evolu-
tion of the prompt optimization methods’ perfor-
mance in Figure 5. We observed that all three opti-
mization methods showed an overall upward trend,
but AMPO’s increase is notably greater, jumping
directly from 71.25% to 83.75% only one iteration.
The multi-branched prompt has better scalability
and a larger capacity to handle different patterns.
Unlike other methods, our approach can expand

new branches besides modifying existing ones, al-
lowing it to handle more situations and reducing
the difficulty of modifying original prompts.

6.4 Case Study

To illustrate how AMPO utilizes multi-branched
prompts to solve issues, we conducted a qualita-
tive analysis. By using an example from MedQA,
we demonstrated that our approach can accurately
categorize complex scenarios from intricate data.
Then it can design detailed solutions for each case,
ultimately leading to the correct answer. From the
analysis result of this example, we can see that the
LLM first judges the patient’s condition as clini-
cal and finds that there are clear indications of an
acute myocardial infarction. Next, it judges the
situation as treatment-oriented and finally arrives
at the correct answer.

7 Conclusion

In this paper, we proposed Automatic Multi-
Branched Prompt Optimization (AMPO), which
explicitly converts a prompt into a multi-branched
format and then iteratively refines it using fail-
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ure cases as feedback. Specifically, we employ
three LLM agents working in tandem and propose
guiding principles to balancing the adaptability
of the multi-branched structure. Experimental re-
sults demonstrate that AMPO outperforms exist-
ing state-of-the-art feedback-based optimization
approaches while significantly improving optimiza-
tion efficiency.

8 Limitations

Multi-branched prompt optimization requires
LLMs to possess strong logical reasoning abilities.
To reduce complexity, we have adopted the divide
and conquer approach, designing three roles: LLM-
Analyzer, LLM-Summarizer, and LLM-Revisor.
Additionally, we have designed step-by-step meta
instructions to guide how to generate an adaptive
prompt structure to accommodate tasks of varying
difficulties. Despite this, our method still depends
on the capabilities of the LLMs themselves. Due to
current limitations in their abilities, there are times
when the models may not strictly follow the meta
instructions, leading to suboptimal results. How-
ever, by utilizing better LLMs in the future, we can
further enhance the effectiveness of our method.
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A Appendix

A.1 Data split

In our experimental setup, tasks are organized
into two primary categories: General NLU (Natu-
ral Language Understanding) and Domain Knowl-
edge.

Within the General NLU category, we have three
tasks: SST-5, TREC, and RACE. Each task is al-
located 100 training samples and 50 evaluation
samples. For the test sets, SST-5 comprises 450
samples, while TREC and RACE each have 400
samples.

For the Domain Knowledge category, there are
two tasks: MEDQA and MEDMCQA. Like the
General NLU tasks, each of these tasks is assigned
100 training samples. However, the table indicates
that there are 50 evaluation samples for these tasks
samples for these tasks and 400 test samples. It
should be noted that there are some formatting
inconsistencies in the Eval and Test columns for
the MEDQA and MEDMCQA tasks which need to
be addressed for clarity. For detailed information,
please refer to Table 3.

A.2 Different Pattern Results

We explored the impact of selecting the top N
patterns on the results. As evidenced by the table,
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Type Task Train Eval Test

General NLU

SST-5 100 50 450

TREC 100 50 400

RACE 100 50 400

Domain Knowledge

MEDQA 100 50 400

MEDMCQA 100 50 400

Table 3: Experimental Data Distribution

1 2 3 4 5
Pattern

0.50

0.52

0.54

0.56

0.58

Ac
cu
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cy

AMPO

Figure 7: The performance of choosing different num-
bers of top patterns on SST-5 task. We use GPT-3.5-
turbo as the target model.

accuracy peaks when N = 5, while it is lowest at N
= 4, exhibiting an overall oscillatory trend within
a reasonable range. Consequently, to enhance our
efficiency, we opted for N = 1.

A.3 LLM-Analyzer Meta-Prompt
A.4 LLM-Summarizer Meta-Prompt
A.5 LLM-Revisor Meta-Prompt
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---ProblemStart---
I have some instructions for a specific problem:
---InstructionsStart---
{{initial_prompt}}
---InstructionsEnd---

But it gets the following cases wrong:
---BadCasesStart---
{{bad_examples}}
---BadCasesEnd---

Your task is to identify the underlying causes for my [# Instructions] as an analyzer. Please follow these
steps:
(1) Identify what perspectives there are to consider for my problem. Please think as comprehensively as
possible, considering all aspects.
(2) Based on these potential perspectives you identified, analyze the pattern of the failed cases.
(3) Carefully review each step of my [# Instructions] and identify which step neglects the key information
in the pattern, resulting in failure.
(4) Write your reasons and wrap each reason with <START>and <END>.

Table 4: LLM-Analyzer

---ProblemStart---
I have some instructions for a specific problem:
---InstructionsStart---
{{initial_prompt}}
---InstructionsEnd---

Here are some reasons why my current instructions cannot solve some problem :
---Reasons---
{{Reasons}}
---Reasons---

Your task is to summarize the many reasons provided above into a few major categories and assign an
important score for each category. Be careful to eliminate repetitive and similar reasons. Each
summarized pattern should be wrapped with <START>and <END>.

Table 5: LLM-Summarizer
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---ProblemStart---
You have some instructions for a specific task:
---InstructionsStart---
{{initial_prompt}}
---InstructionsEnd---

However, due to the complexity of real-world situations, a single flow of instructions (i.e., sequential
instructions) cannot apply to all cases. Therefore, you should transform the instructions into a conditional
approach, which means adopting different instructions for different patterns.

Notably, the key aspect of this process is to create an adaptive prompt structure, thereby accommodating
tasks of varying difficulties. To achieve this, you should find the golden mean between adding the
branches to address the new pattern and providing more details to enhance the existing branches based on
the difficulty of your task and the distribution of recognized patterns.

An expert has pointed some patterns that you don’t considered before for your instructions:
---ExpertAnalysisStart---
{{patterns}}
---ExpertAnalysisEnd---

Please optimize your [# Instructions] based on expert analysis step-by-step:
(1) Carefully review each step of your instructions.

(2) Identify the steps that went wrong due to a lack of key information mentioned in expert analysis.

(3) For each suboptimal step, you have the following options:
- 3.1 Consider improving the step to include the key information.
- 3.2 Otherwise, you can also consider adding **sub-steps** using an **if** or **if-else** structure to
handle the **new** patterns. Ensure that each substep is specific and avoids vague instructions.
Note that if a step needs to consider multiple situations, break it down into substeps to make it easier to
follow.

(4) Include Tips or Cautions: If merely optimizing existing steps with branches like if-else does not
sufficiently to address all aspects, add new tips or cautions to the current instructions to handle different
patterns.

(5) Maintain the other main steps unchanged from the initial prompt, in order to not lose information.

(6) At last, review the whole steps and prune the branches to avoid the instructions overfitting.

Please only output the optimized prompt without anything else.

Table 6: LLM-Revisor
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